Skip to content

preprocessing

skforecast.preprocessing.preprocessing.RollingFeatures

RollingFeatures(
    stats,
    window_sizes,
    min_periods=None,
    features_names=None,
    fillna=None,
    kwargs_stats={"ewm": {"alpha": 0.3}},
)

This class computes rolling features. To avoid data leakage, the last point in the window is excluded from calculations, ('closed': 'left' and 'center': False).

Currently, the following statistics are supported: 'mean', 'std', 'min', 'max', 'sum', 'median', 'ratio_min_max', 'coef_variation', 'ewm'. For 'ewm', the alpha parameter can be set in the kwargs_stats dictionary, default is {'ewm': {'alpha': 0.3}}.

Parameters:

Name Type Description Default
stats (str, list)

Statistics to compute over the rolling window. Can be a string or a list, and can have repeats. Available statistics are: 'mean', 'std', 'min', 'max', 'sum', 'median', 'ratio_min_max', 'coef_variation', 'ewm'. For 'ewm', the alpha parameter can be set in the kwargs_stats dictionary, default is {'ewm': {'alpha': 0.3}}.

required
window_sizes (int, list)

Size of the rolling window for each statistic. If an int, all stats share the same window size. If a list, it should have the same length as stats.

required
min_periods (int, list)

Minimum number of observations in window required to have a value. Same as the min_periods argument of pandas rolling. If None, defaults to window_sizes.

None
features_names list

Names of the output features. If None, default names will be used in the format 'roll_stat_window_size', for example 'roll_mean_7'.

None
fillna (str, float)

Fill missing values in transform_batch method. Available methods are: 'mean', 'median', 'ffill', 'bfill', or a float value.

None
kwargs_stats dict

Dictionary with additional arguments for the statistics. The keys are the statistic names and the values are dictionaries with the arguments for the corresponding statistic. For example, {'ewm': {'alpha': 0.3}}.

{'ewm': {'alpha': 0.3}}

Attributes:

Name Type Description
stats list

Statistics to compute over the rolling window.

n_stats int

Number of statistics to compute.

window_sizes list

Size of the rolling window for each statistic.

max_window_size int

Maximum window size.

min_periods list

Minimum number of observations in window required to have a value.

features_names list

Names of the output features.

fillna (str, float)

Method to fill missing values in transform_batch method.

unique_rolling_windows dict

Dictionary containing unique rolling window parameters and the corresponding statistics.

kwargs_stats dict

Dictionary with additional arguments for the statistics.

Source code in skforecast\preprocessing\preprocessing.py
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
def __init__(
    self, 
    stats: str | list[str],
    window_sizes: int | list[int],
    min_periods: int | list[int] | None = None,
    features_names: list[str] | None = None, 
    fillna: str | float | None = None,
    kwargs_stats: dict[str, dict[str, object]] | None = {'ewm': {'alpha': 0.3}}
) -> None:

    self._validate_params(
        stats,
        window_sizes,
        min_periods,
        features_names,
        fillna,
        kwargs_stats
    )

    if isinstance(stats, str):
        stats = [stats]
    self.stats = stats
    self.n_stats = len(stats)

    if isinstance(window_sizes, int):
        window_sizes = [window_sizes] * self.n_stats
    self.window_sizes = window_sizes
    self.max_window_size = max(window_sizes)

    if min_periods is None:
        min_periods = self.window_sizes
    elif isinstance(min_periods, int):
        min_periods = [min_periods] * self.n_stats
    self.min_periods = min_periods

    if features_names is None:
        features_names = []
        for stat, window_size in zip(self.stats, self.window_sizes):
            if stat not in kwargs_stats:
                features_names.append(f"roll_{stat}_{window_size}")
            else:
                kwargs_sufix = "_".join([f"{k}_{v}" for k, v in kwargs_stats[stat].items()])
                features_names.append(f"roll_{stat}_{window_size}_{kwargs_sufix}")
    self.features_names = features_names

    self.fillna = fillna
    self.kwargs_stats = kwargs_stats if kwargs_stats is not None else {}

    window_params_list = []
    for i in range(len(self.stats)):
        window_params = (self.window_sizes[i], self.min_periods[i])
        window_params_list.append(window_params)

    # Find unique window parameter combinations
    unique_rolling_windows = {}
    for i, params in enumerate(window_params_list):
        key = f"{params[0]}_{params[1]}"
        if key not in unique_rolling_windows:
            unique_rolling_windows[key] = {
                'params': {
                    'window': params[0], 
                    'min_periods': params[1], 
                    'center': False,
                    'closed': 'left'
                },
                'stats_idx': [], 
                'stats_names': [], 
                'rolling_obj': None
            }
        unique_rolling_windows[key]['stats_idx'].append(i)
        unique_rolling_windows[key]['stats_names'].append(self.features_names[i])

    self.unique_rolling_windows = unique_rolling_windows

_validate_params

_validate_params(
    stats,
    window_sizes,
    min_periods=None,
    features_names=None,
    fillna=None,
    kwargs_stats=None,
)

Validate the parameters of the RollingFeatures class.

Parameters:

Name Type Description Default
stats (str, list)

Statistics to compute over the rolling window. Can be a string or a list, and can have repeats. Available statistics are: 'mean', 'std', 'min', 'max', 'sum', 'median', 'ratio_min_max', 'coef_variation', 'ewm'.

required
window_sizes (int, list)

Size of the rolling window for each statistic. If an int, all stats share the same window size. If a list, it should have the same length as stats.

required
min_periods (int, list)

Minimum number of observations in window required to have a value. Same as the min_periods argument of pandas rolling. If None, defaults to window_sizes.

None
features_names list

Names of the output features. If None, default names will be used in the format 'roll_stat_window_size', for example 'roll_mean_7'.

None
fillna (str, float)

Fill missing values in transform_batch method. Available methods are: 'mean', 'median', 'ffill', 'bfill', or a float value.

None
kwargs_stats dict

Dictionary with additional arguments for the statistics. The keys are the statistic names and the values are dictionaries with the arguments for the corresponding statistic. For example, {'ewm': {'alpha': 0.3}}.

None

Returns:

Type Description
None
Source code in skforecast\preprocessing\preprocessing.py
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
def _validate_params(
    self, 
    stats: str | list[str], 
    window_sizes: int | list[int],
    min_periods: int | list[int] | None = None,
    features_names: list[str] | None = None, 
    fillna: str | float | None = None,
    kwargs_stats: dict[str, dict[str, object]] | None = None
) -> None:
    """
    Validate the parameters of the RollingFeatures class.

    Parameters
    ----------
    stats : str, list
        Statistics to compute over the rolling window. Can be a `string` or a `list`,
        and can have repeats. Available statistics are: 'mean', 'std', 'min', 'max',
        'sum', 'median', 'ratio_min_max', 'coef_variation', 'ewm'.
    window_sizes : int, list
        Size of the rolling window for each statistic. If an `int`, all stats share 
        the same window size. If a `list`, it should have the same length as stats.
    min_periods : int, list, default None
        Minimum number of observations in window required to have a value. 
        Same as the `min_periods` argument of pandas rolling. If `None`, 
        defaults to `window_sizes`.
    features_names : list, default None
        Names of the output features. If `None`, default names will be used in the 
        format 'roll_stat_window_size', for example 'roll_mean_7'.
    fillna : str, float, default None
        Fill missing values in `transform_batch` method. Available 
        methods are: 'mean', 'median', 'ffill', 'bfill', or a float value.
    kwargs_stats : dict, default None
        Dictionary with additional arguments for the statistics. The keys are the
        statistic names and the values are dictionaries with the arguments for the
        corresponding statistic. For example, {'ewm': {'alpha': 0.3}}.

