ForecasterRecursiveMultiSeries
¶
skforecast.recursive._forecaster_recursive_multiseries.ForecasterRecursiveMultiSeries ¶
ForecasterRecursiveMultiSeries(
regressor,
lags=None,
window_features=None,
encoding="ordinal",
transformer_series=None,
transformer_exog=None,
weight_func=None,
series_weights=None,
differentiation=None,
dropna_from_series=False,
fit_kwargs=None,
binner_kwargs=None,
forecaster_id=None,
)
Bases: ForecasterBase
This class turns any regressor compatible with the scikit-learn API into a recursive autoregressive (multi-step) forecaster for multiple series.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
regressor |
regressor or pipeline compatible with the scikit-learn API
|
An instance of a regressor or pipeline compatible with the scikit-learn API. |
required |
lags |
int, list, numpy ndarray, range
|
Lags used as predictors. Index starts at 1, so lag 1 is equal to t-1.
|
None
|
window_features |
(object, list)
|
Instance or list of instances used to create window features. Window features are created from the original time series and are included as predictors. |
None
|
encoding |
(str, None)
|
Encoding used to identify the different series.
|
'ordinal'
|
transformer_series |
(transformer(preprocessor), dict)
|
An instance of a transformer (preprocessor) compatible with the scikit-learn
preprocessing API with methods: fit, transform, fit_transform and
inverse_transform. Transformation is applied to each
|
None
|
transformer_exog |
transformer
|
An instance of a transformer (preprocessor) compatible with the scikit-learn
preprocessing API. The transformation is applied to |
None
|
weight_func |
(Callable, dict)
|
Function that defines the individual weights for each sample based on the
index. For example, a function that assigns a lower weight to certain dates.
Ignored if
|
None
|
series_weights |
dict
|
Weights associated with each series {'series_column_name' : float}. It is only
applied if the
|
None
|
differentiation |
(int, dict)
|
Order of differencing applied to the time series before training the forecaster. The order of differentiation is the number of times the differencing operation is applied to a time series. Differencing involves computing the differences between consecutive data points in the series. Before returning a prediction, the differencing operation is reversed.
|
None
|
dropna_from_series |
bool
|
Determine whether NaN detected in the training matrices will be dropped.
|
False
|
fit_kwargs |
dict
|
Additional arguments to be passed to the |
None
|
binner_kwargs |
dict
|
Additional arguments to pass to the |
None
|
forecaster_id |
(str, int)
|
Name used as an identifier of the forecaster. |
None
|
Attributes:
Name | Type | Description |
---|---|---|
regressor |
regressor or pipeline compatible with the scikit-learn API
|
An instance of a regressor or pipeline compatible with the scikit-learn API. |
lags |
numpy ndarray
|
Lags used as predictors. |
lags_names |
list
|
Names of the lags used as predictors. |
max_lag |
int
|
Maximum lag included in |
window_features |
list
|
Class or list of classes used to create window features. |
window_features_names |
list
|
Names of the window features to be included in the |
window_features_class_names |
list
|
Names of the classes used to create the window features. |
max_size_window_features |
int
|
Maximum window size required by the window features. |
window_size |
int
|
The window size needed to create the predictors. It is calculated as the
maximum value between |
encoding |
str
|
Encoding used to identify the different series.
|
encoder |
preprocessing
|
Scikit-learn preprocessing encoder used to encode the series. New in version 0.12.0 |
encoding_mapping_ |
dict
|
Mapping of the encoding used to identify the different series. |
transformer_series |
(transformer(preprocessor), dict)
|
An instance of a transformer (preprocessor) compatible with the scikit-learn
preprocessing API with methods: fit, transform, fit_transform and
inverse_transform. Transformation is applied to each
|
transformer_series_ |
dict
|
Dictionary with the transformer for each series. It is created cloning the
objects in |
transformer_exog |
transformer(preprocessor)
|
An instance of a transformer (preprocessor) compatible with the scikit-learn
preprocessing API. The transformation is applied to |
weight_func |
(Callable, dict)
|
Function that defines the individual weights for each sample based on the
index. For example, a function that assigns a lower weight to certain dates.
