Skip to content

ForecasterRecursiveMultiSeries

skforecast.recursive._forecaster_recursive_multiseries.ForecasterRecursiveMultiSeries

ForecasterRecursiveMultiSeries(
    regressor,
    lags=None,
    window_features=None,
    encoding="ordinal",
    transformer_series=None,
    transformer_exog=None,
    weight_func=None,
    series_weights=None,
    differentiation=None,
    dropna_from_series=False,
    fit_kwargs=None,
    binner_kwargs=None,
    forecaster_id=None,
)

Bases: ForecasterBase

This class turns any regressor compatible with the scikit-learn API into a recursive autoregressive (multi-step) forecaster for multiple series.

Parameters:

Name Type Description Default
regressor regressor or pipeline compatible with the scikit-learn API

An instance of a regressor or pipeline compatible with the scikit-learn API.

required
lags int, list, numpy ndarray, range

Lags used as predictors. Index starts at 1, so lag 1 is equal to t-1.

  • int: include lags from 1 to lags (included).
  • list, 1d numpy ndarray or range: include only lags present in lags, all elements must be int.
  • None: no lags are included as predictors.
None
window_features (object, list)

Instance or list of instances used to create window features. Window features are created from the original time series and are included as predictors.

None
encoding (str, None)

Encoding used to identify the different series.

  • If 'ordinal', a single column is created with integer values from 0 to n_series - 1.
  • If 'ordinal_category', a single column is created with integer values from 0 to n_series - 1 and the column is transformed into pandas.category dtype so that it can be used as a categorical variable.
  • If 'onehot', a binary column is created for each series.
  • If None, no column is created to identify the series. Internally, the series are identified as an integer from 0 to n_series - 1, but no column is created in the training matrices. Changed to 'ordinal' in version 0.14.0
'ordinal'
transformer_series (transformer(preprocessor), dict)

An instance of a transformer (preprocessor) compatible with the scikit-learn preprocessing API with methods: fit, transform, fit_transform and inverse_transform. Transformation is applied to each series before training the forecaster. ColumnTransformers are not allowed since they do not have inverse_transform method.

  • If single transformer: it is cloned and applied to all series.
  • If dict of transformers: a different transformer can be used for each series.
None
transformer_exog transformer

An instance of a transformer (preprocessor) compatible with the scikit-learn preprocessing API. The transformation is applied to exog before training the forecaster. inverse_transform is not available when using ColumnTransformers.

None
weight_func (Callable, dict)

Function that defines the individual weights for each sample based on the index. For example, a function that assigns a lower weight to certain dates. Ignored if regressor does not have the argument sample_weight in its fit method. See Notes section for more details on the use of the weights.

  • If single function: it is applied to all series.
  • If dict {'series_column_name' : Callable}: a different function can be used for each series, a weight of 1 is given to all series not present in weight_func.
None
series_weights dict

Weights associated with each series {'series_column_name' : float}. It is only applied if the regressor used accepts sample_weight in its fit method. See Notes section for more details on the use of the weights.

  • If a dict is provided, a weight of 1 is given to all series not present in series_weights.
  • If None, all levels have the same weight.
None
differentiation (int, dict)

Order of differencing applied to the time series before training the forecaster. The order of differentiation is the number of times the differencing operation is applied to a time series. Differencing involves computing the differences between consecutive data points in the series. Before returning a prediction, the differencing operation is reversed.

  • If int, the same order of differentiation is applied to all series.
  • If dict, a different order of differentiation (including None) can be used for each series. The keys must be the names of the series used to fit the forecaster. If a series is not present in the dictionary, no differencing is applied.
  • If None, no differencing is applied.
None
dropna_from_series bool

Determine whether NaN detected in the training matrices will be dropped.

  • If True, drop NaNs in X_train and same rows in y_train.
  • If False, leave NaNs in X_train and warn the user. New in version 0.12.0
False
fit_kwargs dict

Additional arguments to be passed to the fit method of the regressor.

None
binner_kwargs dict

Additional arguments to pass to the QuantileBinner used to discretize the residuals into k bins according to the predicted values associated with each residual. Available arguments are: n_bins, method, subsample, random_state and dtype. Argument method is passed internally to the function numpy.percentile. New in version 0.14.0

None
forecaster_id (str, int)

Name used as an identifier of the forecaster.

None

Attributes:

Name Type Description
regressor regressor or pipeline compatible with the scikit-learn API

An instance of a regressor or pipeline compatible with the scikit-learn API.

lags numpy ndarray

Lags used as predictors.

lags_names list

Names of the lags used as predictors.

max_lag int

Maximum lag included in lags.

window_features list

Class or list of classes used to create window features.

window_features_names list

Names of the window features to be included in the X_train matrix.

window_features_class_names list

Names of the classes used to create the window features.

max_size_window_features int

Maximum window size required by the window features.

window_size int

The window size needed to create the predictors. It is calculated as the maximum value between max_lag and max_size_window_features. If differentiation is used, window_size is increased by n units equal to the order of differentiation so that predictors can be generated correctly.

encoding str

Encoding used to identify the different series.

  • If 'ordinal', a single column is created with integer values from 0 to n_series - 1.
  • If 'ordinal_category', a single column is created with integer values from 0 to n_series - 1 and the column is transformed into pandas.category dtype so that it can be used as a categorical variable.
  • If 'onehot', a binary column is created for each series.
  • If None, no column is created to identify the series. Internally, the series are identified as an integer from 0 to n_series - 1, but no column is created in the training matrices. Changed to 'ordinal' in version 0.14.0
encoder preprocessing

Scikit-learn preprocessing encoder used to encode the series. New in version 0.12.0

encoding_mapping_ dict

Mapping of the encoding used to identify the different series.

transformer_series (transformer(preprocessor), dict)

An instance of a transformer (preprocessor) compatible with the scikit-learn preprocessing API with methods: fit, transform, fit_transform and inverse_transform. Transformation is applied to each series before training the forecaster. ColumnTransformers are not allowed since they do not have inverse_transform method.

  • If single transformer: it is cloned and applied to all series.
  • If dict of transformers: a different transformer can be used for each series.
transformer_series_ dict

Dictionary with the transformer for each series. It is created cloning the objects in transformer_series and is used internally to avoid overwriting.

transformer_exog transformer(preprocessor)

An instance of a transformer (preprocessor) compatible with the scikit-learn preprocessing API. The transformation is applied to exog before training the forecaster. inverse_transform is not available when using ColumnTransformers.

weight_func (Callable, dict)

Function that defines the individual weights for each sample based on the index. For example, a function that assigns a lower weight to certain dates. Ignored if regressor does not have the argument sample_weight in its fit method. See Notes section for more details on the use of the weights.

  • If single function: it is applied to all series.
  • If dict {'series_column_name' : Callable}: a different function can be used for each series, a weight of 1 is given to all series not present in weight_func.
weight_func_ dict

Dictionary with the weight_func for each series. It is created cloning the objects in weight_func and is used internally to avoid overwriting.

source_code_weight_func (str, dict)

Source code of the custom function(s) used to create weights.

series_weights dict

Weights associated with each series {'series_column_name' : float}. It is only applied if the regressor used accepts sample_weight in its fit method. See Notes section for more details on the use of the weights.

  • If a dict is provided, a weight of 1 is given to all series not present in series_weights.
  • If None, all levels have the same weight.
series_weights_ dict

Weights associated with each series. It is created as a clone of series_weights and is used internally to avoid overwriting.

differentiation (int, dict)

The order of differencing applied to the time series prior to training the forecaster.

differentiation_max int

Maximum order of differentiation.

differentiator (TimeSeriesDifferentiator, dict)

Skforecast object (or dict of objects) used to differentiate the time series.

differentiator_ dict

Dictionary with the differentiator for each series. It is created cloning the objects in differentiator and is used internally to avoid overwriting.

dropna_from_series bool

Determine whether NaN detected in the training matrices will be dropped.

last_window_ dict

Last window of training data for each series. It stores the values needed to predict the next step immediately after the training data. These values are stored in the original scale of the time series before undergoing any transformations or differentiation. When differentiation parameter is specified, the dimensions of the last_window_ are expanded as many values as the order of differentiation. For example, if lags = 7 and differentiation = 1, last_window_ will have 8 values.

index_type_ type

Type of index of the input used in training.

index_freq_ str

Frequency of Index of the input used in training.

training_range_ dict

First and last values of index of the data used during training for each series.

series_names_in_ list

Names of the series (levels) provided by the user during training.

exog_in_ bool

If the forecaster has been trained using exogenous variable/s.

exog_names_in_ list

Names of the exogenous variables used during training.

exog_type_in_ type

Type of exogenous data (pandas Series, DataFrame or dict) used in training.

exog_dtypes_in_ dict

Type of each exogenous variable/s used in training. If transformer_exog is used, the dtypes are calculated before the transformation.

X_train_series_names_in_ list

Names of the series (levels) included in the matrix X_train created internally for training. It can be different from series_names_in_ if some series are dropped during the training process because of NaNs or because they are not present in the training period.

X_train_window_features_names_out_ list

Names of the window features included in the matrix X_train created internally for training.

X_train_exog_names_out_ list

Names of the exogenous variables included in the matrix X_train created internally for training. It can be different from exog_names_in_ if some exogenous variables are transformed during the training process.