    Returns
    -------
    None

    """

    # stats
    allowed_stats = [
        'mean', 'std', 'min', 'max', 'sum', 'median', 'ratio_min_max', 
        'coef_variation', 'ewm'
    ]

    if not isinstance(stats, (str, list)):
        raise TypeError(
            f"`stats` must be a string or a list of strings. Got {type(stats)}."
        )        
    if isinstance(stats, str):
        stats = [stats]

    for stat in set(stats):
        if stat not in allowed_stats:
            raise ValueError(
                f"Statistic '{stat}' is not allowed. Allowed stats are: {allowed_stats}."
            )
    n_stats = len(stats)

    # window_sizes
    if not isinstance(window_sizes, (int, list)):
        raise TypeError(
            f"`window_sizes` must be an int or a list of ints. Got {type(window_sizes)}."
        )

    if isinstance(window_sizes, list):
        n_window_sizes = len(window_sizes)
        if n_window_sizes != n_stats:
            raise ValueError(
                f"Length of `window_sizes` list ({n_window_sizes}) "
                f"must match length of `stats` list ({n_stats})."
            )

    # Check duplicates (stats, window_sizes)
    if isinstance(window_sizes, int):
        window_sizes = [window_sizes] * n_stats
    if len(set(zip(stats, window_sizes))) != n_stats:
        raise ValueError(
            f"Duplicate (stat, window_size) pairs are not allowed.\n"
            f"    `stats`       : {stats}\n"
            f"    `window_sizes : {window_sizes}"
        )

    # min_periods
    if not isinstance(min_periods, (int, list, type(None))):
        raise TypeError(
            f"`min_periods` must be an int, list of ints, or None. Got {type(min_periods)}."
        )

    if min_periods is not None:
        if isinstance(min_periods, int):
            min_periods = [min_periods] * n_stats
        elif isinstance(min_periods, list):
            n_min_periods = len(min_periods)
            if n_min_periods != n_stats:
                raise ValueError(
                    f"Length of `min_periods` list ({n_min_periods}) "
                    f"must match length of `stats` list ({n_stats})."
                )

        for i, min_period in enumerate(min_periods):
            if min_period > window_sizes[i]:
                raise ValueError(
                    "Each `min_period` must be less than or equal to its "
                    "corresponding `window_size`."
                )

    # features_names
    if not isinstance(features_names, (list, type(None))):
        raise TypeError(
            f"`features_names` must be a list of strings or None. Got {type(features_names)}."
        )

    if isinstance(features_names, list):
        n_features_names = len(features_names)
        if n_features_names != n_stats:
            raise ValueError(
                f"Length of `features_names` list ({n_features_names}) "
                f"must match length of `stats` list ({n_stats})."
            )

    # fillna
    if fillna is not None:
        if not isinstance(fillna, (int, float, str)):
            raise TypeError(
                f"`fillna` must be a float, string, or None. Got {type(fillna)}."
            )

        if isinstance(fillna, str):
            allowed_fill_strategy = ['mean', 'median', 'ffill', 'bfill']
            if fillna not in allowed_fill_strategy:
                raise ValueError(
                    f"'{fillna}' is not allowed. Allowed `fillna` "
                    f"values are: {allowed_fill_strategy} or a float value."
                )

    # kwargs_stats
    allowed_kwargs_stats = ['ewm']
    if kwargs_stats is not None:
        if not isinstance(kwargs_stats, dict):
            raise TypeError(
                f"`kwargs_stats` must be a dictionary or None. Got {type(kwargs_stats)}."
            )

        for stat in kwargs_stats.keys():
            if stat not in allowed_kwargs_stats:
                raise ValueError(
                    f"Invalid statistic '{stat}' found in `kwargs_stats`. "
                    f"Allowed statistics with additional arguments are: "
                    f"{allowed_kwargs_stats}. Please ensure all keys in "
                    f"`kwargs_stats` are among the allowed statistics."
                )

_apply_stat_pandas

_apply_stat_pandas(rolling_obj, stat)

Apply the specified statistic to a pandas rolling object.

Parameters:

Name Type Description Default
rolling_obj pandas Rolling

Rolling object to apply the statistic.

required
stat str

Statistic to compute.

required

Returns:

Name Type Description
stat_series pandas Series

Series with the computed statistic.

Source code in skforecast\preprocessing\preprocessing.py
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
def _apply_stat_pandas(
    self, 
    rolling_obj: pd.core.window.rolling.Rolling, 
    stat: str
) -> pd.Series:
    """
    Apply the specified statistic to a pandas rolling object.

    Parameters
    ----------
    rolling_obj : pandas Rolling
        Rolling object to apply the statistic.
    stat : str
        Statistic to compute.

    Returns
    -------
    stat_series : pandas Series
        Series with the computed statistic.

    """

    if stat == 'mean':
        return rolling_obj.mean()
    elif stat == 'std':
        return rolling_obj.std()
    elif stat == 'min':
        return rolling_obj.min()
    elif stat == 'max':
        return rolling_obj.max()
    elif stat == 'sum':
        return rolling_obj.sum()
    elif stat == 'median':
        return rolling_obj.median()
    elif stat == 'ratio_min_max':
        return rolling_obj.min() / rolling_obj.max()
    elif stat == 'coef_variation':
        return rolling_obj.std() / rolling_obj.mean()
    elif stat == 'ewm':
        kwargs = self.kwargs_stats.get(stat, {})
        return rolling_obj.apply(lambda x: _ewm_jit(x.to_numpy(), **kwargs))
    else:
        raise ValueError(f"Statistic '{stat}' is not implemented.")

transform_batch

transform_batch(X)

Transform an entire pandas Series using rolling windows and compute the specified statistics.

Parameters:

Name Type Description Default
X pandas Series

The input data series to transform.

required

Returns:

Name Type Description
rolling_features pandas DataFrame

A DataFrame containing the rolling features.

Source code in skforecast\preprocessing\preprocessing.py
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
def transform_batch(
    self, 
    X: pd.Series
) -> pd.DataFrame:
    """
    Transform an entire pandas Series using rolling windows and compute the 
    specified statistics.

    Parameters
    ----------
    X : pandas Series
        The input data series to transform.

    Returns
    -------
    rolling_features : pandas DataFrame
        A DataFrame containing the rolling features.

    """

    for k in self.unique_rolling_windows.keys():
        rolling_obj = X.rolling(**self.unique_rolling_windows[k]['params'])
        self.unique_rolling_windows[k]['rolling_obj'] = rolling_obj

    rolling_features = []
    for i, stat in enumerate(self.stats):
        window_size = self.window_sizes[i]
        min_periods = self.min_periods[i]

        key = f"{window_size}_{min_periods}"
        rolling_obj = self.unique_rolling_windows[key]['rolling_obj']

        stat_series = self._apply_stat_pandas(rolling_obj=rolling_obj, stat=stat)            
        rolling_features.append(stat_series)

    rolling_features = pd.concat(rolling_features, axis=1)
    rolling_features.columns = self.features_names
    rolling_features = rolling_features.iloc[self.max_window_size:]

    if self.fillna is not None:
        if self.fillna == 'mean':
            rolling_features = rolling_features.fillna(rolling_features.mean())
        elif self.fillna == 'median':
            rolling_features = rolling_features.fillna(rolling_features.median())
        elif self.fillna == 'ffill':
            rolling_features = rolling_features.ffill()
        elif self.fillna == 'bfill':
            rolling_features = rolling_features.bfill()
        else:
            rolling_features = rolling_features.fillna(self.fillna)

    return rolling_features

_apply_stat_numpy_jit

_apply_stat_numpy_jit(X_window, stat)

Apply the specified statistic to a numpy array using Numba JIT.