Ignored if
|
weight_func_ |
dict
|
Dictionary with the |
source_code_weight_func |
(str, dict)
|
Source code of the custom function(s) used to create weights. |
series_weights |
dict
|
Weights associated with each series {'series_column_name' : float}. It is only
applied if the
|
series_weights_ |
dict
|
Weights associated with each series. It is created as a clone of |
differentiation |
(int, dict)
|
The order of differencing applied to the time series prior to training the forecaster. |
differentiation_max |
int
|
Maximum order of differentiation. |
differentiator |
(TimeSeriesDifferentiator, dict)
|
Skforecast object (or dict of objects) used to differentiate the time series. |
differentiator_ |
dict
|
Dictionary with the |
dropna_from_series |
bool
|
Determine whether NaN detected in the training matrices will be dropped. |
last_window_ |
dict
|
Last window of training data for each series. It stores the values
needed to predict the next |
index_type_ |
type
|
Type of index of the input used in training. |
index_freq_ |
str
|
Frequency of Index of the input used in training. |
training_range_ |
dict
|
First and last values of index of the data used during training for each series. |
series_names_in_ |
list
|
Names of the series (levels) provided by the user during training. |
exog_in_ |
bool
|
If the forecaster has been trained using exogenous variable/s. |
exog_names_in_ |
list
|
Names of the exogenous variables used during training. |
exog_type_in_ |
type
|
Type of exogenous data (pandas Series, DataFrame or dict) used in training. |
exog_dtypes_in_ |
dict
|
Type of each exogenous variable/s used in training. If |
X_train_series_names_in_ |
list
|
Names of the series (levels) included in the matrix |
X_train_window_features_names_out_ |
list
|
Names of the window features included in the matrix |
X_train_exog_names_out_ |
list
|
Names of the exogenous variables included in the matrix |
X_train_features_names_out_ |
list
|
Names of columns of the matrix created internally for training. |
fit_kwargs |
dict
|
Additional arguments to be passed to the |
in_sample_residuals_ |
dict
|
Residuals of the model when predicting training data. Only stored up
to 10_000 values per series in the form |
in_sample_residuals_by_bin_ |
dict
|
In sample residuals binned according to the predicted value each residual
is associated with. The number of residuals stored per bin is limited to
|
out_sample_residuals_ |
dict
|
Residuals of the model when predicting non-training data. Only stored up
to 10_000 values per series in the form |
out_sample_residuals_by_bin_ |
dict
|
Out of sample residuals binned according to the predicted value each residual
is associated with. The number of residuals stored per bin is limited to
|
binner |
dict
|
Dictionary of |
binner_intervals_ |
dict
|
Intervals used to discretize residuals into k bins according to the predicted
values associated with each residual. In the form |
binner_kwargs |
dict
|
Additional arguments to pass to the |
creation_date |
str
|
Date of creation. |
is_fitted |
bool
|
Tag to identify if the regressor has been fitted (trained). |
fit_date |
str
|
Date of last fit. |
skforecast_version |
str
|
Version of skforecast library used to create the forecaster. |
python_version |
str
|
Version of python used to create the forecaster. |
forecaster_id |
(str, int)
|
Name used as an identifier of the forecaster. |
_probabilistic_mode |
(str, bool)
|
Private attribute used to indicate whether the forecaster should perform some calculations during backtesting. |
Notes
The weights are used to control the influence that each observation has on the
training of the model. ForecasterRecursiveMultiSeries
accepts two types of weights.
If the two types of weights are indicated, they are multiplied to create the final
weights. The resulting sample_weight
cannot have negative values.
series_weights
: controls the relative importance of each series. If a series has twice as much weight as the others, the observations of that series influence the training twice as much. The higher the weight of a series relative to the others, the more the model will focus on trying to learn that series.weight_func
: controls the relative importance of each observation according to its index value. For example, a function that assigns a lower weight to certain dates.
Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 |
|
_repr_html_ ¶
_repr_html_()
HTML representation of the object. The "General Information" section is expanded by default.
Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 |
|
_create_lags ¶
_create_lags(y, X_as_pandas=False, train_index=None)
Create the lagged values and their target variable from a time series.