X_train_features_names_out_ list

Names of columns of the matrix created internally for training.

fit_kwargs dict

Additional arguments to be passed to the fit method of the regressor.

in_sample_residuals_ dict

Residuals of the model when predicting training data. Only stored up to 10_000 values per series in the form {series: residuals}. If transformer_series is not None, residuals are stored in the transformed scale. If differentiation is not None, residuals are stored after differentiation.

in_sample_residuals_by_bin_ dict

In sample residuals binned according to the predicted value each residual is associated with. The number of residuals stored per bin is limited to 10_000 // self.binner.n_bins_ per series in the form {series: residuals}. If transformer_series is not None, residuals are stored in the transformed scale. If differentiation is not None, residuals are stored after differentiation. New in version 0.15.0

out_sample_residuals_ dict

Residuals of the model when predicting non-training data. Only stored up to 10_000 values per series in the form {series: residuals}. Use set_out_sample_residuals() method to set values. If transformer_series is not None, residuals are stored in the transformed scale. If differentiation is not None, residuals are stored after differentiation.

out_sample_residuals_by_bin_ dict

Out of sample residuals binned according to the predicted value each residual is associated with. The number of residuals stored per bin is limited to 10_000 // self.binner.n_bins_ per series in the form {series: residuals}. If transformer_series is not None, residuals are stored in the transformed scale. If differentiation is not None, residuals are stored after differentiation. New in version 0.15.0

binner dict

Dictionary of skforecast.preprocessing.QuantileBinner used to discretize residuals of each series into k bins according to the predicted values associated with each residual. In the form {series: binner}. New in version 0.15.0

binner_intervals_ dict

Intervals used to discretize residuals into k bins according to the predicted values associated with each residual. In the form {series: binner_intervals_}. New in version 0.15.0

binner_kwargs dict

Additional arguments to pass to the QuantileBinner. New in version 0.15.0

creation_date str

Date of creation.

is_fitted bool

Tag to identify if the regressor has been fitted (trained).

fit_date str

Date of last fit.

skforecast_version str

Version of skforecast library used to create the forecaster.

python_version str

Version of python used to create the forecaster.

forecaster_id (str, int)

Name used as an identifier of the forecaster.

_probabilistic_mode (str, bool)

Private attribute used to indicate whether the forecaster should perform some calculations during backtesting.

Notes

The weights are used to control the influence that each observation has on the training of the model. ForecasterRecursiveMultiSeries accepts two types of weights. If the two types of weights are indicated, they are multiplied to create the final weights. The resulting sample_weight cannot have negative values.

  • series_weights : controls the relative importance of each series. If a series has twice as much weight as the others, the observations of that series influence the training twice as much. The higher the weight of a series relative to the others, the more the model will focus on trying to learn that series.
  • weight_func : controls the relative importance of each observation according to its index value. For example, a function that assigns a lower weight to certain dates.
Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
def __init__(
    self,
    regressor: object,
    lags: int | list[int] | np.ndarray[int] | range[int] | None = None,
    window_features: object | list[object] | None = None,
    encoding: str | None = 'ordinal',
    transformer_series: object | dict[str, object] | None = None,
    transformer_exog: object | None = None,
    weight_func: Callable | dict[str, Callable] | None = None,
    series_weights: dict[str, float] | None = None,
    differentiation: int | dict[str, int | None] | None = None,
    dropna_from_series: bool = False,
    fit_kwargs: dict[str, object] | None = None,
    binner_kwargs: dict[str, object] | None = None,
    forecaster_id: str | int | None = None
) -> None:

    self.regressor                          = copy(regressor)
    self.encoding                           = encoding
    self.encoder                            = None
    self.encoding_mapping_                  = {}
    self.transformer_series                 = transformer_series
    self.transformer_series_                = None
    self.transformer_exog                   = transformer_exog
    self.weight_func                        = weight_func
    self.weight_func_                       = None
    self.source_code_weight_func            = None
    self.series_weights                     = series_weights
    self.series_weights_                    = None
    self.differentiation                    = differentiation
    self.differentiation_max                = None
    self.differentiator                     = None
    self.differentiator_                    = None
    self.dropna_from_series                 = dropna_from_series
    self.last_window_                       = None
    self.index_type_                        = None
    self.index_freq_                        = None
    self.training_range_                    = None
    self.series_names_in_                   = None
    self.exog_in_                           = False
    self.exog_names_in_                     = None
    self.exog_type_in_                      = None
    self.exog_dtypes_in_                    = None 
    self.X_train_series_names_in_           = None
    self.X_train_window_features_names_out_ = None
    self.X_train_exog_names_out_            = None
    self.X_train_features_names_out_        = None
    self.in_sample_residuals_               = None
    self.in_sample_residuals_by_bin_        = None
    self.out_sample_residuals_              = None
    self.out_sample_residuals_by_bin_       = None
    self.creation_date                      = pd.Timestamp.today().strftime('%Y-%m-%d %H:%M:%S')
    self.is_fitted                          = False
    self.fit_date                           = None
    self.skforecast_version                 = skforecast.__version__
    self.python_version                     = sys.version.split(" ")[0]
    self.forecaster_id                      = forecaster_id
    self._probabilistic_mode                = "binned"

    self.lags, self.lags_names, self.max_lag = initialize_lags(type(self).__name__, lags)
    self.window_features, self.window_features_names, self.max_size_window_features = (
        initialize_window_features(window_features)
    )
    if self.window_features is None and self.lags is None:
        raise ValueError(
            "At least one of the arguments `lags` or `window_features` "
            "must be different from None. This is required to create the "
            "predictors used in training the forecaster."
        )

    self.window_size = max(
        [ws for ws in [self.max_lag, self.max_size_window_features] 
         if ws is not None]
    )
    self.window_features_class_names = None
    if window_features is not None:
        self.window_features_class_names = [
            type(wf).__name__ for wf in self.window_features
        ]

    if self.encoding not in ['ordinal', 'ordinal_category', 'onehot', None]:
        raise ValueError(
            f"Argument `encoding` must be one of the following values: 'ordinal', "
            f"'ordinal_category', 'onehot' or None. Got '{self.encoding}'."
        )

    if self.encoding == 'onehot':
        self.encoder = OneHotEncoder(
                           categories    = 'auto',
                           sparse_output = False,
                           drop          = None,
                           dtype         = int
                       ).set_output(transform='pandas')
    else:
        self.encoder = OrdinalEncoder(
                           categories = 'auto',
                           dtype      = int
                       ).set_output(transform='pandas')

    scaling_regressors = tuple(
        member[1]
        for member in inspect.getmembers(sklearn.linear_model, inspect.isclass)
        + inspect.getmembers(sklearn.svm, inspect.isclass)
    )

    if self.transformer_series is None and isinstance(regressor, scaling_regressors):
        warnings.warn(
            "When using a linear model, it is recommended to use a transformer_series "
            "to ensure all series are in the same scale. You can use, for example, a "
            "`StandardScaler` from sklearn.preprocessing.",
            DataTransformationWarning
        )

    if isinstance(self.transformer_series, dict):
        if self.encoding is None:
            raise TypeError(
                "When `encoding` is None, `transformer_series` must be a single "
                "transformer (not `dict`) as it is applied to all series."
            )
        if '_unknown_level' not in self.transformer_series.keys():
            raise ValueError(
                "If `transformer_series` is a `dict`, a transformer must be "
                "provided to transform series that do not exist during training. "
                "Add the key '_unknown_level' to `transformer_series`. "
                "For example: {'_unknown_level': your_transformer}."
            )

    self.weight_func, self.source_code_weight_func, self.series_weights = (
        initialize_weights(
            forecaster_name = type(self).__name__,
            regressor       = regressor,
            weight_func     = weight_func,
            series_weights  = series_weights,
        )
    )

    if differentiation is not None:
        if isinstance(differentiation, int):
            if differentiation < 1:
                raise ValueError(
                    f"If `differentiation` is an integer, it must be equal "
                    f"to or greater than 1. Got {differentiation}."
                )
            self.differentiation = differentiation
            self.differentiation_max = differentiation
            self.window_size += self.differentiation_max
            self.differentiator = TimeSeriesDifferentiator(
                order=differentiation, window_size=self.window_size
            )
        elif isinstance(differentiation, dict):

            if self.encoding is None:
                raise TypeError(
                    "When `encoding` is None, `differentiation` must be an "
                    "integer equal to or greater than 1. Same differentiation "
                    "must be applied to all series."
                )
            if '_unknown_level' not in differentiation.keys():
                raise ValueError(
                    "If `differentiation` is a `dict`, an order must be provided "
                    "to differentiate series that do not exist during training. "
                    "Add the key '_unknown_level' to `differentiation`. "
                    "For example: {'_unknown_level': 1}."
                )

            differentiation_max = []
            for level, diff in differentiation.items():
                if diff is not None:
                    if not isinstance(diff, int) or diff < 1:
                        raise ValueError(
                            f"If `differentiation` is a dict, the values must be "
                            f"None or integers equal to or greater than 1. "
                            f"Got {diff} for series '{level}'."
                        )
                    differentiation_max.append(diff)

            if len(differentiation_max) == 0:
                raise ValueError(
                    "If `differentiation` is a dict, at least one value must be "
                    "different from None. Got all values equal to None. If you "
                    "do not want to differentiate any series, set `differentiation` "
                    "to None."
                )

            self.differentiation = differentiation
            self.differentiation_max = max(differentiation_max)
            self.window_size += self.differentiation_max
            self.differentiator = {
                level: (
                    TimeSeriesDifferentiator(order=diff, window_size=self.window_size)
                    if diff is not None else None
                )
                for level, diff in differentiation.items()
            }
        else:
            raise TypeError(
                f"When including `differentiation`, this argument must be "
                f"an integer (equal to or greater than 1) or a dict of "
                f"integers. Got {type(differentiation)}."
            )

    self.fit_kwargs = check_select_fit_kwargs(
                          regressor  = regressor,
                          fit_kwargs = fit_kwargs
                      )

    self.binner = {}
    self.binner_intervals_ = {}
    self.binner_kwargs = binner_kwargs
    if binner_kwargs is None:
        self.binner_kwargs = {
            'n_bins': 10, 'method': 'linear', 'subsample': 200000,
            'random_state': 789654, 'dtype': np.float64
        }

_repr_html_

_repr_html_()

HTML representation of the object. The "General Information" section is expanded by default.

Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
def _repr_html_(self):
    """
    HTML representation of the object.
    The "General Information" section is expanded by default.
    """

    (
        params,
        training_range_,
        series_names_in_,
        exog_names_in_,
        transformer_series,
    ) = self._preprocess_repr(
            regressor          = self.regressor,
            training_range_    = self.training_range_,
            series_names_in_   = self.series_names_in_,
            exog_names_in_     = self.exog_names_in_,
            transformer_series = self.transformer_series,
        )

    style, unique_id = get_style_repr_html(self.is_fitted)

    content = f"""
    <div class="container-{unique_id}">
        <h2>{type(self).__name__}</h2>
        <details open>
            <summary>General Information</summary>
            <ul>
                <li><strong>Regressor:</strong> {type(self.regressor).__name__}</li>
                <li><strong>Lags:</strong> {self.lags}</li>
                <li><strong>Window features:</strong> {self.window_features_names}</li>
                <li><strong>Window size:</strong> {self.window_size}</li>
                <li><strong>Series encoding:</strong> {self.encoding}</li>
                <li><strong>Exogenous included:</strong> {self.exog_in_}</li>
                <li><strong>Weight function included:</strong> {self.weight_func is not None}</li>
                <li><strong>Series weights:</strong> {self.series_weights}</li>
                <li><strong>Differentiation order:</strong> {self.differentiation}</li>
                <li><strong>Creation date:</strong> {self.creation_date}</li>
                <li><strong>Last fit date:</strong> {self.fit_date}</li>
                <li><strong>Skforecast version:</strong> {self.skforecast_version}</li>
                <li><strong>Python version:</strong> {self.python_version}</li>
                <li><strong>Forecaster id:</strong> {self.forecaster_id}</li>
            </ul>
        </details>
        <details>
            <summary>Exogenous Variables</summary>
            <ul>
                {exog_names_in_}
            </ul>
        </details>
        <details>
            <summary>Data Transformations</summary>
            <ul>
                <li><strong>Transformer for series:</strong> {transformer_series}</li>
                <li><strong>Transformer for exog:</strong> {self.transformer_exog}</li>
            </ul>
        </details>
        <details>
            <summary>Training Information</summary>
            <ul>
                <li><strong>Series names (levels):</strong> {series_names_in_}</li>
                <li><strong>Training range:</strong> {training_range_}</li>
                <li><strong>Training index type:</strong> {str(self.index_type_).split('.')[-1][:-2] if self.is_fitted else 'Not fitted'}</li>
                <li><strong>Training index frequency:</strong> {self.index_freq_ if self.is_fitted else 'Not fitted'}</li>
            </ul>
        </details>
        <details>
            <summary>Regressor Parameters</summary>
            <ul>
                {params}
            </ul>
        </details>
        <details>
            <summary>Fit Kwargs</summary>
            <ul>
                {self.fit_kwargs}
            </ul>
        </details>
        <p>
            <a href="https://skforecast.org/{skforecast.__version__}/api/forecasterrecursivemultiseries.html">&#128712 <strong>API Reference</strong></a>
            &nbsp;&nbsp;
            <a href="https://skforecast.org/{skforecast.__version__}/user_guides/independent-multi-time-series-forecasting.html">&#128462 <strong>User Guide</strong></a>
        </p>
    </div>
    """

    return style + content

_create_lags

_create_lags(y, X_as_pandas=False, train_index=None)

Create the lagged values and their target variable from a time series.

Note that the returned matrix X_data contains the lag 1 in the first column, the lag 2 in the in the second column and so on.

Parameters:

Name Type Description Default
y numpy ndarray

Training time series values.

required
X_as_pandas bool

If True, the returned matrix X_data is a pandas DataFrame.

False
train_index pandas Index

Index of the training data. It is used to create the pandas DataFrame X_data when X_as_pandas is True.

None

Returns:

Name Type Description
X_data numpy ndarray, pandas DataFrame, None

Lagged values (predictors).

y_data numpy ndarray

Values of the time series related to each row of X_data.

Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
def _create_lags(
    self,
    y: np.ndarray,
    X_as_pandas: bool = False,
    train_index: pd.Index | None = None
) -> tuple[np.ndarray | pd.DataFrame | None, np.ndarray]:
    """
    Create the lagged values and their target variable from a time series.

    Note that the returned matrix `X_data` contains the lag 1 in the first 
    column, the lag 2 in the in the second column and so on.

    Parameters
    ----------
    y : numpy ndarray
        Training time series values.
    X_as_pandas : bool, default False
        If `True`, the returned matrix `X_data` is a pandas DataFrame.
    train_index : pandas Index, default None
        Index of the training data. It is used to create the pandas DataFrame
        `X_data` when `X_as_pandas` is `True`.

    Returns
    -------
    X_data : numpy ndarray, pandas DataFrame, None
        Lagged values (predictors).
    y_data : numpy ndarray
        Values of the time series related to each row of `X_data`.

    """

    X_data = None
    if self.lags is not None:
        n_rows = len(y) - self.window_size
        X_data = np.full(
            shape=(n_rows, len(self.lags)), fill_value=np.nan, order='F', dtype=float
        )
        for i, lag in enumerate(self.lags):
            X_data[:, i] = y[self.window_size - lag: -lag]

        if X_as_pandas:
            X_data = pd.DataFrame(
                         data    = X_data,
                         columns = self.lags_names,
                         index   = train_index
                     )

    y_data = y[self.window_size:]

    return X_data, y_data

_create_window_features

_create_window_features(y, train_index, X_as_pandas=False)

Parameters:

Name Type Description Default
y pandas Series

Training time series.

required
train_index pandas Index

Index of the training data. It is used to create the pandas DataFrame X_train_window_features when X_as_pandas is True.

required
X_as_pandas bool

If True, the returned matrix X_train_window_features is a pandas DataFrame.

False

Returns:

Name Type Description
X_train_window_features list

List of numpy ndarrays or pandas DataFrames with the window features.

X_train_window_features_names_out_ list

Names of the window features.

Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
def _create_window_features(
    self, 
    y: pd.Series,
    train_index: pd.Index,
    X_as_pandas: bool = False,
) -> tuple[list[np.ndarray | pd.DataFrame], list[str]]:
    """

    Parameters
    ----------
    y : pandas Series
        Training time series.
    train_index : pandas Index
        Index of the training data. It is used to create the pandas DataFrame
        `X_train_window_features` when `X_as_pandas` is `True`.
    X_as_pandas : bool, default False
        If `True`, the returned matrix `X_train_window_features` is a 
        pandas DataFrame.

    Returns
    -------
    X_train_window_features : list
        List of numpy ndarrays or pandas DataFrames with the window features.
    X_train_window_features_names_out_ : list
        Names of the window features.

    """

    len_train_index = len(train_index)
    X_train_window_features = []
    X_train_window_features_names_out_ = []
    for wf in self.window_features:
        X_train_wf = wf.transform_batch(y)
        if not isinstance(X_train_wf, pd.DataFrame):
            raise TypeError(
                f"The method `transform_batch` of {type(wf).__name__} "
                f"must return a pandas DataFrame."
            )
        X_train_wf = X_train_wf.iloc[-len_train_index:]
        if not len(X_train_wf) == len_train_index:
            raise ValueError(
                f"The method `transform_batch` of {type(wf).__name__} "
                f"must return a DataFrame with the same number of rows as "
                f"the input time series - `window_size`: {len_train_index}."
            )
        if not (X_train_wf.index == train_index).all():
            raise ValueError(
                f"The method `transform_batch` of {type(wf).__name__} "
                f"must return a DataFrame with the same index as "
                f"the input time series - `window_size`."
            )

        X_train_window_features_names_out_.extend(X_train_wf.columns)
        if not X_as_pandas:
            X_train_wf = X_train_wf.to_numpy()     
        X_train_window_features.append(X_train_wf)

    return X_train_window_features, X_train_window_features_names_out_

_create_train_X_y_single_series

_create_train_X_y_single_series(y, ignore_exog, exog=None)

Create training matrices from univariate time series and exogenous variables. This method does not transform the exog variables.

Parameters:

Name Type Description Default
y pandas Series

Training time series.

required
ignore_exog bool

If True, exog is ignored.

required
exog pandas DataFrame

Exogenous variable/s included as predictor/s.

None

Returns:

Name Type Description
X_train_lags pandas DataFrame

Training values of lags. Shape: (len(y) - self.max_lag, len(self.lags))

X_train_window_features_names_out_ list

Names of the window features.

X_train_exog pandas DataFrame

Training values of exogenous variables. Shape: (len(y) - self.max_lag, len(exog.columns))

y_train pandas Series

Values (target) of the time series related to each row of X_train. Shape: (len(y) - self.max_lag, )

Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
def _create_train_X_y_single_series(
    self,
    y: pd.Series,
    ignore_exog: bool,
    exog: pd.DataFrame | None = None
) -> tuple[pd.DataFrame, list[str], pd.DataFrame, pd.Series]:
    """
    Create training matrices from univariate time series and exogenous
    variables. This method does not transform the exog variables.

    Parameters
    ----------
    y : pandas Series
        Training time series.
    ignore_exog : bool
        If `True`, `exog` is ignored.
    exog : pandas DataFrame, default None
        Exogenous variable/s included as predictor/s.