Parameters:

Name Type Description Default
X_window numpy array

Array with the rolling window.

required
stat str

Statistic to compute.

required

Returns:

Name Type Description
stat_value float

Value of the computed statistic.

Source code in skforecast\preprocessing\preprocessing.py
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
def _apply_stat_numpy_jit(
    self, 
    X_window: np.ndarray, 
    stat: str
) -> float:
    """
    Apply the specified statistic to a numpy array using Numba JIT.

    Parameters
    ----------
    X_window : numpy array
        Array with the rolling window.
    stat : str
        Statistic to compute.

    Returns
    -------
    stat_value : float
        Value of the computed statistic.

    """

    if stat == 'mean':
        return _np_mean_jit(X_window)
    elif stat == 'std':
        return _np_std_jit(X_window)
    elif stat == 'min':
        return _np_min_jit(X_window)
    elif stat == 'max':
        return _np_max_jit(X_window)
    elif stat == 'sum':
        return _np_sum_jit(X_window)
    elif stat == 'median':
        return _np_median_jit(X_window)
    elif stat == 'ratio_min_max':
        return _np_min_max_ratio_jit(X_window)
    elif stat == 'coef_variation':
        return _np_cv_jit(X_window)
    elif stat == 'ewm':
        kwargs = self.kwargs_stats.get(stat, {})
        return _ewm_jit(X_window, **kwargs)
    else:
        raise ValueError(f"Statistic '{stat}' is not implemented.")

transform

transform(X)

Transform a numpy array using rolling windows and compute the specified statistics. The returned array will have the shape (X.shape[1] if exists, n_stats). For example, if X is a flat array, the output will have shape (n_stats,). If X is a 2D array, the output will have shape (X.shape[1], n_stats).

Parameters:

Name Type Description Default
X numpy ndarray

The input data array to transform.

required

Returns:

Name Type Description
rolling_features numpy ndarray

An array containing the computed statistics.

Source code in skforecast\preprocessing\preprocessing.py
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
def transform(
    self, 
    X: np.ndarray
) -> np.ndarray:
    """
    Transform a numpy array using rolling windows and compute the 
    specified statistics. The returned array will have the shape 
    (X.shape[1] if exists, n_stats). For example, if X is a flat
    array, the output will have shape (n_stats,). If X is a 2D array,
    the output will have shape (X.shape[1], n_stats).

    Parameters
    ----------
    X : numpy ndarray
        The input data array to transform.

    Returns
    -------
    rolling_features : numpy ndarray
        An array containing the computed statistics.

    """

    array_ndim = X.ndim
    if array_ndim == 1:
        X = X[:, np.newaxis]

    rolling_features = np.full(
        shape=(X.shape[1], self.n_stats), fill_value=np.nan, dtype=float
    )

    for i in range(X.shape[1]):
        for j, stat in enumerate(self.stats):
            X_window = X[-self.window_sizes[j]:, i]
            X_window = X_window[~np.isnan(X_window)]
            if len(X_window) > 0: 
                rolling_features[i, j] = self._apply_stat_numpy_jit(X_window, stat)
            else:
                rolling_features[i, j] = np.nan

    if array_ndim == 1:
        rolling_features = rolling_features.ravel()

    return rolling_features

skforecast.preprocessing.preprocessing.series_long_to_dict

series_long_to_dict(
    data,
    series_id,
    index,
    values,
    freq,
    suppress_warnings=False,
)

Convert long format series to dictionary of pandas Series with frequency. Input data must be a pandas DataFrame with columns for the series identifier, time index, and values. The function will group the data by the series identifier and convert the time index to a datetime index with the given frequency.

Parameters:

Name Type Description Default
data DataFrame

Long format series.

required
series_id str

Column name with the series identifier.

required
index str

Column name with the time index.

required
values str

Column name with the values.

required
freq str

Frequency of the series.

required
suppress_warnings bool

If True, suppress warnings when a series is incomplete after setting the frequency.

False

Returns:

Name Type Description
series_dict dict

Dictionary with the series.

Source code in skforecast\preprocessing\preprocessing.py
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
def series_long_to_dict(
    data: pd.DataFrame,
    series_id: str,
    index: str,
    values: str,
    freq: str,
    suppress_warnings: bool = False
) -> dict[str, pd.Series]:
    """
    Convert long format series to dictionary of pandas Series with frequency.
    Input data must be a pandas DataFrame with columns for the series identifier,
    time index, and values. The function will group the data by the series
    identifier and convert the time index to a datetime index with the given
    frequency.

    Parameters
    ----------
    data: pandas DataFrame
        Long format series.
    series_id: str
        Column name with the series identifier.
    index: str
        Column name with the time index.
    values: str
        Column name with the values.
    freq: str
        Frequency of the series.
    suppress_warnings: bool, default False
        If True, suppress warnings when a series is incomplete after setting the
        frequency.

    Returns
    -------
    series_dict: dict
        Dictionary with the series.

    """

    if not isinstance(data, pd.DataFrame):
        raise TypeError("`data` must be a pandas DataFrame.")

    for col in [series_id, index, values]:
        if col not in data.columns:
            raise ValueError(f"Column '{col}' not found in `data`.")

    original_sizes = data.groupby(series_id, observed=True).size()
    series_dict = {}
    for k, v in data.groupby(series_id, observed=True):
        series_dict[k] = v.set_index(index)[values].asfreq(freq, fill_value=np.nan).rename(k)
        series_dict[k].index.name = None
        if not suppress_warnings and len(series_dict[k]) != original_sizes[k]:
            warnings.warn(
                f"Series '{k}' is incomplete. NaNs have been introduced after "
                f"setting the frequency.",
                MissingValuesWarning
            )

    return series_dict

skforecast.preprocessing.preprocessing.exog_long_to_dict

exog_long_to_dict(
    data,
    series_id,
    index,
    freq,
    drop_all_nan_cols=False,
    consolidate_dtypes=True,
    suppress_warnings=False,
)

Convert long format exogenous variables to dictionary. Input data must be a pandas DataFrame with columns for the series identifier, time index, and exogenous variables. The function will group the data by the series identifier and convert the time index to a datetime index with the given frequency.

Parameters:

Name Type Description Default
data DataFrame

Long format exogenous variables.

required
series_id str

Column name with the series identifier.

required
index str

Column name with the time index.

required
freq str

Frequency of the series.

required
drop_all_nan_cols bool

If True, drop columns with all values as NaN. This is useful when there are series without some exogenous variables.

False
consolidate_dtypes bool

Consolidate the data types of the exogenous variables if, after setting the frequency, NaNs have been introduced and the data types have changed to float.