Note that the returned matrix X_data
contains the lag 1 in the first
column, the lag 2 in the in the second column and so on.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y |
numpy ndarray
|
Training time series values. |
required |
X_as_pandas |
bool
|
If |
False
|
train_index |
pandas Index
|
Index of the training data. It is used to create the pandas DataFrame
|
None
|
Returns:
Name | Type | Description |
---|---|---|
X_data |
numpy ndarray, pandas DataFrame, None
|
Lagged values (predictors). |
y_data |
numpy ndarray
|
Values of the time series related to each row of |
Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 |
|
_create_window_features ¶
_create_window_features(y, train_index, X_as_pandas=False)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y |
pandas Series
|
Training time series. |
required |
train_index |
pandas Index
|
Index of the training data. It is used to create the pandas DataFrame
|
required |
X_as_pandas |
bool
|
If |
False
|
Returns:
Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 |
|
_create_train_X_y_single_series ¶
_create_train_X_y_single_series(y, ignore_exog, exog=None)
Create training matrices from univariate time series and exogenous variables. This method does not transform the exog variables.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y |
pandas Series
|
Training time series. |
required |
ignore_exog |
bool
|
If |
required |
exog |
pandas DataFrame
|
Exogenous variable/s included as predictor/s. |
None
|
Returns:
Name | Type | Description |
---|---|---|
X_train_lags |
pandas DataFrame
|
Training values of lags. Shape: (len(y) - self.max_lag, len(self.lags)) |
X_train_window_features_names_out_ |
list
|
Names of the window features. |
X_train_exog |
pandas DataFrame
|
Training values of exogenous variables. Shape: (len(y) - self.max_lag, len(exog.columns)) |
y_train |
pandas Series
|
Values (target) of the time series related to each row of |
Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 |
|
_create_train_X_y ¶
_create_train_X_y(
series, exog=None, store_last_window=True
)
Create training matrices from multiple time series and exogenous
variables. See Notes section for more details depending on the type of
series
and exog
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
series |
pandas DataFrame, dict
|
Training time series. |
required |
exog |
pandas Series, pandas DataFrame, dict
|
Exogenous variable/s included as predictor/s. |
None
|
store_last_window |
(bool, list)
|
Whether or not to store the last window (
|
True
|
Returns:
Name | Type | Description |
---|---|---|
X_train |
pandas DataFrame
|
Training values (predictors). |
y_train |
pandas Series
|
Values of the time series related to each row of |
series_indexes |
dict
|
Dictionary with the index of each series. |
series_names_in_ |
list
|
Names of the series (levels) provided by the user during training. |
X_train_series_names_in_ |
list
|
Names of the series (levels) included in the matrix |
exog_names_in_ |
list
|
Names of the exogenous variables used during training. |
X_train_window_features_names_out_ |
list
|
Names of the window features included in the matrix |
X_train_exog_names_out_ |
list
|
Names of the exogenous variables included in the matrix |
exog_dtypes_in_ |
dict
|
Type of each exogenous variable/s used in training. If |
last_window_ |
dict
|
Last window of training data for each series. It stores the values
needed to predict the next |
Notes
- If
series
is a pandas DataFrame andexog
is a pandas Series or DataFrame, each exog is duplicated for each series. Exog must have the same index asseries
(type, length and frequency). - If
series
is a pandas DataFrame andexog
is a dict of pandas Series or DataFrames. Each key inexog
must be a column inseries
and the values are the exog for each series. Exog must have the same index asseries
(type, length and frequency). - If
series
is a dict of pandas Series,exog
must be a dict of pandas Series or DataFrames. The keys inseries
andexog
must be the same. All series and exog must have a pandas DatetimeIndex with the same frequency.
Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 |
|
create_train_X_y ¶
create_train_X_y(
series, exog=None, suppress_warnings=False
)
Create training matrices from multiple time series and exogenous
variables. See Notes section for more details depending on the type of
series
and exog
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
series |
pandas DataFrame, dict
|
Training time series. |
required |
exog |
pandas Series, pandas DataFrame, dict
|
Exogenous variable/s included as predictor/s. |
None
|
suppress_warnings |
bool
|
If |
False
|
Returns:
Name | Type | Description |
---|---|---|
X_train |
pandas DataFrame
|
Training values (predictors). |
y_train |
pandas Series
|
Values (target) of the time series related to each row of |
Notes
- If
series
is a pandas DataFrame andexog
is a pandas Series or DataFrame, each exog is duplicated for each series. Exog must have the same index asseries
(type, length and frequency). - If
series
is a pandas DataFrame andexog
is a dict of pandas Series or DataFrames. Each key inexog
must be a column inseries
and the values are the exog for each series. Exog must have the same index asseries
(type, length and frequency). - If
series
is a dict of pandas Series,exog
must be a dict of pandas Series or DataFrames. The keys inseries
andexog
must be the same. All series and exog must have a pandas DatetimeIndex with the same frequency.
Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 |
|
_train_test_split_one_step_ahead ¶
_train_test_split_one_step_ahead(
series, initial_train_size, exog=None
)
Create matrices needed to train and test the forecaster for one-step-ahead predictions.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
series |
pandas DataFrame, dict
|
Training time series. |
required |
initial_train_size |
int
|
Initial size of the training set. It is the number of observations used to train the forecaster before making the first prediction. |
required |
exog |
pandas Series, pandas DataFrame, dict
|
Exogenous variable/s included as predictor/s. |
None
|
Returns:
Name | Type | Description |
---|---|---|
X_train |
pandas DataFrame
|
Predictor values used to train the model. |
y_train |
pandas Series
|
Target values related to each row of |
X_test |
pandas DataFrame
|
Predictor values used to test the model. |
y_test |
pandas Series
|
Target values related to each row of |
X_train_encoding |
pandas Series
|
Series identifiers for each row of |
X_test_encoding |
pandas Series
|
Series identifiers for each row of |
Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 |
|
_weight_func_all_1 ¶
_weight_func_all_1(index)
Weight function that assigns a weight of 1 to all observations.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
index |
pandas Index
|
Index of the series. |
required |
Returns:
Name | Type | Description |
---|---|---|
weights |
numpy ndarray
|
Weights to use in |
Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 |
|
create_sample_weights ¶
create_sample_weights(series_names_in_, X_train)
Create weights for each observation according to the forecaster's attributes
series_weights
and weight_func
. The resulting weights are product of both
types of weights.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
series_names_in_ |
list
|
Names of the series (levels) used during training. |
required |
X_train |
pandas DataFrame
|
Dataframe created with the |
required |
Returns:
Name | Type | Description |
---|---|---|
weights |
numpy ndarray
|
Weights to use in |
Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 |
|
fit ¶
fit(
series,
exog=None,
store_last_window=True,
store_in_sample_residuals=False,
random_state=123,
suppress_warnings=False,
)
Training Forecaster. See Notes section for more details depending on
the type of series
and exog
.
Additional arguments to be passed to the fit
method of the regressor
can be added with the fit_kwargs
argument when initializing the forecaster.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
series |
pandas DataFrame, dict
|
Training time series. |
required |
exog |
pandas Series, pandas DataFrame, dict
|
Exogenous variable/s included as predictor/s. |
None
|
store_last_window |
(bool, list)
|
Whether or not to store the last window (
|
True
|
store_in_sample_residuals |
bool
|
If |
False
|
random_state |
int
|
Set a seed for the random generator so that the stored sample residuals are always deterministic. |
123
|
suppress_warnings |
bool
|
If |
False
|
Returns:
Type | Description |
---|---|
None
|
|
Notes
- If
series
is a pandas DataFrame andexog
is a pandas Series or DataFrame, each exog is duplicated for each series. Exog must have the same index asseries
(type, length and frequency). - If
series
is a pandas DataFrame andexog
is a dict of pandas Series or DataFrames. Each key inexog
must be a column inseries
and the values are the exog for each series. Exog must have the same index asseries
(type, length and frequency). - If
series
is a dict of pandas Series,exog
must be a dict of pandas Series or DataFrames. The keys inseries
andexog
must be the same. All series and exog must have a pandas DatetimeIndex with the same frequency.
Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 |
|
_binning_in_sample_residuals ¶
_binning_in_sample_residuals(
level,
y_true,
y_pred,
store_in_sample_residuals=False,
random_state=123,
)
Bin residuals according to the predicted value each residual is
associated with. First a skforecast.preprocessing.QuantileBinner
object
is fitted to the predicted values. Then, residuals are binned according
to the predicted value each residual is associated with. Residuals are
stored in the forecaster object as in_sample_residuals_
and
in_sample_residuals_by_bin_
.
y_true
and y_pred
assumed to be differentiated and/or transformed
according to the attributes differentiation
and transformer_series
.
The number of residuals stored per bin is limited to
10_000 // self.binner.n_bins_
. The total number of residuals stored is
10_000
.
