plot
¶
skforecast.plot.plot.set_dark_theme ¶
set_dark_theme(custom_style=None)
Set aspects of the visual theme for all matplotlib plots. This function changes the global defaults for all plots using the matplotlib rcParams system. The theme includes specific colors for figure and axes backgrounds, gridlines, text, labels, and ticks. It also sets the font size and line width.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
custom_style |
dict
|
Optional dictionary containing custom styles to be added or override the
default dark theme. It is applied after the default theme is set by
using the |
None
|
Returns:
Type | Description |
---|---|
None
|
|
Source code in skforecast\plot\plot.py
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
|
skforecast.plot.plot.plot_residuals ¶
plot_residuals(
residuals=None,
y_true=None,
y_pred=None,
fig=None,
**fig_kw
)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
residuals |
pandas Series, numpy ndarray
|
Values of residuals. If |
None.
|
y_true |
pandas Series, numpy ndarray
|
Ground truth (correct) values. Ignored if residuals is not |
None.
|
y_pred |
pandas Series, numpy ndarray
|
Values of predictions. Ignored if residuals is not |
None.
|
fig |
Figure
|
Pre-existing fig for the plot. Otherwise, call matplotlib.pyplot.figure() internally. |
None.
|
fig_kw |
dict
|
Other keyword arguments are passed to matplotlib.pyplot.figure() |
{}
|
Returns:
Name | Type | Description |
---|---|---|
fig |
Figure
|
Matplotlib Figure. |
Source code in skforecast\plot\plot.py
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
|
skforecast.plot.plot.calculate_lag_autocorrelation ¶
calculate_lag_autocorrelation(
data,
n_lags=50,
last_n_samples=None,
sort_by="partial_autocorrelation_abs",
acf_kwargs={},
pacf_kwargs={},
)
Calculate autocorrelation and partial autocorrelation for a time series. This is a wrapper around statsmodels.acf [1]_ and statsmodels.pacf [2]_.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
pandas Series, pandas DataFrame
|
Time series to calculate autocorrelation. If a DataFrame is provided, it must have exactly one column. |
required |
n_lags |
int
|
Number of lags to calculate autocorrelation. |
50
|
last_n_samples |
int or None
|
Number of most recent samples to use. If None, use the entire series.
Note that partial correlations can only be computed for lags up to
50% of the sample size. For example, if the series has 10 samples,
|
None
|
sort_by |
str
|
Sort results by 'lag', 'partial_autocorrelation_abs', 'partial_autocorrelation', 'autocorrelation_abs' or 'autocorrelation'. |
'partial_autocorrelation_abs'
|
acf_kwargs |
dict
|
Optional arguments to pass to statsmodels.tsa.stattools.acf. |
{}
|
pacf_kwargs |
dict
|
Optional arguments to pass to statsmodels.tsa.stattools.pacf. |
{}
|
Returns:
Name | Type | Description |
---|---|---|
results |
pandas DataFrame
|
Autocorrelation and partial autocorrelation values. |
References
.. [1] Statsmodels acf API Reference. https://www.statsmodels.org/stable/generated/statsmodels.tsa.stattools.acf.html
.. [2] Statsmodels pacf API Reference. https://www.statsmodels.org/stable/generated/statsmodels.tsa.stattools.pacf.html
Examples:
import pandas as pd
from skforecast.plot import calculate_lag_autocorrelation
data = pd.Series([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
calculate_lag_autocorrelation(data = data, n_lags = 4)
# lag partial_autocorrelation_abs partial_autocorrelation autocorrelation_abs autocorrelation
# 0 1 0.777778 0.777778 0.700000 0.700000
# 1 4 0.360707 -0.360707 0.078788 -0.078788
# 2 3 0.274510 -0.274510 0.148485 0.148485
# 3 2 0.227273 -0.227273 0.412121 0.412121
Source code in skforecast\plot\plot.py
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
|
skforecast.plot.plot.plot_multivariate_time_series_corr ¶
plot_multivariate_time_series_corr(corr, ax=None, **fig_kw)
Heatmap plot of a correlation matrix.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
corr |
pandas DataFrame
|
correlation matrix |
required |
ax |
Axes
|
Pre-existing ax for the plot. Otherwise, call matplotlib.pyplot.subplots() internally. |
None
|
fig_kw |
dict
|
Other keyword arguments are passed to matplotlib.pyplot.subplots() |
{}
|
Returns:
Name | Type | Description |
---|---|---|
fig |
Figure
|
Matplotlib Figure. |
Source code in skforecast\plot\plot.py
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
|
skforecast.plot.plot.plot_prediction_distribution ¶
plot_prediction_distribution(
bootstrapping_predictions, bw_method=None, **fig_kw
)
Ridge plot of bootstrapping predictions. This plot is very useful to understand the uncertainty of forecasting predictions.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
bootstrapping_predictions |
pandas DataFrame
|
Bootstrapping predictions created with |
required |
bw_method |
(str, scalar, Callable)
|
The method used to calculate the estimator bandwidth. This can be 'scott', 'silverman', a scalar constant or a Callable. If None (default), 'scott' is used. See scipy.stats.gaussian_kde for more information. |
None
|
fig_kw |
dict
|
All additional keyword arguments are passed to the |
{}
|
Returns:
Name | Type | Description |
---|---|---|
fig |
Figure
|
Matplotlib Figure. |
Source code in skforecast\plot\plot.py
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
|
skforecast.plot.plot.plot_prediction_intervals ¶
plot_prediction_intervals(
predictions,
y_true,
target_variable,
initial_x_zoom=None,
title=None,
xaxis_title=None,
yaxis_title=None,
ax=None,
kwargs_subplots={"figsize": (7, 3)},
kwargs_fill_between={
"color": "#444444",
"alpha": 0.3,
"zorder": 1,
},
)
Plot predicted intervals vs real values using matplotlib.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
predictions |
pandas DataFrame
|
Predicted values and intervals. Expected columns are 'pred', 'lower_bound' and 'upper_bound'. |
required |
y_true |
pandas Series, pandas DataFrame
|
Real values of target variable. |
required |
target_variable |
str
|
Name of target variable. |
required |
initial_x_zoom |
list
|
Initial zoom of x-axis, by default None. |
None
|
title |
str
|
Title of the plot, by default None. |
None
|
xaxis_title |
str
|
Title of x-axis, by default None. |
None
|
yaxis_title |
str
|
Title of y-axis, by default None. |
None
|
ax |
matplotlib axes
|
Axes where to plot, by default None. |
None
|
kwargs_subplots |
dict
|
Additional keyword arguments (key, value mappings) to pass to |
{'figsize': (7, 3)}
|
kwargs_fill_between |
dict
|
Additional keyword arguments (key, value mappings) to pass to |
{'color': '#444444', 'alpha': 0.3}
|
Returns:
Type | Description |
---|---|
None
|
|
Source code in skforecast\plot\plot.py
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
|