True
suppress_warnings bool

If True, suppress warnings when exog is incomplete after setting the frequency.

False

Returns:

Name Type Description
exog_dict dict

Dictionary with the exogenous variables.

Source code in skforecast\preprocessing\preprocessing.py
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
def exog_long_to_dict(
    data: pd.DataFrame,
    series_id: str,
    index: str,
    freq: str,
    drop_all_nan_cols: bool = False,
    consolidate_dtypes: bool = True,
    suppress_warnings: bool = False
) -> dict[str, pd.DataFrame]:
    """
    Convert long format exogenous variables to dictionary. Input data must be a
    pandas DataFrame with columns for the series identifier, time index, and
    exogenous variables. The function will group the data by the series identifier
    and convert the time index to a datetime index with the given frequency.

    Parameters
    ----------
    data: pandas DataFrame
        Long format exogenous variables.
    series_id: str
        Column name with the series identifier.
    index: str
        Column name with the time index.
    freq: str
        Frequency of the series.
    drop_all_nan_cols: bool, default False
        If True, drop columns with all values as NaN. This is useful when
        there are series without some exogenous variables.
    consolidate_dtypes: bool, default True
        Consolidate the data types of the exogenous variables if, after setting
        the frequency, NaNs have been introduced and the data types have changed
        to float.
    suppress_warnings: bool, default False
        If True, suppress warnings when exog is incomplete after setting the
        frequency.

    Returns
    -------
    exog_dict: dict
        Dictionary with the exogenous variables.

    """

    if not isinstance(data, pd.DataFrame):
        raise TypeError("`data` must be a pandas DataFrame.")

    for col in [series_id, index]:
        if col not in data.columns:
            raise ValueError(f"Column '{col}' not found in `data`.")

    cols_float_dtype = set(data.select_dtypes(include=float).columns)
    original_sizes = data.groupby(series_id, observed=True).size()
    exog_dict = dict(tuple(data.groupby(series_id, observed=True)))
    exog_dict = {
        k: v.set_index(index).asfreq(freq, fill_value=np.nan).drop(columns=series_id)
        for k, v in exog_dict.items()
    }

    for k in exog_dict.keys():
        exog_dict[k].index.name = None

    nans_introduced = False
    if not suppress_warnings or consolidate_dtypes:
        for k, v in exog_dict.items():
            if len(v) != original_sizes[k]:
                nans_introduced = True
                if not suppress_warnings:
                    warnings.warn(
                        f"Exogenous variables for series '{k}' are incomplete. "
                        f"NaNs have been introduced after setting the frequency.",
                        MissingValuesWarning
                    )
                if consolidate_dtypes:
                    cols_float_dtype.update(v.select_dtypes(include=float).columns)

    if consolidate_dtypes and nans_introduced:
        new_dtypes = {k: float for k in cols_float_dtype}
        exog_dict = {k: v.astype(new_dtypes) for k, v in exog_dict.items()}

    if drop_all_nan_cols:
        exog_dict = {k: v.dropna(how="all", axis=1) for k, v in exog_dict.items()}

    return exog_dict

skforecast.preprocessing.preprocessing.TimeSeriesDifferentiator

TimeSeriesDifferentiator(order=1, window_size=None)

Bases: BaseEstimator, TransformerMixin

Transforms a time series into a differentiated time series of a specified order and provides functionality to revert the differentiation.

When using a direct module Forecaster, the model in step 1 must be used if you want to reverse the differentiation of the training time series with the inverse_transform_training method.

Parameters:

Name Type Description Default
order int

The order of differentiation to be applied.

1
window_size int

The window size used by the forecaster. This is required to revert the differentiation for the target variable y or its predicted values.

None

Attributes:

Name Type Description
order int

The order of differentiation.

initial_values list

List with the first value of the time series before each differentiation. If order = 2, first value correspond with the first value of the original time series and the second value correspond with the first value of the differentiated time series of order 1. These values are necessary to revert the differentiation and reconstruct the original time series.

pre_train_values list

List with the first training value of the time series before each differentiation. For order = 1, the value correspond with the last value of the window used to create the predictors. For order > 1, the value correspond with the first value of the differentiated time series prior to the next differentiation. These values are necessary to revert the differentiation and reconstruct the training time series.

last_values list

List with the last value of the time series before each differentiation, used to revert differentiation on subsequent data windows. If order = 2, first value correspond with the last value of the original time series and the second value correspond with the last value of the differentiated time series of order 1. This is essential for correctly transforming a time series that follows immediately after the series used to fit the transformer.

Source code in skforecast\preprocessing\preprocessing.py
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
def __init__(
    self, 
    order: int = 1,
    window_size: int | None = None
) -> None:

    if not isinstance(order, (int, np.integer)):
        raise TypeError(
            f"Parameter `order` must be an integer greater than 0. Found {type(order)}."
        )
    if order < 1:
        raise ValueError(
            f"Parameter `order` must be an integer greater than 0. Found {order}."
        )

    if window_size is not None:
        if not isinstance(window_size, (int, np.integer)):
            raise TypeError(
                f"Parameter `window_size` must be an integer greater than 0. "
                f"Found {type(window_size)}."
            )
        if window_size < 1:
            raise ValueError(
                f"Parameter `window_size` must be an integer greater than 0. "
                f"Found {window_size}."
            )

    self.order = order
    self.window_size = window_size
    self.initial_values = []
    self.pre_train_values = []
    self.last_values = []

fit

fit(X, y=None)

Fits the transformer. Stores the values needed to revert the differentiation of different window of the time series, original time series, training time series, and a time series that follows immediately after the series used to fit the transformer.

Parameters:

Name Type Description Default
X numpy ndarray

Time series to be differentiated.

required
y Ignored

Not used, present here for API consistency by convention.

None

Returns:

Name Type Description
self TimeSeriesDifferentiator
Source code in skforecast\preprocessing\preprocessing.py
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
@_check_X_numpy_ndarray_1d()
def fit(
    self, 
    X: np.ndarray, 
    y: Any = None
) -> Self:
    """
    Fits the transformer. Stores the values needed to revert the 
    differentiation of different window of the time series, original 
    time series, training time series, and a time series that follows
    immediately after the series used to fit the transformer.

    Parameters
    ----------
    X : numpy ndarray
        Time series to be differentiated.
    y : Ignored
        Not used, present here for API consistency by convention.

    Returns
    -------
    self : TimeSeriesDifferentiator

    """

    self.initial_values = []
    self.pre_train_values = []
    self.last_values = []

    for i in range(self.order):
        if i == 0:
            self.initial_values.append(X[0])
            if self.window_size is not None:
                self.pre_train_values.append(X[self.window_size - self.order])
            self.last_values.append(X[-1])
            X_diff = np.diff(X, n=1)
        else:
            self.initial_values.append(X_diff[0])
            if self.window_size is not None:
                self.pre_train_values.append(X_diff[self.window_size - self.order])
            self.last_values.append(X_diff[-1])
            X_diff = np.diff(X_diff, n=1)

    return self

transform

transform(X, y=None)

Transforms a time series into a differentiated time series of order n.

Parameters:

Name Type Description Default
X numpy ndarray

Time series to be differentiated.

required
y Ignored

Not used, present here for API consistency by convention.

None

Returns:

Name Type Description
X_diff numpy ndarray

Differentiated time series. The length of the array is the same as the original time series but the first n order values are nan.