New in version 0.15.0
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_true |
numpy ndarray
|
True values of the time series. |
required |
y_pred |
numpy ndarray
|
Predicted values of the time series. |
required |
store_in_sample_residuals |
bool
|
If |
False
|
random_state |
int
|
Set a seed for the random generator so that the stored sample residuals are always deterministic. |
123
|
Returns:
Type | Description |
---|---|
None
|
|
Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 |
|
_create_predict_inputs ¶
_create_predict_inputs(
steps,
levels=None,
last_window=None,
exog=None,
predict_probabilistic=False,
use_in_sample_residuals=True,
use_binned_residuals=True,
check_inputs=True,
)
Create the inputs needed for the first iteration of the prediction process. As this is a recursive process, the last window is updated at each iteration of the prediction process.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
steps |
int
|
Number of steps to predict. |
required |
levels |
(str, list)
|
Time series to be predicted. If |
None
|
last_window |
pandas DataFrame
|
Series values used to create the predictors (lags) needed in the
first iteration of the prediction (t + 1).
If |
None
|
exog |
pandas Series, pandas DataFrame
|
Exogenous variable/s included as predictor/s. |
None
|
predict_probabilistic |
bool
|
If |
False
|
use_in_sample_residuals |
bool
|
If |
True
|
use_binned_residuals |
bool
|
If |
True
|
check_inputs |
bool
|
If |
True
|
Returns:
Name | Type | Description |
---|---|---|
last_window |
pandas DataFrame
|
Series values used to create the predictors needed in the first iteration of the prediction (t + 1). |
exog_values_dict |
(dict, None)
|
Exogenous variable/s included as predictor/s for each series in each step. The keys are the steps and the values are numpy arrays where each column is an exog and each row a series (level). |
levels |
list
|
Names of the series (levels) to be predicted. |
prediction_index |
pandas Index
|
Index of the predictions. |
Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 |
|
_recursive_predict ¶
_recursive_predict(
steps,
levels,
last_window,
exog_values_dict=None,
residuals=None,
use_binned_residuals=True,
)
Predict n steps for one or multiple levels. It is an iterative process in which, each prediction, is used as a predictor for the next step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
steps |
int
|
Number of steps to predict. |
required |
levels |
list
|
Time series to be predicted. |
required |
last_window |
pandas DataFrame
|
Series values used to create the predictors needed in the first iteration of the prediction (t + 1). |
required |
exog_values_dict |
dict
|
Exogenous variable/s included as predictor/s for each series in each step. The keys are the steps and the values are numpy arrays where each column is an exog and each row a series (level). |
None
|
residuals |
numpy ndarray
|
Residuals used to generate bootstrapping predictions in the form (steps, levels). |
None
|
use_binned_residuals |
bool
|
If |
True
|
Returns:
Name | Type | Description |
---|---|---|
predictions |
numpy ndarray
|
Predicted values. |
Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 |
|
create_predict_X ¶
create_predict_X(
steps,
levels=None,
last_window=None,
exog=None,
suppress_warnings=False,
)
Create the predictors needed to predict steps
ahead. As it is a recursive
process, the predictors are created at each iteration of the prediction
process.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
steps |
int
|
Number of steps to predict. |
required |
levels |
(str, list)
|
Time series to be predicted. If |
None
|
last_window |
pandas DataFrame
|
Series values used to create the predictors (lags) needed in the
first iteration of the prediction (t + 1).
If |
None
|
exog |
pandas Series, pandas DataFrame
|
Exogenous variable/s included as predictor/s. |
None
|
suppress_warnings |
bool
|
If |
False
|
Returns:
Name | Type | Description |
---|---|---|
X_predict_dict |
dict
|
Dict in the form |
Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 |
|
predict ¶
predict(
steps,
levels=None,
last_window=None,
exog=None,
suppress_warnings=False,
check_inputs=True,
)
Predict n steps ahead. It is an recursive process in which, each prediction, is used as a predictor for the next step. Only levels whose last window ends at the same datetime index can be predicted together.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
steps |
int
|
Number of steps to predict. |
required |
levels |
(str, list)
|
Time series to be predicted. If |
None
|
last_window |
pandas DataFrame
|
Series values used to create the predictors (lags) needed in the
first iteration of the prediction (t + 1).
If |
None
|
exog |
pandas Series, pandas DataFrame, dict
|
Exogenous variable/s included as predictor/s. |
None
|
suppress_warnings |
bool
|
If |
False
|
check_inputs |
bool
|
If |
True
|
Returns:
Name | Type | Description |
---|---|---|
predictions |
pandas DataFrame
|
Long-format DataFrame with the predictions. The columns are |
Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 |
|
predict_bootstrapping ¶
predict_bootstrapping(
steps,
levels=None,
last_window=None,
exog=None,
n_boot=250,
use_in_sample_residuals=True,
use_binned_residuals=True,
random_state=123,
suppress_warnings=False,
)
Generate multiple forecasting predictions using a bootstrapping process. By sampling from a collection of past observed errors (the residuals), each iteration of bootstrapping generates a different set of predictions. Only levels whose last window ends at the same datetime index can be predicted together. See the References section for more information.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
steps |
int
|
Number of steps to predict. |
required |
levels |
(str, list)
|
Time series to be predicted. If |
None
|
last_window |
pandas DataFrame
|
Series values used to create the predictors (lags) needed in the
first iteration of the prediction (t + 1).