    Returns
    -------
    X_train_lags : pandas DataFrame
        Training values of lags.
        Shape: (len(y) - self.max_lag, len(self.lags))
    X_train_window_features_names_out_ : list
        Names of the window features.
    X_train_exog : pandas DataFrame
        Training values of exogenous variables.
        Shape: (len(y) - self.max_lag, len(exog.columns))
    y_train : pandas Series
        Values (target) of the time series related to each row of `X_train`.
        Shape: (len(y) - self.max_lag, )

    """

    series_name = y.name
    if len(y) <= self.window_size:
        raise ValueError(
            f"Length of '{series_name}' must be greater than the maximum window size "
            f"needed by the forecaster.\n"
            f"    Length '{series_name}': {len(y)}.\n"
            f"    Max window size: {self.window_size}.\n"
            f"    Lags window size: {self.max_lag}.\n"
            f"    Window features window size: {self.max_size_window_features}."
        )

    if self.encoding is None:
        fit_transformer = False
        transformer_series = self.transformer_series_['_unknown_level']
    else:
        fit_transformer = False if self.is_fitted else True
        transformer_series = self.transformer_series_[series_name]

    y = transform_series(
            series            = y,
            transformer       = transformer_series,
            fit               = fit_transformer,
            inverse_transform = False
        )

    y_values = y.to_numpy()
    y_index = y.index

    if self.differentiator_[series_name] is not None:
        if not self.is_fitted:
            y_values = self.differentiator_[series_name].fit_transform(y_values)
        else:
            differentiator = copy(self.differentiator_[series_name])
            y_values = differentiator.fit_transform(y_values)

    X_train_autoreg = []
    train_index = y_index[self.window_size:]

    X_train_lags, y_train = self._create_lags(
        y=y_values, X_as_pandas=True, train_index=train_index
    )
    if X_train_lags is not None:
        X_train_autoreg.append(X_train_lags)

    X_train_window_features_names_out_ = None
    if self.window_features is not None:
        # NOTE: The first `self.differentiation_max` positions of `y_values`
        # must be removed to match the length of `y_train` after creating
        # the window features. This is because `y_train` is created using the 
        # global window size of the Forecaster, which includes the maximum 
        # differentiation (self.differentiation_max).
        n_diff = 0 if self.differentiation is None else self.differentiation_max
        y_window_features = pd.Series(y_values[n_diff:], index=y_index[n_diff:])
        X_train_window_features, X_train_window_features_names_out_ = (
            self._create_window_features(
                y=y_window_features, X_as_pandas=True, train_index=train_index
            )
        )
        X_train_autoreg.extend(X_train_window_features)

    if len(X_train_autoreg) == 1:
        X_train_autoreg = X_train_autoreg[0]
    else:
        X_train_autoreg = pd.concat(X_train_autoreg, axis=1)

    X_train_autoreg['_level_skforecast'] = series_name

    if ignore_exog:
        X_train_exog = None
    else:
        if exog is not None:
            # The first `self.window_size` positions have to be removed from exog
            # since they are not in X_train_autoreg.
            X_train_exog = exog.iloc[self.window_size:, ]
        else:
            X_train_exog = pd.DataFrame(
                               data    = np.nan,
                               columns = ['_dummy_exog_col_to_keep_shape'],
                               index   = train_index
                           )

    y_train = pd.Series(
                  data  = y_train,
                  index = train_index,
                  name  = 'y'
              )

    return X_train_autoreg, X_train_window_features_names_out_, X_train_exog, y_train

_create_train_X_y

_create_train_X_y(
    series, exog=None, store_last_window=True
)

Create training matrices from multiple time series and exogenous variables. See Notes section for more details depending on the type of series and exog.

Parameters:

Name Type Description Default
series pandas DataFrame, dict

Training time series.

required
exog pandas Series, pandas DataFrame, dict

Exogenous variable/s included as predictor/s.

None
store_last_window (bool, list)

Whether or not to store the last window (last_window_) of training data.

  • If True, last window is stored for all series.
  • If list, last window is stored for the series present in the list.
  • If False, last window is not stored.
True

Returns:

Name Type Description
X_train pandas DataFrame

Training values (predictors).

y_train pandas Series

Values of the time series related to each row of X_train.

series_indexes dict

Dictionary with the index of each series.

series_names_in_ list

Names of the series (levels) provided by the user during training.

X_train_series_names_in_ list

Names of the series (levels) included in the matrix X_train created internally for training. It can be different from series_names_in_ if some series are dropped during the training process because of NaNs or because they are not present in the training period.

exog_names_in_ list

Names of the exogenous variables used during training.

X_train_window_features_names_out_ list

Names of the window features included in the matrix X_train created internally for training.

X_train_exog_names_out_ list

Names of the exogenous variables included in the matrix X_train created internally for training. It can be different from exog_names_in_ if some exogenous variables are transformed during the training process.

exog_dtypes_in_ dict

Type of each exogenous variable/s used in training. If transformer_exog is used, the dtypes are calculated before the transformation.

last_window_ dict

Last window of training data for each series. It stores the values needed to predict the next step immediately after the training data.

Notes
  • If series is a pandas DataFrame and exog is a pandas Series or DataFrame, each exog is duplicated for each series. Exog must have the same index as series (type, length and frequency).
  • If series is a pandas DataFrame and exog is a dict of pandas Series or DataFrames. Each key in exog must be a column in series and the values are the exog for each series. Exog must have the same index as series (type, length and frequency).
  • If series is a dict of pandas Series, exog must be a dict of pandas Series or DataFrames. The keys in series and exog must be the same. All series and exog must have a pandas DatetimeIndex with the same frequency.
Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
def _create_train_X_y(
    self,
    series: pd.DataFrame | dict[str, pd.Series | pd.DataFrame],
    exog: pd.Series | pd.DataFrame | dict[str, pd.Series | pd.DataFrame] | None = None,
    store_last_window: bool | list[str] = True,
) -> tuple[
    pd.DataFrame,
    pd.Series,
    dict[str, pd.Index],
    list[str],
    list[str],
    list[str],
    list[str],
    list[str],
    dict[str, type],
    dict[str, pd.Series],
]:
    """
    Create training matrices from multiple time series and exogenous
    variables. See Notes section for more details depending on the type of
    `series` and `exog`.

    Parameters
    ----------
    series : pandas DataFrame, dict
        Training time series.
    exog : pandas Series, pandas DataFrame, dict, default None
        Exogenous variable/s included as predictor/s.
    store_last_window : bool, list, default True
        Whether or not to store the last window (`last_window_`) of training data.

        - If `True`, last window is stored for all series. 
        - If `list`, last window is stored for the series present in the list.
        - If `False`, last window is not stored.

    Returns
    -------
    X_train : pandas DataFrame
        Training values (predictors).
    y_train : pandas Series
        Values of the time series related to each row of `X_train`.
    series_indexes : dict
        Dictionary with the index of each series.
    series_names_in_ : list
        Names of the series (levels) provided by the user during training.
    X_train_series_names_in_ : list
        Names of the series (levels) included in the matrix `X_train` created
        internally for training. It can be different from `series_names_in_` if
        some series are dropped during the training process because of NaNs or
        because they are not present in the training period.
    exog_names_in_ : list
        Names of the exogenous variables used during training.
    X_train_window_features_names_out_ : list
        Names of the window features included in the matrix `X_train` created
        internally for training.
    X_train_exog_names_out_ : list
        Names of the exogenous variables included in the matrix `X_train` created
        internally for training. It can be different from `exog_names_in_` if
        some exogenous variables are transformed during the training process.
    exog_dtypes_in_ : dict
        Type of each exogenous variable/s used in training. If `transformer_exog` 
        is used, the dtypes are calculated before the transformation.
    last_window_ : dict
        Last window of training data for each series. It stores the values 
        needed to predict the next `step` immediately after the training data.

    Notes
    -----
    - If `series` is a pandas DataFrame and `exog` is a pandas Series or 
    DataFrame, each exog is duplicated for each series. Exog must have the
    same index as `series` (type, length and frequency).
    - If `series` is a pandas DataFrame and `exog` is a dict of pandas Series 
    or DataFrames. Each key in `exog` must be a column in `series` and the 
    values are the exog for each series. Exog must have the same index as 
    `series` (type, length and frequency).
    - If `series` is a dict of pandas Series, `exog` must be a dict of pandas
    Series or DataFrames. The keys in `series` and `exog` must be the same.
    All series and exog must have a pandas DatetimeIndex with the same 
    frequency.

    """

    series_dict, series_indexes = check_preprocess_series(series=series)
    input_series_is_dict = isinstance(series, dict)
    series_names_in_ = list(series_dict.keys())

    if self.is_fitted and not set(series_names_in_).issubset(set(self.series_names_in_)):
        raise ValueError(
            f"Once the Forecaster has been trained, `series` must contain "
            f"the same series names as those used during training:\n"
            f" Got      : {series_names_in_}\n"
            f" Expected : {self.series_names_in_}"
        )

    exog_dict = {serie: None for serie in series_names_in_}
    exog_names_in_ = None
    X_train_exog_names_out_ = None
    if exog is not None:
        exog_dict, exog_names_in_ = check_preprocess_exog_multiseries(
                                        input_series_is_dict = input_series_is_dict,
                                        series_indexes       = series_indexes,
                                        series_names_in_     = series_names_in_,
                                        exog                 = exog,
                                        exog_dict            = exog_dict
                                    )

        if self.is_fitted:
            if self.exog_names_in_ is None:
                raise ValueError(
                    "Once the Forecaster has been trained, `exog` must be `None` "
                    "because no exogenous variables were added during training."
                )
            else:
                if not set(exog_names_in_) == set(self.exog_names_in_):
                    raise ValueError(
                        f"Once the Forecaster has been trained, `exog` must contain "
                        f"the same exogenous variables as those used during training:\n"
                        f" Got      : {exog_names_in_}\n"
                        f" Expected : {self.exog_names_in_}"
                    )

    if not self.is_fitted:
        self.transformer_series_ = initialize_transformer_series(
                                       forecaster_name    = type(self).__name__,
                                       series_names_in_   = series_names_in_,
                                       encoding           = self.encoding,
                                       transformer_series = self.transformer_series
                                   )

        self.differentiator_ = initialize_differentiator_multiseries(
                                   series_names_in_ = series_names_in_,
                                   differentiator   = self.differentiator
                               )

    series_dict, exog_dict = align_series_and_exog_multiseries(
                                 series_dict          = series_dict,
                                 input_series_is_dict = input_series_is_dict,
                                 exog_dict            = exog_dict
                             )

    if not self.is_fitted and self.transformer_series_['_unknown_level'] is not None:
        self.transformer_series_['_unknown_level'].fit(
            np.concatenate(list(series_dict.values())).reshape(-1, 1)
        )

    ignore_exog = True if exog is None else False
    input_matrices = [
        [series_dict[k], exog_dict[k], ignore_exog]
         for k in series_dict.keys()
    ]

    X_train_autoreg_buffer = []
    X_train_exog_buffer = []
    y_train_buffer = []
    for matrices in input_matrices:

        (
            X_train_autoreg,
            X_train_window_features_names_out_,
            X_train_exog,
            y_train
        ) = self._create_train_X_y_single_series(
            y           = matrices[0],
            exog        = matrices[1],
            ignore_exog = matrices[2],
        )

        X_train_autoreg_buffer.append(X_train_autoreg)
        X_train_exog_buffer.append(X_train_exog)
        y_train_buffer.append(y_train)

