Skip to content

plot

skforecast.plot.plot.set_dark_theme

set_dark_theme(custom_style=None)

Set aspects of the visual theme for all matplotlib plots. This function changes the global defaults for all plots using the matplotlib rcParams system. The theme includes specific colors for figure and axes backgrounds, gridlines, text, labels, and ticks. It also sets the font size and line width.

Parameters:

Name Type Description Default
custom_style dict

Optional dictionary containing custom styles to be added or override the default dark theme. It is applied after the default theme is set by using the plt.rcParams.update() method.

None

Returns:

Type Description
None
Source code in skforecast\plot\plot.py
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
def set_dark_theme(
    custom_style: dict | None = None
) -> None:
    """
    Set aspects of the visual theme for all matplotlib plots.
    This function changes the global defaults for all plots using the matplotlib
    rcParams system. The theme includes specific colors for figure and axes
    backgrounds, gridlines, text, labels, and ticks. It also sets the font size
    and line width.

    Parameters
    ----------
    custom_style : dict, default None
        Optional dictionary containing custom styles to be added or override the
        default dark theme. It is applied after the default theme is set by
        using the `plt.rcParams.update()` method.

    Returns
    -------
    None

    """

    plt.style.use('fivethirtyeight')
    dark_style = {
        'figure.facecolor': '#001633',
        'axes.facecolor': '#001633',
        'savefig.facecolor': '#001633',
        'axes.grid': True,
        'axes.grid.which': 'both',
        'axes.spines.left': False,
        'axes.spines.right': False,
        'axes.spines.top': False,
        'axes.spines.bottom': False,
        'grid.color': '#212946',
        'grid.linewidth': '1',
        'text.color': '0.9',
        'axes.labelcolor': '0.9',
        'xtick.color': '0.9',
        'ytick.color': '0.9',
        'font.size': 10,
        'lines.linewidth': 1.5
    }

    if custom_style is not None:
        dark_style.update(custom_style)

    plt.rcParams.update(dark_style)

skforecast.plot.plot.plot_residuals

plot_residuals(
    residuals=None,
    y_true=None,
    y_pred=None,
    fig=None,
    **fig_kw
)

Parameters:

Name Type Description Default
residuals pandas Series, numpy ndarray

Values of residuals. If None, residuals are calculated internally using y_true and y_true.

None.
y_true pandas Series, numpy ndarray

Ground truth (correct) values. Ignored if residuals is not None.

None.
y_pred pandas Series, numpy ndarray

Values of predictions. Ignored if residuals is not None.

None.
fig Figure

Pre-existing fig for the plot. Otherwise, call matplotlib.pyplot.figure() internally.

None.
fig_kw dict

Other keyword arguments are passed to matplotlib.pyplot.figure()

{}

Returns:

Name Type Description
fig Figure

Matplotlib Figure.

Source code in skforecast\plot\plot.py
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
def plot_residuals(
    residuals: np.ndarray | pd.Series | None = None,
    y_true: np.ndarray | pd.Series | None = None,
    y_pred: np.ndarray | pd.Series | None = None,
    fig: matplotlib.figure.Figure | None = None,
    **fig_kw
) -> matplotlib.figure.Figure:
    """
    Parameters
    ----------
    residuals : pandas Series, numpy ndarray, default None.
        Values of residuals. If `None`, residuals are calculated internally using
        `y_true` and `y_true`.
    y_true : pandas Series, numpy ndarray, default None.
        Ground truth (correct) values. Ignored if residuals is not `None`.
    y_pred : pandas Series, numpy ndarray, default None. 
        Values of predictions. Ignored if residuals is not `None`.
    fig : matplotlib.figure.Figure, default None. 
        Pre-existing fig for the plot. Otherwise, call matplotlib.pyplot.figure()
        internally.
    fig_kw : dict
        Other keyword arguments are passed to matplotlib.pyplot.figure()

    Returns
    -------
    fig: matplotlib.figure.Figure
        Matplotlib Figure.