If |
None
|
exog |
pandas Series, pandas DataFrame, dict
|
Exogenous variable/s included as predictor/s. |
None
|
n_boot |
int
|
Number of bootstrapping iterations to perform when estimating prediction intervals. |
250
|
use_in_sample_residuals |
bool
|
If |
True
|
use_binned_residuals |
bool
|
If |
True
|
random_state |
int
|
Seed for the random number generator to ensure reproducibility. |
123
|
suppress_warnings |
bool
|
If |
False
|
Returns:
Name | Type | Description |
---|---|---|
boot_predictions |
pandas DataFrame
|
Long-format DataFrame with the bootstrapping predictions. The columns
are |
References
.. [1] Forecasting: Principles and Practice (3rd ed) Rob J Hyndman and George Athanasopoulos. https://otexts.com/fpp3/prediction-intervals.html
Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 |
|
_predict_interval_conformal ¶
_predict_interval_conformal(
steps,
levels=None,
last_window=None,
exog=None,
nominal_coverage=0.95,
use_in_sample_residuals=True,
use_binned_residuals=True,
)
Generate prediction intervals using the conformal prediction split method [1]_.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
steps |
int, str, pandas Timestamp
|
Number of steps to predict.
|
required |
levels |
(str, list)
|
Time series to be predicted. If |
None
|
last_window |
pandas Series, pandas DataFrame
|
Series values used to create the predictors (lags) needed in the
first iteration of the prediction (t + 1).
If |
None
|
exog |
pandas Series, pandas DataFrame
|
Exogenous variable/s included as predictor/s. |
None
|
nominal_coverage |
float
|
Nominal coverage, also known as expected coverage, of the prediction intervals. Must be between 0 and 1. |
0.95
|
use_in_sample_residuals |
bool
|
If |
True
|
use_binned_residuals |
bool
|
If |
True
|
Returns:
Name | Type | Description |
---|---|---|
predictions |
pandas DataFrame
|
Values predicted by the forecaster and their estimated interval.
|
References
.. [1] MAPIE - Model Agnostic Prediction Interval Estimator. https://mapie.readthedocs.io/en/stable/theoretical_description_regression.html#the-split-method
Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 |
|
predict_interval ¶
predict_interval(
steps,
levels=None,
last_window=None,
exog=None,
method="conformal",
interval=[5, 95],
n_boot=250,
use_in_sample_residuals=True,
use_binned_residuals=True,
random_state=123,
suppress_warnings=False,
)
Predict n steps ahead and estimate prediction intervals using either bootstrapping or conformal prediction methods. Refer to the References section for additional details on these methods.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
steps |
int
|
Number of steps to predict. |
required |
levels |
(str, list)
|
Time series to be predicted. If |
None
|
last_window |
pandas DataFrame
|
Series values used to create the predictors (lags) needed in the
first iteration of the prediction (t + 1).
If |
None
|
exog |
pandas Series, pandas DataFrame, dict
|
Exogenous variable/s included as predictor/s. |
None
|
method |
str
|
Technique used to estimate prediction intervals. Available options:
|
'conformal'
|
interval |
(float, list, tuple)
|
Confidence level of the prediction interval. Interpretation depends on the method used:
|
[5, 95]
|
n_boot |
int
|
Number of bootstrapping iterations to perform when estimating prediction intervals. |
250
|
use_in_sample_residuals |
bool
|
If |
True
|
use_binned_residuals |
bool
|
If |
True
|
random_state |
int
|
Seed for the random number generator to ensure reproducibility. |
123
|
suppress_warnings |
bool
|
If |
False
|
Returns:
Name | Type | Description |
---|---|---|
predictions |
pandas DataFrame
|
Long-format DataFrame with the predictions and the lower and upper
bounds of the estimated interval. The columns are |
References
.. [1] Forecasting: Principles and Practice (3rd ed) Rob J Hyndman and George Athanasopoulos. https://otexts.com/fpp3/prediction-intervals.html
.. [2] MAPIE - Model Agnostic Prediction Interval Estimator. https://mapie.readthedocs.io/en/stable/theoretical_description_regression.html#the-split-method
Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 |
|
predict_quantiles ¶
predict_quantiles(
steps,
levels=None,
last_window=None,
exog=None,
quantiles=[0.05, 0.5, 0.95],
n_boot=250,
use_in_sample_residuals=True,
use_binned_residuals=True,
random_state=123,
suppress_warnings=False,
)
Calculate the specified quantiles for each step. After generating multiple forecasting predictions through a bootstrapping process, each quantile is calculated for each step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
steps |
int
|
Number of steps to predict. |
required |
levels |
(str, list)
|
Time series to be predicted. If |
None
|
last_window |
pandas DataFrame
|
Series values used to create the predictors (lags) needed in the
first iteration of the prediction (t + 1).