    X_train = pd.concat(X_train_autoreg_buffer, axis=0)
    y_train = pd.concat(y_train_buffer, axis=0)

    if self.is_fitted:
        encoded_values = self.encoder.transform(X_train[['_level_skforecast']])
    else:
        encoded_values = self.encoder.fit_transform(X_train[['_level_skforecast']])
        for i, code in enumerate(self.encoder.categories_[0]):
            self.encoding_mapping_[code] = i

    X_train = pd.concat([
                  X_train.drop(columns='_level_skforecast'),
                  encoded_values
              ], axis=1)

    if self.encoding == 'onehot':
        X_train.columns = X_train.columns.str.replace('_level_skforecast_', '')
    elif self.encoding == 'ordinal_category':
        X_train['_level_skforecast'] = (
            X_train['_level_skforecast'].astype('category')
        )

    del encoded_values

    exog_dtypes_in_ = None
    if exog is not None:

        X_train_exog = pd.concat(X_train_exog_buffer, axis=0)
        if '_dummy_exog_col_to_keep_shape' in X_train_exog.columns:
            X_train_exog = (
                X_train_exog.drop(columns=['_dummy_exog_col_to_keep_shape'])
            )

        exog_names_in_ = X_train_exog.columns.to_list()
        exog_dtypes_in_ = get_exog_dtypes(exog=X_train_exog)

        fit_transformer = False if self.is_fitted else True
        X_train_exog = transform_dataframe(
                           df                = X_train_exog,
                           transformer       = self.transformer_exog,
                           fit               = fit_transformer,
                           inverse_transform = False
                       )

        check_exog_dtypes(X_train_exog, call_check_exog=False)
        if not (X_train_exog.index == X_train.index).all():
            raise ValueError(
                "Different index for `series` and `exog` after transformation. "
                "They must be equal to ensure the correct alignment of values."
            )

        X_train_exog_names_out_ = X_train_exog.columns.to_list()
        X_train = pd.concat([X_train, X_train_exog], axis=1)

    if y_train.isnull().any():
        mask = y_train.notna().to_numpy()
        y_train = y_train.iloc[mask]
        X_train = X_train.iloc[mask,]
        warnings.warn(
            "NaNs detected in `y_train`. They have been dropped because the "
            "target variable cannot have NaN values. Same rows have been "
            "dropped from `X_train` to maintain alignment. This is caused by "
            "series with interspersed NaNs.",
            MissingValuesWarning
        )

    if self.dropna_from_series:
        if np.any(X_train.isnull().to_numpy()):
            mask = X_train.notna().all(axis=1).to_numpy()
            X_train = X_train.iloc[mask, ]
            y_train = y_train.iloc[mask]
            warnings.warn(
                "NaNs detected in `X_train`. They have been dropped. If "
                "you want to keep them, set `forecaster.dropna_from_series = False`. "
                "Same rows have been removed from `y_train` to maintain alignment. "
                "This caused by series with interspersed NaNs.",
                MissingValuesWarning
            )
    else:
        if np.any(X_train.isnull().to_numpy()):
            warnings.warn(
                "NaNs detected in `X_train`. Some regressors do not allow "
                "NaN values during training. If you want to drop them, "
                "set `forecaster.dropna_from_series = True`.",
                MissingValuesWarning
            )

    if X_train.empty:
        raise ValueError(
            "All samples have been removed due to NaNs. Set "
            "`forecaster.dropna_from_series = False` or review `exog` values."
        )

    if self.encoding == 'onehot':
        X_train_series_names_in_ = [
            col for col in series_names_in_ if X_train[col].sum() > 0
        ]
    else:
        unique_levels = X_train['_level_skforecast'].unique()
        X_train_series_names_in_ = [
            k for k, v in self.encoding_mapping_.items()
            if v in unique_levels
        ]

    # The last time window of training data is stored so that lags needed as
    # predictors in the first iteration of `predict()` can be calculated.
    last_window_ = None
    if store_last_window:

        series_to_store = (
            X_train_series_names_in_ if store_last_window is True else store_last_window
        )

        series_not_in_series_dict = set(series_to_store) - set(X_train_series_names_in_)
        if series_not_in_series_dict:
            warnings.warn(
                f"Series {series_not_in_series_dict} are not present in "
                f"`series`. No last window is stored for them.",
                IgnoredArgumentWarning
            )
            series_to_store = [
                s for s in series_to_store 
                if s not in series_not_in_series_dict
            ]

        if series_to_store:
            last_window_ = {
                k: v.iloc[-self.window_size:].copy()
                for k, v in series_dict.items()
                if k in series_to_store
            }

    return (
        X_train,
        y_train,
        series_indexes,
        series_names_in_,
        X_train_series_names_in_,
        exog_names_in_,
        X_train_window_features_names_out_,
        X_train_exog_names_out_,
        exog_dtypes_in_,
        last_window_
    )

create_train_X_y

create_train_X_y(
    series, exog=None, suppress_warnings=False
)

Create training matrices from multiple time series and exogenous variables. See Notes section for more details depending on the type of series and exog.

Parameters:

Name Type Description Default
series pandas DataFrame, dict

Training time series.

required
exog pandas Series, pandas DataFrame, dict

Exogenous variable/s included as predictor/s.

None
suppress_warnings bool

If True, skforecast warnings will be suppressed during the creation of the training matrices. See skforecast.exceptions.warn_skforecast_categories for more information.

False

Returns:

Name Type Description
X_train pandas DataFrame

Training values (predictors).

y_train pandas Series

Values (target) of the time series related to each row of X_train.

Notes
  • If series is a pandas DataFrame and exog is a pandas Series or DataFrame, each exog is duplicated for each series. Exog must have the same index as series (type, length and frequency).
  • If series is a pandas DataFrame and exog is a dict of pandas Series or DataFrames. Each key in exog must be a column in series and the values are the exog for each series. Exog must have the same index as series (type, length and frequency).
  • If series is a dict of pandas Series, exog must be a dict of pandas Series or DataFrames. The keys in series and exog must be the same. All series and exog must have a pandas DatetimeIndex with the same frequency.
Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
def create_train_X_y(
    self,
    series: pd.DataFrame | dict[str, pd.Series | pd.DataFrame],
    exog: pd.Series | pd.DataFrame | dict[str, pd.Series | pd.DataFrame] | None = None,
    suppress_warnings: bool = False
) -> tuple[pd.DataFrame, pd.Series]:
    """
    Create training matrices from multiple time series and exogenous
    variables. See Notes section for more details depending on the type of
    `series` and `exog`.

    Parameters
    ----------
    series : pandas DataFrame, dict
        Training time series.
    exog : pandas Series, pandas DataFrame, dict, default None
        Exogenous variable/s included as predictor/s.
    suppress_warnings : bool, default False
        If `True`, skforecast warnings will be suppressed during the creation
        of the training matrices. See skforecast.exceptions.warn_skforecast_categories 
        for more information.

    Returns
    -------
    X_train : pandas DataFrame
        Training values (predictors).
    y_train : pandas Series
        Values (target) of the time series related to each row of `X_train`.

    Notes
    -----
    - If `series` is a pandas DataFrame and `exog` is a pandas Series or 
    DataFrame, each exog is duplicated for each series. Exog must have the
    same index as `series` (type, length and frequency).
    - If `series` is a pandas DataFrame and `exog` is a dict of pandas Series 
    or DataFrames. Each key in `exog` must be a column in `series` and the 
    values are the exog for each series. Exog must have the same index as 
    `series` (type, length and frequency).
    - If `series` is a dict of pandas Series, `exog` must be a dict of pandas
    Series or DataFrames. The keys in `series` and `exog` must be the same.
    All series and exog must have a pandas DatetimeIndex with the same 
    frequency.

    """

    set_skforecast_warnings(suppress_warnings, action='ignore')

    output = self._create_train_X_y(
                 series            = series, 
                 exog              = exog, 
                 store_last_window = False
             )

    X_train = output[0]
    y_train = output[1]

    if self.encoding is None:
        X_train = X_train.drop(columns='_level_skforecast')

    set_skforecast_warnings(suppress_warnings, action='default')

    return X_train, y_train

_train_test_split_one_step_ahead

_train_test_split_one_step_ahead(
    series, initial_train_size, exog=None
)

Create matrices needed to train and test the forecaster for one-step-ahead predictions.

Parameters:

Name Type Description Default
series pandas DataFrame, dict

Training time series.

required
initial_train_size int

Initial size of the training set. It is the number of observations used to train the forecaster before making the first prediction.

required
exog pandas Series, pandas DataFrame, dict

Exogenous variable/s included as predictor/s.

None

Returns:

Name Type Description
X_train pandas DataFrame

Predictor values used to train the model.

y_train pandas Series

Target values related to each row of X_train.

X_test pandas DataFrame

Predictor values used to test the model.

y_test pandas Series

Target values related to each row of X_test.

X_train_encoding pandas Series

Series identifiers for each row of X_train.

X_test_encoding pandas Series

Series identifiers for each row of X_test.

Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
def _train_test_split_one_step_ahead(
    self,
    series: pd.DataFrame | dict[str, pd.Series | pd.DataFrame],
    initial_train_size: int,
    exog: pd.Series | pd.DataFrame | dict[str, pd.Series | pd.DataFrame] | None = None
) -> tuple[pd.DataFrame, pd.Series, pd.DataFrame, pd.Series, pd.Series, pd.Series]:
    """
    Create matrices needed to train and test the forecaster for one-step-ahead
    predictions.

    Parameters
    ----------
    series : pandas DataFrame, dict
        Training time series.
    initial_train_size : int
        Initial size of the training set. It is the number of observations used
        to train the forecaster before making the first prediction.
    exog : pandas Series, pandas DataFrame, dict, default None
        Exogenous variable/s included as predictor/s.

    Returns
    -------
    X_train : pandas DataFrame
        Predictor values used to train the model.
    y_train : pandas Series
        Target values related to each row of `X_train`.
    X_test : pandas DataFrame
        Predictor values used to test the model.
    y_test : pandas Series
        Target values related to each row of `X_test`.
    X_train_encoding : pandas Series
        Series identifiers for each row of `X_train`.
    X_test_encoding : pandas Series
        Series identifiers for each row of `X_test`.