    """

    if residuals is None and (y_true is None or y_pred is None):
        raise ValueError(
            "If `residuals` argument is None then, `y_true` and `y_pred` must be provided."
        )

    if residuals is None:
        residuals = y_true - y_pred

    if fig is None:
        fig = plt.figure(constrained_layout=True, **fig_kw)

    gs  = matplotlib.gridspec.GridSpec(2, 2, figure=fig)
    ax1 = plt.subplot(gs[0, :])
    ax2 = plt.subplot(gs[1, 0])
    ax3 = plt.subplot(gs[1, 1])

    ax1.plot(residuals)
    sns.histplot(residuals, kde=True, bins=30, ax=ax2)
    plot_acf(residuals, ax=ax3, lags=60)

    ax1.set_title("Residuals")
    ax2.set_title("Distribution")
    ax3.set_title("Autocorrelation")

    return fig

skforecast.plot.plot.calculate_lag_autocorrelation

calculate_lag_autocorrelation(
    data,
    n_lags=50,
    last_n_samples=None,
    sort_by="partial_autocorrelation_abs",
    acf_kwargs={},
    pacf_kwargs={},
)

Calculate autocorrelation and partial autocorrelation for a time series. This is a wrapper around statsmodels.acf [1]_ and statsmodels.pacf [2]_.

Parameters:

Name Type Description Default
data pandas Series, pandas DataFrame

Time series to calculate autocorrelation. If a DataFrame is provided, it must have exactly one column.

required
n_lags int

Number of lags to calculate autocorrelation.

50
last_n_samples int or None

Number of most recent samples to use. If None, use the entire series. Note that partial correlations can only be computed for lags up to 50% of the sample size. For example, if the series has 10 samples, n_lags must be less than or equal to 5. This parameter is useful to speed up calculations when the series is very long.

None
sort_by str

Sort results by 'lag', 'partial_autocorrelation_abs', 'partial_autocorrelation', 'autocorrelation_abs' or 'autocorrelation'.

'partial_autocorrelation_abs'
acf_kwargs dict

Optional arguments to pass to statsmodels.tsa.stattools.acf.

{}
pacf_kwargs dict

Optional arguments to pass to statsmodels.tsa.stattools.pacf.

{}

Returns:

Name Type Description
results pandas DataFrame

Autocorrelation and partial autocorrelation values.

References

.. [1] Statsmodels acf API Reference. https://www.statsmodels.org/stable/generated/statsmodels.tsa.stattools.acf.html

.. [2] Statsmodels pacf API Reference. https://www.statsmodels.org/stable/generated/statsmodels.tsa.stattools.pacf.html

Examples:

import pandas as pd
from skforecast.plot import calculate_lag_autocorrelation

data = pd.Series([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
calculate_lag_autocorrelation(data = data, n_lags = 4)

#    lag  partial_autocorrelation_abs  partial_autocorrelation  autocorrelation_abs  autocorrelation
# 0    1                     0.777778                 0.777778             0.700000         0.700000
# 1    4                     0.360707                -0.360707             0.078788        -0.078788
# 2    3                     0.274510                -0.274510             0.148485         0.148485
# 3    2                     0.227273                -0.227273             0.412121         0.412121
Source code in skforecast\plot\plot.py
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
def calculate_lag_autocorrelation(
    data: pd.Series | pd.DataFrame,
    n_lags: int = 50,
    last_n_samples: int | None = None,
    sort_by: str = "partial_autocorrelation_abs",
    acf_kwargs: dict[str, object] = {},
    pacf_kwargs: dict[str, object] = {},
) -> pd.DataFrame:
    """
    Calculate autocorrelation and partial autocorrelation for a time series.
    This is a wrapper around statsmodels.acf [1]_ and statsmodels.pacf [2]_.