If |
None
|
exog |
pandas Series, pandas DataFrame, dict
|
Exogenous variable/s included as predictor/s. |
None
|
quantiles |
(list, tuple)
|
Sequence of quantiles to compute, which must be between 0 and 1
inclusive. For example, quantiles of 0.05, 0.5 and 0.95 should be as
|
[0.05, 0.5, 0.95]
|
n_boot |
int
|
Number of bootstrapping iterations to perform when estimating quantiles. |
250
|
use_in_sample_residuals |
bool
|
If |
True
|
use_binned_residuals |
bool
|
If |
True
|
random_state |
int
|
Seed for the random number generator to ensure reproducibility. |
123
|
suppress_warnings |
bool
|
If |
False
|
Returns:
Name | Type | Description |
---|---|---|
predictions |
pandas DataFrame
|
Long-format DataFrame with the quantiles predicted by the forecaster.
For example, if |
References
.. [1] Forecasting: Principles and Practice (3rd ed) Rob J Hyndman and George Athanasopoulos. https://otexts.com/fpp3/prediction-intervals.html
Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 |
|
predict_dist ¶
predict_dist(
steps,
distribution,
levels=None,
last_window=None,
exog=None,
n_boot=250,
use_in_sample_residuals=True,
use_binned_residuals=True,
random_state=123,
suppress_warnings=False,
)
Fit a given probability distribution for each step. After generating multiple forecasting predictions through a bootstrapping process, each step is fitted to the given distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
steps |
int
|
Number of steps to predict. |
required |
distribution |
object
|
A distribution object from scipy.stats with methods |
required |
levels |
(str, list)
|
Time series to be predicted. If |
None
|
last_window |
pandas DataFrame
|
Series values used to create the predictors (lags) needed in the
first iteration of the prediction (t + 1).
If |
None
|
exog |
pandas Series, pandas DataFrame, dict
|
Exogenous variable/s included as predictor/s. |
None
|
n_boot |
int
|
Number of bootstrapping iterations to perform when estimating prediction intervals. |
250
|
use_in_sample_residuals |
bool
|
If |
True
|
use_binned_residuals |
bool
|
If |
True
|
random_state |
int
|
Seed for the random number generator to ensure reproducibility. |
123
|
suppress_warnings |
bool
|
If |
False
|
Returns:
Name | Type | Description |
---|---|---|
predictions |
pandas DataFrame
|
Long-format DataFrame with the parameters of the fitted distribution
for each step. The columns are |
References
.. [1] Forecasting: Principles and Practice (3rd ed) Rob J Hyndman and George Athanasopoulos. https://otexts.com/fpp3/prediction-intervals.html
Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 |
|
set_params ¶
set_params(params)
Set new values to the parameters of the scikit-learn model stored in the forecaster.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
params |
dict
|
Parameters values. |
required |
Returns:
Type | Description |
---|---|
None
|
|
Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 |
|
set_fit_kwargs ¶
set_fit_kwargs(fit_kwargs)
Set new values for the additional keyword arguments passed to the fit
method of the regressor.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
fit_kwargs |
dict
|
Dict of the form {"argument": new_value}. |
required |
Returns:
Type | Description |
---|---|
None
|
|
Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 |
|
set_lags ¶
set_lags(lags=None)
Set new value to the attribute lags
. Attributes lags_names
,
max_lag
and window_size
are also updated.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
lags |
int, list, numpy ndarray, range
|
Lags used as predictors. Index starts at 1, so lag 1 is equal to t-1.
|
None
|
Returns:
Type | Description |
---|---|
None
|
|
Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 |
|
set_window_features ¶
set_window_features(window_features=None)
Set new value to the attribute window_features
. Attributes
max_size_window_features
, window_features_names
,
window_features_class_names
and window_size
are also updated.