    """

    if isinstance(series, dict):
        freqs = [s.index.freq for s in series.values() if s.index.freq is not None]
        if not freqs:
            raise ValueError("At least one series must have a frequency.")
        if not all(f == freqs[0] for f in freqs):
            raise ValueError(
                "All series with frequency must have the same frequency."
            )

        min_index = min([v.index[0] for v in series.values() if not v.empty])
        max_index = max([v.index[-1] for v in series.values() if not v.empty])
        span_index = pd.date_range(start=min_index, end=max_index, freq=freqs[0])
    else:
        span_index = series.index

    fold = [
        [0, initial_train_size],
        [initial_train_size - self.window_size, initial_train_size],
        [initial_train_size - self.window_size, len(span_index)],
        [0, 0],  # Dummy value
        True
    ]
    data_fold = _extract_data_folds_multiseries(
                    series             = series,
                    folds              = [fold],
                    span_index         = span_index,
                    window_size        = self.window_size,
                    exog               = exog,
                    dropna_last_window = self.dropna_from_series,
                    externally_fitted  = False
                )
    series_train, _, levels_last_window, exog_train, exog_test, _ = next(data_fold)

    start_test_idx = initial_train_size - self.window_size
    if isinstance(series, pd.DataFrame):
        series_test = series.iloc[start_test_idx:, :]
        series_test = series_test.loc[:, levels_last_window]
        series_test = series_test.dropna(axis=1, how='all')
    elif isinstance(series, dict):
        start_test_date = span_index[start_test_idx]
        series_test = {
            k: v.loc[v.index >= start_test_date]
            for k, v in series.items()
            if k in levels_last_window and not v.empty and not v.isna().all()
        }

    _is_fitted = self.is_fitted
    _series_names_in_ = self.series_names_in_
    _exog_names_in_ = self.exog_names_in_

    self.is_fitted = False
    X_train, y_train, _, series_names_in_, _, exog_names_in_, *_ = (
        self._create_train_X_y(
            series            = series_train,
            exog              = exog_train,
            store_last_window = False
        )
    )

    self.series_names_in_ = series_names_in_
    if exog is not None:
        self.exog_names_in_ = exog_names_in_
    self.is_fitted = True

    X_test, y_test, *_ = self._create_train_X_y(
                             series            = series_test,
                             exog              = exog_test,
                             store_last_window = False
                         )
    self.is_fitted = _is_fitted
    self.series_names_in_ = _series_names_in_
    self.exog_names_in_ = _exog_names_in_

    if self.encoding in ["ordinal", "ordinal_category"]:
        X_train_encoding = self.encoder.inverse_transform(
            X_train[["_level_skforecast"]]
        ).ravel()
        X_test_encoding = self.encoder.inverse_transform(
            X_test[["_level_skforecast"]]
        ).ravel()
    elif self.encoding == 'onehot':
        X_train_encoding = self.encoder.inverse_transform(
            X_train.loc[:, self.encoding_mapping_.keys()]
        ).ravel()
        X_test_encoding = self.encoder.inverse_transform(
            X_test.loc[:, self.encoding_mapping_.keys()]
        ).ravel()
    else:
        X_train_encoding = self.encoder.inverse_transform(
            X_train[["_level_skforecast"]]
        ).ravel()
        X_test_encoding = self.encoder.inverse_transform(
            X_test[["_level_skforecast"]]
        ).ravel()
        X_train = X_train.drop(columns="_level_skforecast")
        X_test = X_test.drop(columns="_level_skforecast")

    X_train_encoding = pd.Series(
        data=X_train_encoding, index=X_train.index
    ).fillna("_unknown_level")
    X_test_encoding = pd.Series(
        data=X_test_encoding, index=X_test.index
    ).fillna("_unknown_level")

    return X_train, y_train, X_test, y_test, X_train_encoding, X_test_encoding

_weight_func_all_1

_weight_func_all_1(index)

Weight function that assigns a weight of 1 to all observations.

Parameters:

Name Type Description Default
index pandas Index

Index of the series.

required

Returns:

Name Type Description
weights numpy ndarray

Weights to use in fit method.

Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
def _weight_func_all_1(
    self, 
    index: pd.Index
) -> np.ndarray:
    """
    Weight function that assigns a weight of 1 to all observations.

    Parameters
    ----------
    index : pandas Index
        Index of the series.

    Returns
    -------
    weights : numpy ndarray
        Weights to use in `fit` method.

    """

    weights = np.ones(len(index), dtype=float)

    return weights

create_sample_weights

create_sample_weights(series_names_in_, X_train)

Create weights for each observation according to the forecaster's attributes series_weights and weight_func. The resulting weights are product of both types of weights.

Parameters:

Name Type Description Default
series_names_in_ list

Names of the series (levels) used during training.

required
X_train pandas DataFrame

Dataframe created with the create_train_X_y method, first return.

required

Returns:

Name Type Description
weights numpy ndarray

Weights to use in fit method.

Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
def create_sample_weights(
    self,
    series_names_in_: list,
    X_train: pd.DataFrame
) -> np.ndarray:
    """
    Create weights for each observation according to the forecaster's attributes
    `series_weights` and `weight_func`. The resulting weights are product of both
    types of weights.

    Parameters
    ----------
    series_names_in_ : list
        Names of the series (levels) used during training.
    X_train : pandas DataFrame
        Dataframe created with the `create_train_X_y` method, first return.

    Returns
    -------
    weights : numpy ndarray
        Weights to use in `fit` method.

    """

    weights = None
    weights_samples = None
    series_weights = None

    if self.series_weights is not None:
        # Series not present in series_weights have a weight of 1 in all their samples.
        # Keys in series_weights not present in series are ignored.
        series_not_in_series_weights = (
            set(series_names_in_) - set(self.series_weights.keys())
        )
        if series_not_in_series_weights:
            warnings.warn(
                f"{series_not_in_series_weights} not present in `series_weights`. "
                f"A weight of 1 is given to all their samples.",
                IgnoredArgumentWarning
            )
        self.series_weights_ = {col: 1. for col in series_names_in_}
        self.series_weights_.update(
            {
                k: v
                for k, v in self.series_weights.items()
                if k in self.series_weights_
            }
        )

        if self.encoding == "onehot":
            series_weights = [
                np.repeat(self.series_weights_[serie], sum(X_train[serie]))
                for serie in series_names_in_
            ]
        else:
            series_weights = [
                np.repeat(
                    self.series_weights_[serie],
                    sum(X_train["_level_skforecast"] == self.encoding_mapping_[serie]),
                )
                for serie in series_names_in_
            ]

        series_weights = np.concatenate(series_weights)

    if self.weight_func is not None:
        if isinstance(self.weight_func, Callable):
            self.weight_func_ = {col: copy(self.weight_func)
                                 for col in series_names_in_}
        else:
            # Series not present in weight_func have a weight of 1 in all their samples
            series_not_in_weight_func = (
                set(series_names_in_) - set(self.weight_func.keys())
            )
            if series_not_in_weight_func:
                warnings.warn(
                    f"{series_not_in_weight_func} not present in `weight_func`. "
                    f"A weight of 1 is given to all their samples.",
                    IgnoredArgumentWarning
                )
            self.weight_func_ = {
                col: self._weight_func_all_1 for col in series_names_in_
            }
            self.weight_func_.update(
                {
                    k: v
                    for k, v in self.weight_func.items()
                    if k in self.weight_func_
                }
            )

        weights_samples = []
        for key in self.weight_func_.keys():
            if self.encoding == "onehot":
                idx = X_train.index[X_train[key] == 1.0]
            else:
                idx = X_train.index[
                    X_train["_level_skforecast"] == self.encoding_mapping_[key]
                ]
            weights_samples.append(self.weight_func_[key](idx))
        weights_samples = np.concatenate(weights_samples)

    if series_weights is not None:
        weights = series_weights
        if weights_samples is not None:
            weights = weights * weights_samples
    else:
        if weights_samples is not None:
            weights = weights_samples

    if weights is not None:
        if np.isnan(weights).any():
            raise ValueError(
                "The resulting `weights` cannot have NaN values."
            )
        if np.any(weights < 0):
            raise ValueError(
                "The resulting `weights` cannot have negative values."
            )
        if np.sum(weights) == 0:
            raise ValueError(
                "The resulting `weights` cannot be normalized because "
                "the sum of the weights is zero."
            )

    return weights

fit

fit(
    series,
    exog=None,
    store_last_window=True,
    store_in_sample_residuals=False,
    random_state=123,
    suppress_warnings=False,
)

Training Forecaster. See Notes section for more details depending on the type of series and exog.

Additional arguments to be passed to the fit method of the regressor can be added with the fit_kwargs argument when initializing the forecaster.

Parameters:

Name Type Description Default
series pandas DataFrame, dict

Training time series.

required
exog pandas Series, pandas DataFrame, dict

Exogenous variable/s included as predictor/s.

None
store_last_window (bool, list)

Whether or not to store the last window (last_window_) of training data.

  • If True, last window is stored for all series.
  • If list, last window is stored for the series present in the list.
  • If False, last window is not stored.
True
store_in_sample_residuals bool

If True, in-sample residuals will be stored in the forecaster object after fitting (in_sample_residuals_ and in_sample_residuals_by_bin_ attributes). If False, only the intervals of the bins are stored.

False
random_state int

Set a seed for the random generator so that the stored sample residuals are always deterministic.

123
suppress_warnings bool

If True, skforecast warnings will be suppressed during the training process. See skforecast.exceptions.warn_skforecast_categories for more information.