Source code in skforecast\preprocessing\preprocessing.py
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
@_check_X_numpy_ndarray_1d()
def transform(
    self, 
    X: np.ndarray, 
    y: Any = None
) -> np.ndarray:
    """
    Transforms a time series into a differentiated time series of order n.

    Parameters
    ----------
    X : numpy ndarray
        Time series to be differentiated.
    y : Ignored
        Not used, present here for API consistency by convention.

    Returns
    -------
    X_diff : numpy ndarray
        Differentiated time series. The length of the array is the same as
        the original time series but the first n `order` values are nan.

    """

    X_diff = np.diff(X, n=self.order)
    X_diff = np.append((np.full(shape=self.order, fill_value=np.nan)), X_diff)

    return X_diff

inverse_transform

inverse_transform(X, y=None)

Reverts the differentiation. To do so, the input array is assumed to be the same time series used to fit the transformer but differentiated.

Parameters:

Name Type Description Default
X numpy ndarray

Differentiated time series.

required
y Ignored

Not used, present here for API consistency by convention.

None

Returns:

Name Type Description
X_diff numpy ndarray

Reverted differentiated time series.

Source code in skforecast\preprocessing\preprocessing.py
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
@_check_X_numpy_ndarray_1d()
def inverse_transform(
    self, 
    X: np.ndarray, 
    y: Any = None
) -> np.ndarray:
    """
    Reverts the differentiation. To do so, the input array is assumed to be
    the same time series used to fit the transformer but differentiated.

    Parameters
    ----------
    X : numpy ndarray
        Differentiated time series.
    y : Ignored
        Not used, present here for API consistency by convention.

    Returns
    -------
    X_diff : numpy ndarray
        Reverted differentiated time series.

    """

    # Remove initial nan values if present
    X = X[np.argmax(~np.isnan(X)):]
    for i in range(self.order):
        if i == 0:
            X_undiff = np.insert(X, 0, self.initial_values[-1])
            X_undiff = np.cumsum(X_undiff, dtype=float)
        else:
            X_undiff = np.insert(X_undiff, 0, self.initial_values[-(i + 1)])
            X_undiff = np.cumsum(X_undiff, dtype=float)

    return X_undiff

inverse_transform_training

inverse_transform_training(X, y=None)

Reverts the differentiation. To do so, the input array is assumed to be the differentiated training time series generated with the original time series used to fit the transformer.

When using a direct module Forecaster, the model in step 1 must be used if you want to reverse the differentiation of the training time series with the inverse_transform_training method.

Parameters:

Name Type Description Default
X numpy ndarray

Differentiated time series.

required
y Ignored

Not used, present here for API consistency by convention.

None

Returns:

Name Type Description
X_diff numpy ndarray

Reverted differentiated time series.

Source code in skforecast\preprocessing\preprocessing.py
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
@_check_X_numpy_ndarray_1d()
def inverse_transform_training(
    self, 
    X: np.ndarray, 
    y: Any = None
) -> np.ndarray:
    """
    Reverts the differentiation. To do so, the input array is assumed to be
    the differentiated training time series generated with the original 
    time series used to fit the transformer.

    When using a `direct` module Forecaster, the model in step 1 must be 
    used if you want to reverse the differentiation of the training time 
    series with the `inverse_transform_training` method.

    Parameters
    ----------
    X : numpy ndarray
        Differentiated time series.
    y : Ignored
        Not used, present here for API consistency by convention.

    Returns
    -------
    X_diff : numpy ndarray
        Reverted differentiated time series.

    """

    if not self.pre_train_values:
        raise ValueError(
            "The `window_size` parameter must be set before fitting the "
            "transformer to revert the differentiation of the training "
            "time series."
        )

    # Remove initial nan values if present
    X = X[np.argmax(~np.isnan(X)):]
    for i in range(self.order):
        if i == 0:
            X_undiff = np.insert(X, 0, self.pre_train_values[-1])
            X_undiff = np.cumsum(X_undiff, dtype=float)
        else:
            X_undiff = np.insert(X_undiff, 0, self.pre_train_values[-(i + 1)])
            X_undiff = np.cumsum(X_undiff, dtype=float)

    # Remove initial values as they are not part of the training time series
    X_undiff = X_undiff[self.order:]

    return X_undiff

inverse_transform_next_window

inverse_transform_next_window(X, y=None)

Reverts the differentiation. The input array X is assumed to be a differentiated time series of order n that starts right after the the time series used to fit the transformer.

Parameters:

Name Type Description Default
X numpy ndarray

Differentiated time series. It is assumed o start right after the time series used to fit the transformer.

required
y Ignored

Not used, present here for API consistency by convention.

None

Returns:

Name Type Description
X_undiff numpy ndarray

Reverted differentiated time series.

Source code in skforecast\preprocessing\preprocessing.py
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
@_check_X_numpy_ndarray_1d(ensure_1d=False)
def inverse_transform_next_window(
    self,
    X: np.ndarray,
    y: Any = None
) -> np.ndarray:
    """
    Reverts the differentiation. The input array `X` is assumed to be a 
    differentiated time series of order n that starts right after the
    the time series used to fit the transformer.

    Parameters
    ----------
    X : numpy ndarray
        Differentiated time series. It is assumed o start right after
        the time series used to fit the transformer.
    y : Ignored
        Not used, present here for API consistency by convention.

    Returns
    -------
    X_undiff : numpy ndarray
        Reverted differentiated time series.

    """

    array_ndim = X.ndim
    if array_ndim == 1:
        X = X[:, np.newaxis]

    # Remove initial rows with nan values if present
    X = X[~np.isnan(X).any(axis=1)]

    for i in range(self.order):
        if i == 0:
            X_undiff = np.cumsum(X, axis=0, dtype=float) + self.last_values[-1]
        else:
            X_undiff = np.cumsum(X_undiff, axis=0, dtype=float) + self.last_values[-(i + 1)]

    if array_ndim == 1:
        X_undiff = X_undiff.ravel()

    return X_undiff

set_params

set_params(**params)

Set the parameters of the TimeSeriesDifferentiator.

Parameters:

Name Type Description Default
params dict

A dictionary of the parameters to set.

{}

Returns:

Type Description
None
Source code in skforecast\preprocessing\preprocessing.py
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
def set_params(self, **params):
    """
    Set the parameters of the TimeSeriesDifferentiator.

    Parameters
    ----------
    params : dict
        A dictionary of the parameters to set.

    Returns
    -------
    None

    """

    for param, value in params.items():
        setattr(self, param, value)

skforecast.preprocessing.preprocessing.QuantileBinner

QuantileBinner(
    n_bins,
    method="linear",
    subsample=200000,
    dtype=np.float64,
    random_state=789654,
)

QuantileBinner class to bin data into quantile-based bins using numpy.percentile. This class is similar to KBinsDiscretizer but faster for binning data into quantile-based bins. Bin intervals are defined following the convention: bins[i-1] <= x < bins[i]. See more information in numpy.percentile and numpy.digitize.

Parameters:

Name Type Description Default
n_bins int

The number of quantile-based bins to create.

required
method str

The method used to compute the quantiles. This parameter is passed to numpy.percentile. Default is 'linear'. Valid values are "inverse_cdf", "averaged_inverse_cdf", "closest_observation", "interpolated_inverse_cdf", "hazen", "weibull", "linear", "median_unbiased", "normal_unbiased".