    Parameters
    ----------
    data : pandas Series, pandas DataFrame
        Time series to calculate autocorrelation. If a DataFrame is provided,
        it must have exactly one column.
    n_lags : int
        Number of lags to calculate autocorrelation.
    last_n_samples : int or None, default None
        Number of most recent samples to use. If None, use the entire series. 
        Note that partial correlations can only be computed for lags up to 
        50% of the sample size. For example, if the series has 10 samples, 
        `n_lags` must be less than or equal to 5. This parameter is useful
        to speed up calculations when the series is very long.
    sort_by : str, default 'partial_autocorrelation_abs'
        Sort results by 'lag', 'partial_autocorrelation_abs', 
        'partial_autocorrelation', 'autocorrelation_abs' or 'autocorrelation'.
    acf_kwargs : dict, default {}
        Optional arguments to pass to statsmodels.tsa.stattools.acf.
    pacf_kwargs : dict, default {}
        Optional arguments to pass to statsmodels.tsa.stattools.pacf.

    Returns
    -------
    results : pandas DataFrame
        Autocorrelation and partial autocorrelation values.

    References
    ----------
    .. [1] Statsmodels acf API Reference.
           https://www.statsmodels.org/stable/generated/statsmodels.tsa.stattools.acf.html

    .. [2] Statsmodels pacf API Reference.
           https://www.statsmodels.org/stable/generated/statsmodels.tsa.stattools.pacf.html

    Examples
    --------
    ```python
    import pandas as pd
    from skforecast.plot import calculate_lag_autocorrelation

    data = pd.Series([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
    calculate_lag_autocorrelation(data = data, n_lags = 4)

    #    lag  partial_autocorrelation_abs  partial_autocorrelation  autocorrelation_abs  autocorrelation
    # 0    1                     0.777778                 0.777778             0.700000         0.700000
    # 1    4                     0.360707                -0.360707             0.078788        -0.078788
    # 2    3                     0.274510                -0.274510             0.148485         0.148485
    # 3    2                     0.227273                -0.227273             0.412121         0.412121
    ```

    """

    if not isinstance(data, (pd.Series, pd.DataFrame)):
        raise TypeError(
            f"`data` must be a pandas Series or a DataFrame with a single column. "
            f"Got {type(data)}."
        )
    if isinstance(data, pd.DataFrame) and data.shape[1] != 1:
        raise ValueError(
            f"If `data` is a DataFrame, it must have exactly one column. "
            f"Got {data.shape[1]} columns."
        )
    if not isinstance(n_lags, int) or n_lags <= 0:
        raise TypeError(f"`n_lags` must be a positive integer. Got {n_lags}.")

    if last_n_samples is not None:
        if not isinstance(last_n_samples, int) or last_n_samples <= 0:
            raise TypeError(f"`last_n_samples` must be a positive integer. Got {last_n_samples}.")
        data = data.iloc[-last_n_samples:]

    if sort_by not in [
        "lag", "partial_autocorrelation_abs", "partial_autocorrelation",
        "autocorrelation_abs", "autocorrelation",
    ]:
        raise ValueError(
            "`sort_by` must be 'lag', 'partial_autocorrelation_abs', 'partial_autocorrelation', "
            "'autocorrelation_abs' or 'autocorrelation'."
        )

    pacf_values = pacf(data, nlags=n_lags, **pacf_kwargs)
    acf_values = acf(data, nlags=n_lags, **acf_kwargs)

    results = pd.DataFrame(
        {
            "lag": range(n_lags + 1),
            "partial_autocorrelation_abs": np.abs(pacf_values),
            "partial_autocorrelation": pacf_values,
            "autocorrelation_abs": np.abs(acf_values),
            "autocorrelation": acf_values,
        }
    ).iloc[1:]

    if sort_by == "lag":
        results = results.sort_values(by=sort_by, ascending=True).reset_index(drop=True)
    else:
        results = results.sort_values(by=sort_by, ascending=False).reset_index(drop=True)

    return results

skforecast.plot.plot.plot_multivariate_time_series_corr

plot_multivariate_time_series_corr(corr, ax=None, **fig_kw)

Heatmap plot of a correlation matrix.

Parameters:

Name Type Description Default
corr pandas DataFrame

correlation matrix

required
ax Axes

Pre-existing ax for the plot. Otherwise, call matplotlib.pyplot.subplots() internally.

None
fig_kw dict

Other keyword arguments are passed to matplotlib.pyplot.subplots()

{}

Returns:

Name Type Description
fig Figure

Matplotlib Figure.