False

Returns:

Type Description
None
Notes
  • If series is a pandas DataFrame and exog is a pandas Series or DataFrame, each exog is duplicated for each series. Exog must have the same index as series (type, length and frequency).
  • If series is a pandas DataFrame and exog is a dict of pandas Series or DataFrames. Each key in exog must be a column in series and the values are the exog for each series. Exog must have the same index as series (type, length and frequency).
  • If series is a dict of pandas Series, exogmust be a dict of pandas Series or DataFrames. The keys in series and exog must be the same. All series and exog must have a pandas DatetimeIndex with the same frequency.
Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
def fit(
    self,
    series: pd.DataFrame | dict[str, pd.Series | pd.DataFrame],
    exog: pd.Series | pd.DataFrame | dict[str, pd.Series | pd.DataFrame] | None = None,
    store_last_window: bool | list[str] = True,
    store_in_sample_residuals: bool = False,
    random_state: int = 123,
    suppress_warnings: bool = False
) -> None:
    """
    Training Forecaster. See Notes section for more details depending on 
    the type of `series` and `exog`.

    Additional arguments to be passed to the `fit` method of the regressor 
    can be added with the `fit_kwargs` argument when initializing the forecaster.

    Parameters
    ----------
    series : pandas DataFrame, dict
        Training time series.
    exog : pandas Series, pandas DataFrame, dict, default None
        Exogenous variable/s included as predictor/s.
    store_last_window : bool, list, default True
        Whether or not to store the last window (`last_window_`) of training data.

        - If `True`, last window is stored for all series. 
        - If `list`, last window is stored for the series present in the list.
        - If `False`, last window is not stored.
    store_in_sample_residuals : bool, default False
        If `True`, in-sample residuals will be stored in the forecaster object
        after fitting (`in_sample_residuals_` and `in_sample_residuals_by_bin_`
        attributes).
        If `False`, only the intervals of the bins are stored.
    random_state : int, default 123
        Set a seed for the random generator so that the stored sample 
        residuals are always deterministic.
    suppress_warnings : bool, default False
        If `True`, skforecast warnings will be suppressed during the training 
        process. See skforecast.exceptions.warn_skforecast_categories for more
        information.

    Returns
    -------
    None

    Notes
    -----
    - If `series` is a pandas DataFrame and `exog` is a pandas Series or 
    DataFrame, each exog is duplicated for each series. Exog must have the
    same index as `series` (type, length and frequency).
    - If `series` is a pandas DataFrame and `exog` is a dict of pandas Series 
    or DataFrames. Each key in `exog` must be a column in `series` and the 
    values are the exog for each series. Exog must have the same index as 
    `series` (type, length and frequency).
    - If `series` is a dict of pandas Series, `exog`must be a dict of pandas
    Series or DataFrames. The keys in `series` and `exog` must be the same.
    All series and exog must have a pandas DatetimeIndex with the same 
    frequency.

    """

    set_skforecast_warnings(suppress_warnings, action='ignore')

    # TODO: create a method reset_forecaster() to reset all attributes
    # Reset values in case the forecaster has already been fitted.
    self.last_window_                       = None
    self.index_type_                        = None
    self.index_freq_                        = None
    self.training_range_                    = None
    self.series_names_in_                   = None
    self.exog_in_                           = False
    self.exog_names_in_                     = None
    self.exog_type_in_                      = None
    self.exog_dtypes_in_                    = None
    self.X_train_series_names_in_           = None
    self.X_train_window_features_names_out_ = None
    self.X_train_exog_names_out_            = None
    self.X_train_features_names_out_        = None
    self.in_sample_residuals_               = None
    self.in_sample_residuals_by_bin_        = None
    self.binner                             = {}
    self.binner_intervals_                  = {}
    self.is_fitted                          = False
    self.fit_date                           = None

    (
        X_train,
        y_train,
        series_indexes,
        series_names_in_,
        X_train_series_names_in_,
        exog_names_in_,
        X_train_window_features_names_out_,
        X_train_exog_names_out_,
        exog_dtypes_in_,
        last_window_
    ) = self._create_train_X_y(
            series=series, exog=exog, store_last_window=store_last_window
        )

    sample_weight = self.create_sample_weights(
                        series_names_in_ = series_names_in_,
                        X_train          = X_train
                    )

    X_train_regressor = (
        X_train
        if self.encoding is not None
        else X_train.drop(columns="_level_skforecast")
    )
    if sample_weight is not None:
        self.regressor.fit(
            X             = X_train_regressor,
            y             = y_train,
            sample_weight = sample_weight,
            **self.fit_kwargs
        )
    else:
        self.regressor.fit(X=X_train_regressor, y=y_train, **self.fit_kwargs)

    self.series_names_in_ = series_names_in_
    self.X_train_series_names_in_ = X_train_series_names_in_
    self.X_train_window_features_names_out_ = X_train_window_features_names_out_
    self.X_train_features_names_out_ = X_train_regressor.columns.to_list()

    self.is_fitted = True
    self.fit_date = pd.Timestamp.today().strftime('%Y-%m-%d %H:%M:%S')
    self.training_range_ = {k: v[[0, -1]] for k, v in series_indexes.items()}
    self.index_type_ = type(series_indexes[series_names_in_[0]])
    if isinstance(series_indexes[series_names_in_[0]], pd.DatetimeIndex):
        self.index_freq_ = series_indexes[series_names_in_[0]].freqstr
    else:
        self.index_freq_ = series_indexes[series_names_in_[0]].step

    if exog is not None:
        self.exog_in_ = True
        self.exog_names_in_ = exog_names_in_
        self.exog_type_in_ = type(exog)
        self.exog_dtypes_in_ = exog_dtypes_in_
        self.X_train_exog_names_out_ = X_train_exog_names_out_

    self.in_sample_residuals_ = {}
    self.in_sample_residuals_by_bin_ = {}
    if self._probabilistic_mode is not False:
        y_pred = self.regressor.predict(X_train_regressor)
        if self.encoding is not None:
            for level in X_train_series_names_in_:
                if self.encoding == 'onehot':
                    mask = X_train[level].to_numpy() == 1.
                else:
                    encoded_value = self.encoding_mapping_[level]
                    mask = X_train['_level_skforecast'].to_numpy() == encoded_value

                self._binning_in_sample_residuals(
                    level                     = level,
                    y_true                    = y_train[mask],
                    y_pred                    = y_pred[mask],
                    store_in_sample_residuals = store_in_sample_residuals,
                    random_state              = random_state
                )

        # NOTE: the _unknown_level is a random sample of 10_000 residuals of all levels.
        self._binning_in_sample_residuals(
            level                     = '_unknown_level',
            y_true                    = y_train,
            y_pred                    = y_pred,
            store_in_sample_residuals = store_in_sample_residuals,
            random_state              = random_state
        )

    if not store_in_sample_residuals:
        # NOTE: create empty dictionaries to avoid errors when calling predict()
        if self.encoding is not None:
            for level in X_train_series_names_in_:
                self.in_sample_residuals_[level] = None
                self.in_sample_residuals_by_bin_[level] = None
        self.in_sample_residuals_['_unknown_level'] = None
        self.in_sample_residuals_by_bin_['_unknown_level'] = None

    if store_last_window:
        self.last_window_ = last_window_

    set_skforecast_warnings(suppress_warnings, action='default')

_binning_in_sample_residuals

_binning_in_sample_residuals(
    level,
    y_true,
    y_pred,
    store_in_sample_residuals=False,
    random_state=123,
)

Bin residuals according to the predicted value each residual is associated with. First a skforecast.preprocessing.QuantileBinner object is fitted to the predicted values. Then, residuals are binned according to the predicted value each residual is associated with. Residuals are stored in the forecaster object as in_sample_residuals_ and in_sample_residuals_by_bin_.

y_true and y_pred assumed to be differentiated and/or transformed according to the attributes differentiation and transformer_series. The number of residuals stored per bin is limited to 10_000 // self.binner.n_bins_. The total number of residuals stored is 10_000. New in version 0.15.0

Parameters:

Name Type Description Default
y_true numpy ndarray

True values of the time series.

required
y_pred numpy ndarray

Predicted values of the time series.

required
store_in_sample_residuals bool

If True, in-sample residuals will be stored in the forecaster object after fitting (in_sample_residuals_ and in_sample_residuals_by_bin_ attributes). If False, only the intervals of the bins are stored.

False
random_state int

Set a seed for the random generator so that the stored sample residuals are always deterministic.

123

Returns:

Type Description
None
Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
def _binning_in_sample_residuals(
    self,
    level: str,
    y_true: np.ndarray,
    y_pred: np.ndarray,
    store_in_sample_residuals: bool = False,
    random_state: int = 123
) -> None:
    """
    Bin residuals according to the predicted value each residual is
    associated with. First a `skforecast.preprocessing.QuantileBinner` object
    is fitted to the predicted values. Then, residuals are binned according
    to the predicted value each residual is associated with. Residuals are
    stored in the forecaster object as `in_sample_residuals_` and
    `in_sample_residuals_by_bin_`.

    `y_true` and `y_pred` assumed to be differentiated and/or transformed
    according to the attributes `differentiation` and `transformer_series`.
    The number of residuals stored per bin is limited to 
    `10_000 // self.binner.n_bins_`. The total number of residuals stored is
    `10_000`.
    **New in version 0.15.0**

    Parameters
    ----------
    y_true : numpy ndarray
        True values of the time series.
    y_pred : numpy ndarray
        Predicted values of the time series.
    store_in_sample_residuals : bool, default False
        If `True`, in-sample residuals will be stored in the forecaster object
        after fitting (`in_sample_residuals_` and `in_sample_residuals_by_bin_`
        attributes).
        If `False`, only the intervals of the bins are stored.
    random_state : int, default 123
        Set a seed for the random generator so that the stored sample 
        residuals are always deterministic.