'linear'
subsample int

The number of samples to use for computing quantiles. If the dataset has more samples than subsample, a random subset will be used.

200000
dtype data type

The data type to use for the bin indices. Default is numpy.float64.

numpy.float64
random_state int

The random seed to use for generating a random subset of the data.

789654

Attributes:

Name Type Description
n_bins int

The number of quantile-based bins to create.

method str

The method used to compute the quantiles. This parameter is passed to numpy.percentile. Default is 'linear'. Valid values are 'linear', 'lower', 'higher', 'midpoint', 'nearest'.

subsample int

The number of samples to use for computing quantiles. If the dataset has more samples than subsample, a random subset will be used.

dtype data type

The data type to use for the bin indices. Default is numpy.float64.

random_state int

The random seed to use for generating a random subset of the data.

n_bins_ int

The number of bins learned during fitting.

bin_edges_ numpy ndarray

The edges of the bins learned during fitting.

intervals_ dict

A dictionary with the bin indices as keys and the corresponding bin intervals as values.

Source code in skforecast\preprocessing\preprocessing.py
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
def __init__(
    self,
    n_bins: int,
    method: str = "linear",
    subsample: int = 200000,
    dtype: type = np.float64,
    random_state: int = 789654
) -> None:

    self._validate_params(
        n_bins,
        method,
        subsample,
        dtype,
        random_state
    )

    self.n_bins       = n_bins
    self.method       = method
    self.subsample    = subsample
    self.dtype        = dtype
    self.random_state = random_state
    self.n_bins_      = None
    self.bin_edges_   = None
    self.intervals_   = None

_validate_params

_validate_params(
    n_bins, method, subsample, dtype, random_state
)

Validate the parameters passed to the class initializer.

Source code in skforecast\preprocessing\preprocessing.py
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
def _validate_params(
    self,
    n_bins: int,
    method: str,
    subsample: int,
    dtype: type,
    random_state: int
):
    """
    Validate the parameters passed to the class initializer.
    """

    if not isinstance(n_bins, int) or n_bins < 2:
        raise ValueError(
            f"`n_bins` must be an int greater than 1. Got {n_bins}."
        )

    valid_methods = [
        "inverse_cdf",
        "averaged_inverse_cdf",
        "closest_observation",
        "interpolated_inverse_cdf",
        "hazen",
        "weibull",
        "linear",
        "median_unbiased",
        "normal_unbiased",
    ]
    if method not in valid_methods:
        raise ValueError(
            f"`method` must be one of {valid_methods}. Got {method}."
        )
    if not isinstance(subsample, int) or subsample < 1:
        raise ValueError(
            f"`subsample` must be an integer greater than or equal to 1. "
            f"Got {subsample}."
        )
    if not isinstance(random_state, int) or random_state < 0:
        raise ValueError(
            f"`random_state` must be an integer greater than or equal to 0. "
            f"Got {random_state}."
        )
    if not isinstance(dtype, type):
        raise ValueError(
            f"`dtype` must be a valid numpy dtype. Got {dtype}."
        )

fit

fit(X)

Learn the bin edges based on quantiles from the training data.

Parameters:

Name Type Description Default
X numpy ndarray

The training data used to compute the quantiles.

required

Returns:

Type Description
None
Source code in skforecast\preprocessing\preprocessing.py
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
def fit(self, X: np.ndarray):
    """
    Learn the bin edges based on quantiles from the training data.

    Parameters
    ----------
    X : numpy ndarray
        The training data used to compute the quantiles.

    Returns
    -------
    None

    """

    if X.size == 0:
        raise ValueError("Input data `X` cannot be empty.")
    if len(X) > self.subsample:
        rng = np.random.default_rng(self.random_state)
        X = X[rng.integers(0, len(X), self.subsample)]

    self.bin_edges_ = np.percentile(
        a      = X,
        q      = np.linspace(0, 100, self.n_bins + 1),
        method = self.method
    )

    self.n_bins_ = len(self.bin_edges_) - 1
    self.intervals_ = {
        int(i): (float(self.bin_edges_[i]), float(self.bin_edges_[i + 1]))
        for i in range(self.n_bins_)
    }

transform

transform(X)

Assign new data to the learned bins.

Parameters:

Name Type Description Default
X numpy ndarray

The data to assign to the bins.

required

Returns:

Name Type Description
bin_indices numpy ndarray

The indices of the bins each value belongs to. Values less than the smallest bin edge are assigned to the first bin, and values greater than the largest bin edge are assigned to the last bin.

Source code in skforecast\preprocessing\preprocessing.py
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
def transform(self, X: np.ndarray):
    """
    Assign new data to the learned bins.

    Parameters
    ----------
    X : numpy ndarray
        The data to assign to the bins.

    Returns
    -------
    bin_indices : numpy ndarray 
        The indices of the bins each value belongs to.
        Values less than the smallest bin edge are assigned to the first bin,
        and values greater than the largest bin edge are assigned to the last bin.

    """

    if self.bin_edges_ is None:
        raise NotFittedError(
            "The model has not been fitted yet. Call 'fit' with training data first."
        )

    bin_indices = np.digitize(X, bins=self.bin_edges_, right=False)
    bin_indices = np.clip(bin_indices, 1, self.n_bins_).astype(self.dtype) - 1

    return bin_indices

fit_transform

fit_transform(X)

Fit the model to the data and return the bin indices for the same data.

Parameters:

Name Type Description Default
X ndarray

The data to fit and transform.

required

Returns:

Name Type Description
bin_indices ndarray

The indices of the bins each value belongs to. Values less than the smallest bin edge are assigned to the first bin, and values greater than the largest bin edge are assigned to the last bin.

Source code in skforecast\preprocessing\preprocessing.py
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
def fit_transform(self, X):
    """
    Fit the model to the data and return the bin indices for the same data.

    Parameters
    ----------
    X : numpy.ndarray
        The data to fit and transform.

    Returns
    -------
    bin_indices : numpy.ndarray
        The indices of the bins each value belongs to.
        Values less than the smallest bin edge are assigned to the first bin,
        and values greater than the largest bin edge are assigned to the last bin.

    """

    self.fit(X)

    return self.transform(X)

get_params

get_params()

Get the parameters of the quantile binner.

Parameters:

Name Type Description Default
self
required

Returns:

Name Type Description
params dict

A dictionary of the parameters of the quantile binner.

Source code in skforecast\preprocessing\preprocessing.py
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
def get_params(self):
    """
    Get the parameters of the quantile binner.

    Parameters
    ----------
    self

    Returns
    -------
    params : dict
        A dictionary of the parameters of the quantile binner.

    """

    return {
        "n_bins": self.n_bins,
        "method": self.method,
        "subsample": self.subsample,
        "dtype": self.dtype,
        "random_state": self.random_state,
    }

set_params

set_params(**params)

Set the parameters of the QuantileBinner.

Parameters:

Name Type Description Default
params dict

A dictionary of the parameters to set.

{}

Returns:

Type Description
None
Source code in skforecast\preprocessing\preprocessing.py
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
def set_params(self, **params):
    """
    Set the parameters of the QuantileBinner.

    Parameters
    ----------
    params : dict
        A dictionary of the parameters to set.