Source code in skforecast\plot\plot.py
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
def plot_multivariate_time_series_corr(
    corr: pd.DataFrame,
    ax: matplotlib.axes.Axes | None = None,
    **fig_kw
) -> matplotlib.figure.Figure:
    """
    Heatmap plot of a correlation matrix.

    Parameters
    ----------
    corr : pandas DataFrame
        correlation matrix
    ax : matplotlib.axes.Axes, default None
        Pre-existing ax for the plot. Otherwise, call matplotlib.pyplot.subplots() 
        internally.
    fig_kw : dict
        Other keyword arguments are passed to matplotlib.pyplot.subplots()

    Returns
    -------
    fig: matplotlib.figure.Figure
        Matplotlib Figure.

    """

    if ax is None:
        fig, ax = plt.subplots(1, 1, **fig_kw)

    sns.heatmap(
        corr,
        annot=True,
        linewidths=.5,
        ax=ax,
        cmap=sns.color_palette("viridis", as_cmap=True)
    )

    ax.set_xlabel('Time series')

    return fig

skforecast.plot.plot.plot_prediction_distribution

plot_prediction_distribution(
    bootstrapping_predictions, bw_method=None, **fig_kw
)

Ridge plot of bootstrapping predictions. This plot is very useful to understand the uncertainty of forecasting predictions.

Parameters:

Name Type Description Default
bootstrapping_predictions pandas DataFrame

Bootstrapping predictions created with Forecaster.predict_bootstrapping.

required
bw_method (str, scalar, Callable)

The method used to calculate the estimator bandwidth. This can be 'scott', 'silverman', a scalar constant or a Callable. If None (default), 'scott' is used. See scipy.stats.gaussian_kde for more information.

None
fig_kw dict

All additional keyword arguments are passed to the pyplot.figure call.

{}

Returns:

Name Type Description
fig Figure

Matplotlib Figure.

Source code in skforecast\plot\plot.py
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
def plot_prediction_distribution(
    bootstrapping_predictions: pd.DataFrame,
    bw_method: Any | None = None,
    **fig_kw
) -> matplotlib.figure.Figure:
    """
    Ridge plot of bootstrapping predictions. This plot is very useful to understand 
    the uncertainty of forecasting predictions.

    Parameters
    ----------
    bootstrapping_predictions : pandas DataFrame
        Bootstrapping predictions created with `Forecaster.predict_bootstrapping`.
    bw_method : str, scalar, Callable, default None
        The method used to calculate the estimator bandwidth. This can be 'scott', 
        'silverman', a scalar constant or a Callable. If None (default), 'scott' 
        is used. See scipy.stats.gaussian_kde for more information.
    fig_kw : dict
        All additional keyword arguments are passed to the `pyplot.figure` call.

    Returns
    -------
    fig : matplotlib.figure.Figure
        Matplotlib Figure.

    """

    index = bootstrapping_predictions.index.astype(str).to_list()[::-1]
    palette = sns.cubehelix_palette(len(index), rot=-.25, light=.7, reverse=False)
    fig, axs = plt.subplots(len(index), 1, sharex=True, **fig_kw)
    if not isinstance(axs, np.ndarray):
        axs = np.array([axs])

    for i, step in enumerate(index):
        plot = (
            bootstrapping_predictions.loc[step, :]
            .plot.kde(ax=axs[i], bw_method=bw_method, lw=0.5)
        )

        # Fill density area
        x = plot.get_children()[0]._x
        y = plot.get_children()[0]._y
        axs[i].fill_between(x, y, color=palette[i])
        prediction_mean = bootstrapping_predictions.loc[step, :].mean()