Parameters:
Returns:
Type | Description |
---|---|
None
|
|
Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 |
|
set_in_sample_residuals ¶
set_in_sample_residuals(
series,
exog=None,
random_state=123,
suppress_warnings=False,
)
Set in-sample residuals in case they were not calculated during the training process.
In-sample residuals are calculated as the difference between the true values and the predictions made by the forecaster using the training data. The following internal attributes are updated:
in_sample_residuals_
: Dictionary containing a numpy ndarray with the residuals for each series in the form{series: residuals}
.binner_intervals_
: intervals used to bin the residuals are calculated using the quantiles of the predicted values.in_sample_residuals_by_bin_
: residuals are binned according to the predicted value they are associated with and stored in a dictionary per series, where the keys are the intervals of the predicted values and the values are the residuals associated with that range.
A total of 10_000 residuals are stored in the attribute in_sample_residuals_
.
If the number of residuals is greater than 10_000, a random sample of
10_000 residuals is stored. The number of residuals stored per bin is
limited to 10_000 // self.binner.n_bins_
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
series |
pandas DataFrame, dict
|
Training time series. |
required |
exog |
pandas Series, pandas DataFrame, dict
|
Exogenous variable/s included as predictor/s. |
None
|
random_state |
int
|
Sets a seed to the random sampling for reproducible output. |
123
|
suppress_warnings |
bool
|
If |
False
|
Returns:
Type | Description |
---|---|
None
|
|
Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 |
|
set_out_sample_residuals ¶
set_out_sample_residuals(
y_true, y_pred, append=False, random_state=123
)
Set new values to the attribute out_sample_residuals_
. Out of sample
residuals are meant to be calculated using observations that did not
participate in the training process. y_true
and y_pred
are expected
to be in the original scale of the time series. Residuals are calculated
as y_true
- y_pred
, after applying the necessary transformations and
differentiations if the forecaster includes them (self.transformer_series
and self.differentiation
).
A total of 10_000 residuals are stored in the attribute out_sample_residuals_
.
If the number of residuals is greater than 10_000, a random sample of
10_000 residuals is stored.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_true |
dict
|
Dictionary of numpy ndarrays or pandas Series with the true values of the time series for each series in the form {series: y_true}. |
required |
y_pred |
dict
|
Dictionary of numpy ndarrays or pandas Series with the predicted values of the time series for each series in the form {series: y_pred}. |
required |
append |
bool
|
If |
False
|
random_state |
int
|
Sets a seed to the random sampling for reproducible output. |
123
|
Returns:
Type | Description |
---|---|
None
|
|
Notes
Out-of-sample residuals can only be stored for series seen during fit. To save residuals for unseen levels use the key '_unknown_level'.
Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 |
|
_binning_out_sample_residuals ¶
_binning_out_sample_residuals(
level, y_true, y_pred, append=False, random_state=123
)
Bin out sample residuals using the already fitted binner.
y_true
and y_pred
are expected to be in the original scale of the
time series. Residuals are calculated as y_true
- y_pred
, after
applying the necessary transformations and differentiations if the
forecaster includes them (self.transformer_series
and self.differentiation
).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
level |
str
|
Name of the level y_true and y_pred belong to. |
required |
y_true |
numpy ndarray
|
True values of the time series. |
required |
y_pred |
numpy ndarray
|
Predicted values of the time series. |
required |
append |
bool
|
If |
False
|
random_state |
int
|
Sets a seed to the random sampling for reproducible output. |
123
|
Returns:
Name | Type | Description |
---|---|---|
out_sample_residuals |
numpy ndarray
|
Array with the residual for |
out_sample_residuals_by_bin |
dict
|
Dictionary with the residuals binned by the fitted binner for |
Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 |
|
get_feature_importances ¶
get_feature_importances(sort_importance=True)
Return feature importances of the regressor stored in the
forecaster. Only valid when regressor stores internally the feature
importances in the attribute feature_importances_
or coef_
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sort_importance |
bool
|
If |
True
|
Returns:
Name | Type | Description |
---|---|---|
feature_importances |
pandas DataFrame
|
Feature importances associated with each predictor. |
Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 |
|