    Returns
    -------
    None

    """

    for param, value in params.items():
        setattr(self, param, value)

skforecast.preprocessing.preprocessing.ConformalIntervalCalibrator

ConformalIntervalCalibrator(
    nominal_coverage=0.8, symmetric_calibration=True
)

Transformer that calibrates the prediction interval to achieve the desired coverage based on conformity scores. It uses the conformal split method.

Parameters:

Name Type Description Default
nominal_coverage float

Desired coverage. This is the desired probability that the true value falls within the calibrated interval.

0.8
symmetric_calibration bool

If True, the calibration factor is the same for the lower and upper bounds. If False, the calibration factor is different for the lower and upper bounds.

True

Attributes:

Name Type Description
nominal_coverage float

Desired coverage. This is the desired probability that the true value falls within the calibrated interval.

symmetric_calibration bool, default True

If True, the calibration factor is the same for the lower and upper bounds. If False, the calibration factor is different for the lower and upper bounds.

correction_factor_ dict

Correction factor to achieve the desired coverage. This is the correction factor used when symmetric_calibration is True.

correction_factor_lower_ dict

Correction factor for the lower bound to achieve the desired coverage. It is used when symmetric_calibration is False.

correction_factor_upper_ dict

Correction factor for the upper bound to achieve the desired coverage. It is used when symmetric_calibration is False.

fit_coverage_ dict

Coverage observed in the data used to fit the transformer. This is the empirical coverage from which the correction factor is learned.

fit_input_type_ str

Type of input data used to fit the transformer. Can be 'single' or 'multi'.

fit_series_names_ list

Names of the series used to fit the transformer.

Source code in skforecast\preprocessing\preprocessing.py
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
def __init__(
    self,
    nominal_coverage: float = 0.8,
    symmetric_calibration: bool = True
) -> None:

    if nominal_coverage < 0 or nominal_coverage > 1:
        raise ValueError(
            f"`nominal_coverage` must be a float between 0 and 1. Got {nominal_coverage}"
        )

    self.nominal_coverage         = nominal_coverage
    self.symmetric_calibration    = symmetric_calibration
    self.correction_factor_       = {}
    self.correction_factor_lower_ = {}
    self.correction_factor_upper_ = {}
    self.fit_coverage_            = {}
    self.fit_input_type_          = None
    self.fit_series_names_        = None
    self.is_fitted                = False

_repr_html_

_repr_html_()

HTML representation of the object. The "General Information" section is expanded by default.

Source code in skforecast\preprocessing\preprocessing.py
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
def _repr_html_(self) -> str:
    """
    HTML representation of the object.
    The "General Information" section is expanded by default.
    """

    style, unique_id = get_style_repr_html(is_fitted=self.is_fitted)

    content = f"""
    <div class="container-{unique_id}">
        <h2>{type(self).__name__}</h2>
        <details open>
            <summary>General Information</summary>
            <ul>
                <li><strong>Nominal coverage:</strong> {self.nominal_coverage}</li>
                <li><strong>Coverage in fit data:</strong> {self.fit_coverage_}</li>
                <li><strong>Symmetric interval:</strong> {self.symmetric_calibration}</li>
                <li><strong>Symmetric correction factor:</strong> {self.correction_factor_}</li>
                <li><strong>Asymmetric correction factor lower:</strong> {self.correction_factor_lower_}</li>
                <li><strong>Asymmetric correction factor upper:</strong> {self.correction_factor_upper_}</li>
                <li><strong>Fitted series:</strong> {self.fit_series_names_}</li>
            </ul>
        </details>
        <p>
            <a href="https://skforecast.org/{skforecast.__version__}/api/preprocessing#skforecast.preprocessing.preprocessing.ConformalIntervalCalibrator">&#128712 <strong>API Reference</strong></a>
            &nbsp;&nbsp;
            <a href="https://skforecast.org/{skforecast.__version__}/user_guides/probabilistic-forecasting-conformal-calibration.html">&#128462 <strong>User Guide</strong></a>
        </p>
    </div>
    """

    return style + content

fit

fit(y_true, y_pred_interval)

Learn the correction factor needed to achieve the desired coverage.

Parameters:

Name Type Description Default
y_true pandas Series, pandas DataFrame, dict

True values of the time series.

  • If pandas Series, it is assumed that only one series is available.
  • If pandas DataFrame, it is assumed that each column is a different series which will be calibrated separately. The column names are used as series names.
  • If dict, it is assumed that each key is a series name and the corresponding value is a pandas Series with the true values.
required
y_pred_interval pandas DataFrame

Prediction interval estimated for the time series.

  • If y_true contains only one series, y_pred_interval must have two columns, 'lower_bound' and 'upper_bound'.
  • If y_true contains multiple series, y_pred_interval must be a long-format DataFrame with three columns: 'level', 'lower_bound', and 'upper_bound'. The 'level' column identifies the series to which each interval belongs.
required

Returns:

Type Description
None
Source code in skforecast\preprocessing\preprocessing.py
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
def fit(
    self,
    y_true: pd.Series | pd.DataFrame | dict[str, pd.Series],
    y_pred_interval: pd.DataFrame,
) -> None:
    """
    Learn the correction factor needed to achieve the desired coverage.

    Parameters
    ----------
    y_true : pandas Series, pandas DataFrame, dict
        True values of the time series.

        - If pandas Series, it is assumed that only one series is available.
        - If pandas DataFrame, it is assumed that each column is a different 
        series which will be calibrated separately. The column names are 
        used as series names.
        - If dict, it is assumed that each key is a series name and the 
        corresponding value is a pandas Series with the true values.
    y_pred_interval : pandas DataFrame
        Prediction interval estimated for the time series. 

        - If `y_true` contains only one series, `y_pred_interval` must have 
        two columns, 'lower_bound' and 'upper_bound'.
        - If `y_true` contains multiple series, `y_pred_interval` must be
        a long-format DataFrame with three columns: 'level', 'lower_bound',
        and 'upper_bound'. The 'level' column identifies the series to which
        each interval belongs.

    Returns
    -------
    None

    """

    self.correction_factor_       = {}
    self.correction_factor_lower_ = {}
    self.correction_factor_upper_ = {}
    self.fit_coverage_            = {}
    self.fit_input_type_          = None
    self.fit_series_names_        = None
    self.is_fitted                = False

    if not isinstance(y_true, (pd.Series, pd.DataFrame, dict)):
        raise TypeError(
            "`y_true` must be a pandas Series, pandas DataFrame, or a dictionary."
        )

    if not isinstance(y_pred_interval, (pd.DataFrame)):
        raise TypeError(
            "`y_pred_interval` must be a pandas DataFrame."
        )

    if not set(["lower_bound", "upper_bound"]).issubset(y_pred_interval.columns):
        raise ValueError(
            "`y_pred_interval` must have columns 'lower_bound' and 'upper_bound'."
        )

    if isinstance(y_true, (pd.DataFrame, dict)) and 'level' not in y_pred_interval.columns:
        raise ValueError(
            "If `y_true` is a pandas DataFrame or a dictionary, `y_pred_interval` "
            "must have an additional column 'level' to identify each series."
        )

    if isinstance(y_true, pd.Series):
        name = y_true.name if y_true.name is not None else 'y'
        self.fit_input_type_ = "single_series"    
        y_true = {name: y_true}