        # Closest point on x to the prediction mean
        idx = np.abs(x - prediction_mean).argmin()
        axs[i].vlines(x[idx], ymin=0, ymax=y[idx], linestyle="dashed", color='w')

        axs[i].spines['top'].set_visible(False)
        axs[i].spines['right'].set_visible(False)
        axs[i].spines['bottom'].set_visible(False)
        axs[i].spines['left'].set_visible(False)
        axs[i].set_yticklabels([])
        axs[i].set_yticks([])
        axs[i].set_ylabel(step, rotation='horizontal')
        axs[i].set_xlabel('prediction')

    fig.subplots_adjust(hspace=-0)
    fig.suptitle('Forecasting distribution per step')

    return fig

skforecast.plot.plot.plot_prediction_intervals

plot_prediction_intervals(
    predictions,
    y_true,
    target_variable,
    initial_x_zoom=None,
    title=None,
    xaxis_title=None,
    yaxis_title=None,
    ax=None,
    kwargs_subplots={"figsize": (7, 3)},
    kwargs_fill_between={
        "color": "#444444",
        "alpha": 0.3,
        "zorder": 1,
    },
)

Plot predicted intervals vs real values using matplotlib.

Parameters:

Name Type Description Default
predictions pandas DataFrame

Predicted values and intervals. Expected columns are 'pred', 'lower_bound' and 'upper_bound'.

required
y_true pandas Series, pandas DataFrame

Real values of target variable.

required
target_variable str

Name of target variable.

required
initial_x_zoom list

Initial zoom of x-axis, by default None.

None
title str

Title of the plot, by default None.

None
xaxis_title str

Title of x-axis, by default None.

None
yaxis_title str

Title of y-axis, by default None.

None
ax matplotlib axes

Axes where to plot, by default None.

None
kwargs_subplots dict

Additional keyword arguments (key, value mappings) to pass to plt.subplots.

{'figsize': (7, 3)}
kwargs_fill_between dict

Additional keyword arguments (key, value mappings) to pass to ax.fill_between.

{'color': '#444444', 'alpha': 0.3}

Returns:

Type Description
None
Source code in skforecast\plot\plot.py
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
def plot_prediction_intervals(
    predictions: pd.DataFrame,
    y_true: pd.Series | pd.DataFrame,
    target_variable: str,
    initial_x_zoom: list[str] | None = None,
    title: str | None = None,
    xaxis_title: str | None = None,
    yaxis_title: str | None = None,
    ax: plt.Axes | None = None,
    kwargs_subplots: dict[str, object] = {'figsize': (7, 3)},
    kwargs_fill_between: dict[str, object] = {'color': '#444444', 'alpha': 0.3, 'zorder': 1}
):
    """
    Plot predicted intervals vs real values using matplotlib.

    Parameters
    ----------
    predictions : pandas DataFrame
        Predicted values and intervals. Expected columns are 'pred', 'lower_bound'
        and 'upper_bound'.
    y_true : pandas Series, pandas DataFrame
        Real values of target variable.
    target_variable : str
        Name of target variable.
    initial_x_zoom : list, default None
        Initial zoom of x-axis, by default None.
    title : str, default None
        Title of the plot, by default None.
    xaxis_title : str, default None
        Title of x-axis, by default None.
    yaxis_title : str, default None
        Title of y-axis, by default None.
    ax : matplotlib axes, default None
        Axes where to plot, by default None.
    kwargs_subplots : dict, default {'figsize': (7, 3)}
        Additional keyword arguments (key, value mappings) to pass to `plt.subplots`.
    kwargs_fill_between : dict, default {'color': '#444444', 'alpha': 0.3}
        Additional keyword arguments (key, value mappings) to pass to `ax.fill_between`.

    Returns
    -------
    None

    """

    if ax is None:
        fig, ax = plt.subplots(**kwargs_subplots)

    if isinstance(y_true, pd.Series):
        y_true = y_true.to_frame()

    y_true.loc[predictions.index, target_variable].plot(ax=ax, label='real value')
    predictions['pred'].plot(ax=ax, label='prediction')
    ax.fill_between(
        predictions.index,
        predictions['lower_bound'],
        predictions['upper_bound'],
        label='prediction interval',
        **kwargs_fill_between
    )
    ax.set_ylabel(yaxis_title)
    ax.set_xlabel(xaxis_title)
    ax.set_title(title)
    ax.legend()

    if initial_x_zoom is not None:
        ax.set_xlim(initial_x_zoom)