        if "level" not in y_pred_interval.columns:
            y_pred_interval = y_pred_interval.copy()
            y_pred_interval["level"] = name
        else:
            if y_pred_interval["level"].nunique() > 1:
                raise ValueError(
                    "If `y_true` is a pandas Series, `y_pred_interval` must have "
                    "only one series. Found multiple values in column 'level'."
                )
            if y_pred_interval["level"].iat[0] != name:
                raise ValueError(
                    f"Series name in `y_true`, '{name}', does not match the level "
                    f"name in `y_pred_interval`, '{y_pred_interval['level'].iat[0]}'."
                )
    elif isinstance(y_true, pd.DataFrame):
        self.fit_input_type_ = "multiple_series"
        y_true = y_true.to_dict(orient='series')
    else:
        self.fit_input_type_ = "multiple_series"
        for k, v in y_true.items():
            if not isinstance(v, pd.Series):
                raise ValueError(
                    f"When `y_true` is a dict, all its values must be pandas "
                    f"Series. Got {type(v)} for series '{k}'."
                )

    y_pred_interval = {
        k: v[['lower_bound', 'upper_bound']]
        for k, v in y_pred_interval.groupby('level')
    }

    if not y_pred_interval.keys() == y_true.keys():
        raise ValueError(
            f"Series names in `y_true` and `y_pred_interval` do not match.\n"
            f"   `y_true` series names          : {list(y_true.keys())}\n"
            f"   `y_pred_interval` series names : {list(y_pred_interval.keys())}"
        )

    for k in y_true.keys():

        if not y_true[k].index.equals(y_pred_interval[k].index):
            raise IndexError(
                f"Index of `y_true` and `y_pred_interval` must match. Different "
                f"indices found for series '{k}'."
            )

        y_true_ = np.asarray(y_true[k])
        y_pred_interval_ = np.asarray(y_pred_interval[k])

        lower_bound = y_pred_interval_[:, 0]
        upper_bound = y_pred_interval_[:, 1]
        conformity_scores_lower = lower_bound - y_true_
        conformity_scores_upper = y_true_ - upper_bound
        conformity_scores = np.max(
            [
                conformity_scores_lower,
                conformity_scores_upper,
            ],
            axis=0,
        )

        self.correction_factor_[k] = float(np.quantile(conformity_scores, self.nominal_coverage))
        self.correction_factor_lower_[k] = float(
            -1 * np.quantile(-1 * conformity_scores_lower, (1 - self.nominal_coverage) / 2)
        )
        self.correction_factor_upper_[k] = float(
            np.quantile(conformity_scores_upper,  1 - (1 - self.nominal_coverage) / 2)
        )
        coverage_fit_ = calculate_coverage(
                            y_true      = y_true_,
                            lower_bound = lower_bound,
                            upper_bound = upper_bound,
                        )
        self.fit_coverage_[k] = float(coverage_fit_)

    self.is_fitted = True
    self.fit_series_names_ = list(y_true.keys())

transform

transform(y_pred_interval)

Apply the correction factor to the prediction interval to achieve the desired coverage.

Parameters:

Name Type Description Default
y_pred_interval pandas DataFrame

Prediction interval to be calibrated using conformal method.

  • If only intervals for one series are available, y_pred_interval must have two columns, 'lower_bound' and 'upper_bound'.
  • If multiple series are available, y_pred_interval must be a long-format DataFrame with three columns: 'level', 'lower_bound', and 'upper_bound'. The 'level' column identifies the series to which each interval belongs.
required

Returns:

Name Type Description
y_pred_interval_conformal pandas DataFrame

Prediction interval with the correction factor applied.

Source code in skforecast\preprocessing\preprocessing.py
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
def transform(
    self, 
    y_pred_interval: pd.DataFrame
) -> pd.DataFrame:
    """
    Apply the correction factor to the prediction interval to achieve the desired
    coverage.

    Parameters
    ----------
    y_pred_interval : pandas DataFrame
        Prediction interval to be calibrated using conformal method.

        - If only intervals for one series are available, `y_pred_interval` 
        must have two columns, 'lower_bound' and 'upper_bound'.
        - If multiple series are available, `y_pred_interval` must be
        a long-format DataFrame with three columns: 'level', 'lower_bound',
        and 'upper_bound'. The 'level' column identifies the series to which
        each interval belongs.

    Returns
    -------
    y_pred_interval_conformal : pandas DataFrame
        Prediction interval with the correction factor applied.

    """

    if not self.is_fitted:
        raise NotFittedError(
            "ConformalIntervalCalibrator not fitted yet. Call 'fit' with "
            "training data first."
        )
    if not isinstance(y_pred_interval, pd.DataFrame):
        raise TypeError(
            "`y_pred_interval` must be a pandas DataFrame."
        )

    if not set(["lower_bound", "upper_bound"]).issubset(y_pred_interval.columns):
        raise ValueError(
            "`y_pred_interval` must have columns 'lower_bound' and 'upper_bound'."
        )

    if self.fit_input_type_ == "single_series" and 'level' not in y_pred_interval.columns:
        y_pred_interval = y_pred_interval.copy()
        y_pred_interval["level"] = self.fit_series_names_[0]

    if self.fit_input_type_ == "multiple_series" and 'level' not in y_pred_interval.columns:
        raise ValueError(
            "The transformer was fitted with multiple series. `y_pred_interval` "
            "must be a long-format DataFrame with three columns: 'level', "
            "'lower_bound', and 'upper_bound'. The 'level' column identifies "
            "the series to which each interval belongs."
        )

    conformalized_intervals = []
    for k, y_pred_interval_ in y_pred_interval.groupby('level')[['lower_bound', 'upper_bound']]:

        if k not in self.fit_series_names_:
            raise ValueError(
                f"Series '{k}' was not seen during fit. Available series are: "
                f"{self.fit_series_names_}."
            )

        correction_factor = self.correction_factor_[k]   
        correction_factor_lower = self.correction_factor_lower_[k]
        correction_factor_upper = self.correction_factor_upper_[k]

        index = y_pred_interval_.index
        y_pred_interval_ = y_pred_interval_.to_numpy()
        y_pred_interval_conformal = y_pred_interval_.copy()

        if self.symmetric_calibration:
            y_pred_interval_conformal[:, 0] = (
                y_pred_interval_conformal[:, 0] - correction_factor
            )
            y_pred_interval_conformal[:, 1] = (
                y_pred_interval_conformal[:, 1] + correction_factor
            )
        else:
            y_pred_interval_conformal[:, 0] = (
                y_pred_interval_conformal[:, 0] - correction_factor_lower
            )
            y_pred_interval_conformal[:, 1] = (
                y_pred_interval_conformal[:, 1] + correction_factor_upper
            )

        # If upper bound is less than lower bound, swap them
        mask = (
            y_pred_interval_conformal[:, 1]
            < y_pred_interval_conformal[:, 0]
        )

        (
            y_pred_interval_conformal[mask, 0],
            y_pred_interval_conformal[mask, 1],
        ) = (
            y_pred_interval_conformal[mask, 1],
            y_pred_interval_conformal[mask, 0],
        )

        y_pred_interval_conformal = pd.DataFrame(
            data    = y_pred_interval_conformal,
            columns = ['lower_bound', 'upper_bound'],
            index   = index
        )
        y_pred_interval_conformal.insert(0, 'level', k)
        conformalized_intervals.append(y_pred_interval_conformal)

    conformalized_intervals = pd.concat(conformalized_intervals)

    return conformalized_intervals