    Returns
    -------
    None

    """

    y_true = np.asarray(y_true)
    y_pred = np.asarray(y_pred)
    residuals = y_true - y_pred

    if self._probabilistic_mode == "binned":
        data = pd.DataFrame({'prediction': y_pred, 'residuals': residuals})
        self.binner[level] = QuantileBinner(**self.binner_kwargs)
        self.binner[level].fit(y_pred)
        self.binner_intervals_[level] = self.binner[level].intervals_

    if store_in_sample_residuals:
        rng = np.random.default_rng(seed=random_state)
        if self._probabilistic_mode == "binned":
            data['bin'] = self.binner[level].transform(y_pred).astype(int)
            self.in_sample_residuals_by_bin_[level] = (
                data.groupby('bin')['residuals'].apply(np.array).to_dict()
            )

            max_sample = 10_000 // self.binner[level].n_bins_
            for k, v in self.in_sample_residuals_by_bin_[level].items():
                if len(v) > max_sample:
                    sample = v[rng.integers(low=0, high=len(v), size=max_sample)]
                    self.in_sample_residuals_by_bin_[level][k] = sample

        if len(residuals) > 10_000:
            residuals = residuals[
                rng.integers(low=0, high=len(residuals), size=10_000)
            ]
        self.in_sample_residuals_[level] = residuals        

_create_predict_inputs

_create_predict_inputs(
    steps,
    levels=None,
    last_window=None,
    exog=None,
    predict_probabilistic=False,
    use_in_sample_residuals=True,
    use_binned_residuals=True,
    check_inputs=True,
)

Create the inputs needed for the first iteration of the prediction process. As this is a recursive process, the last window is updated at each iteration of the prediction process.

Parameters:

Name Type Description Default
steps int

Number of steps to predict.

required
levels (str, list)

Time series to be predicted. If None all levels whose last window ends at the same datetime index will be predicted together.

None
last_window pandas DataFrame

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1). If last_window = None, the values stored in self.last_window_ are used to calculate the initial predictors, and the predictions start right after training data.

None
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s.

None
predict_probabilistic bool

If True, the necessary checks for probabilistic predictions will be performed.

False
use_in_sample_residuals bool

If True, residuals from the training data are used as proxy of prediction error to create predictions. If False, out of sample residuals (calibration) are used. Out-of-sample residuals must be precomputed using Forecaster's set_out_sample_residuals() method.

True
use_binned_residuals bool

If True, residuals are selected based on the predicted values (binned selection). If False, residuals are selected randomly.

True
check_inputs bool

If True, the input is checked for possible warnings and errors with the check_predict_input function. This argument is created for internal use and is not recommended to be changed.

True

Returns:

Name Type Description
last_window pandas DataFrame

Series values used to create the predictors needed in the first iteration of the prediction (t + 1).

exog_values_dict (dict, None)

Exogenous variable/s included as predictor/s for each series in each step. The keys are the steps and the values are numpy arrays where each column is an exog and each row a series (level).

levels list

Names of the series (levels) to be predicted.

prediction_index pandas Index

Index of the predictions.

Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
def _create_predict_inputs(
    self,
    steps: int,
    levels: str | list[str] | None = None,
    last_window: pd.DataFrame | None = None,
    exog: pd.Series | pd.DataFrame | dict[str, pd.Series | pd.DataFrame] | None = None,
    predict_probabilistic: bool = False,
    use_in_sample_residuals: bool = True,
    use_binned_residuals: bool = True,
    check_inputs: bool = True
) -> tuple[pd.DataFrame, dict[str, np.ndarray] | None, list[str], pd.Index]:
    """
    Create the inputs needed for the first iteration of the prediction 
    process. As this is a recursive process, the last window is updated at 
    each iteration of the prediction process.

    Parameters
    ----------
    steps : int
        Number of steps to predict. 
    levels : str, list, default None
        Time series to be predicted. If `None` all levels whose last window
        ends at the same datetime index will be predicted together.
    last_window : pandas DataFrame, default None
        Series values used to create the predictors (lags) needed in the 
        first iteration of the prediction (t + 1).
        If `last_window = None`, the values stored in `self.last_window_` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : pandas Series, pandas DataFrame, default None
        Exogenous variable/s included as predictor/s.
    predict_probabilistic : bool, default False
        If `True`, the necessary checks for probabilistic predictions will be 
        performed.
    use_in_sample_residuals : bool, default True
        If `True`, residuals from the training data are used as proxy of
        prediction error to create predictions. 
        If `False`, out of sample residuals (calibration) are used. 
        Out-of-sample residuals must be precomputed using Forecaster's
        `set_out_sample_residuals()` method.
    use_binned_residuals : bool, default True
        If `True`, residuals are selected based on the predicted values 
        (binned selection).
        If `False`, residuals are selected randomly.
    check_inputs : bool, default True
        If `True`, the input is checked for possible warnings and errors 
        with the `check_predict_input` function. This argument is created 
        for internal use and is not recommended to be changed.

    Returns
    -------
    last_window : pandas DataFrame
        Series values used to create the predictors needed in the first 
        iteration of the prediction (t + 1).
    exog_values_dict : dict, None
        Exogenous variable/s included as predictor/s for each series in 
        each step. The keys are the steps and the values are numpy arrays
        where each column is an exog and each row a series (level).
    levels : list
        Names of the series (levels) to be predicted.
    prediction_index : pandas Index
        Index of the predictions.

    """

    input_levels_is_None = True if levels is None else False
    levels, input_levels_is_list = prepare_levels_multiseries(
        X_train_series_names_in_=self.X_train_series_names_in_, levels=levels
    )

    if self.is_fitted:
        if last_window is None:
            levels, last_window = preprocess_levels_self_last_window_multiseries(
                                      levels               = levels,
                                      input_levels_is_list = input_levels_is_list,
                                      last_window_         = self.last_window_
                                  )
        else:
            if input_levels_is_None and isinstance(last_window, pd.DataFrame):
                levels = last_window.columns.to_list()

    if check_inputs:
        check_predict_input(
            forecaster_name  = type(self).__name__,
            steps            = steps,
            is_fitted        = self.is_fitted,
            exog_in_         = self.exog_in_,
            index_type_      = self.index_type_,
            index_freq_      = self.index_freq_,
            window_size      = self.window_size,
            last_window      = last_window,
            exog             = exog,
            exog_type_in_    = self.exog_type_in_,
            exog_names_in_   = self.exog_names_in_,
            interval         = None,
            levels           = levels,
            series_names_in_ = self.series_names_in_,
            encoding         = self.encoding
        )

        if predict_probabilistic:
            check_residuals_input(
                forecaster_name              = type(self).__name__,
                use_in_sample_residuals      = use_in_sample_residuals,
                in_sample_residuals_         = self.in_sample_residuals_,
                out_sample_residuals_        = self.out_sample_residuals_,
                use_binned_residuals         = use_binned_residuals,
                in_sample_residuals_by_bin_  = self.in_sample_residuals_by_bin_,
                out_sample_residuals_by_bin_ = self.out_sample_residuals_by_bin_,
                levels                       = levels,
                encoding                     = self.encoding
            )

    last_window = last_window.iloc[
        -self.window_size :, last_window.columns.get_indexer(levels)
    ].copy()
    _, last_window_index = preprocess_last_window(
                               last_window   = last_window,
                               return_values = False
                           )
    prediction_index = expand_index(
                           index = last_window_index,
                           steps = steps
                       )

    if exog is not None:
        if isinstance(exog, dict):
            # Empty dataframe to be filled with the exog values of each level
            empty_exog = pd.DataFrame(
                             data  = {col: pd.Series(dtype=dtype)
                                      for col, dtype in self.exog_dtypes_in_.items()},
                             index = prediction_index
                         )
        else:
            if isinstance(exog, pd.Series):
                exog = exog.to_frame()

            exog = transform_dataframe(
                       df                = exog,
                       transformer       = self.transformer_exog,
                       fit               = False,
                       inverse_transform = False
                   )
            check_exog_dtypes(exog=exog)
            exog_values = exog.to_numpy()[:steps]
    else:
        exog_values = None

    exog_values_all_levels = []
    for level in levels:
        last_window_level = last_window[level].to_numpy()
        last_window_level = transform_numpy(
            array             = last_window_level,
            transformer       = self.transformer_series_.get(level, self.transformer_series_['_unknown_level']),
            fit               = False,
            inverse_transform = False
        )

        if self.differentiation is not None:
            if level not in self.differentiator_.keys():
                self.differentiator_[level] = copy(self.differentiator_['_unknown_level'])
            if self.differentiator_[level] is not None:
                last_window_level = (
                    self.differentiator_[level].fit_transform(last_window_level)
                )

        last_window[level] = last_window_level

        if isinstance(exog, dict):
            # Fill the empty dataframe with the exog values of each level
            # and transform them if necessary
            exog_values = exog.get(level, None)
            if exog_values is not None:
                if isinstance(exog_values, pd.Series):
                    exog_values = exog_values.to_frame()

                exog_values = empty_exog.fillna(exog_values)
                exog_values = transform_dataframe(
                                  df                = exog_values,
                                  transformer       = self.transformer_exog,
                                  fit               = False,
                                  inverse_transform = False
                              )

                check_exog_dtypes(
                    exog      = exog_values,
                    series_id = f"`exog` for series '{level}'"
                )
                exog_values = exog_values.to_numpy()
            else:
                exog_values = empty_exog.to_numpy(copy=True)

        exog_values_all_levels.append(exog_values)

    if exog is not None:
        # Exog is transformed into a dict where each key is a step and each value
        # is a numpy array where each column is an exog and each row a series
        exog_values_all_levels = np.concatenate(exog_values_all_levels)
        exog_values_dict = {}
        for i in range(steps):
            exog_values_dict[i + 1] = exog_values_all_levels[i::steps, :]
    else:
        exog_values_dict = None

    return last_window, exog_values_dict, levels, prediction_index

_recursive_predict

_recursive_predict(
    steps,
    levels,
    last_window,
    exog_values_dict=None,
    residuals=None,
    use_binned_residuals=True,
)

Predict n steps for one or multiple levels. It is an iterative process in which, each prediction, is used as a predictor for the next step.

Parameters:

Name Type Description Default
steps int

Number of steps to predict.

required
levels list

Time series to be predicted.

required
last_window pandas DataFrame

Series values used to create the predictors needed in the first iteration of the prediction (t + 1).

required
exog_values_dict dict

Exogenous variable/s included as predictor/s for each series in each step. The keys are the steps and the values are numpy arrays where each column is an exog and each row a series (level).

None
residuals numpy ndarray

Residuals used to generate bootstrapping predictions in the form (steps, levels).

None
use_binned_residuals bool

If True, residuals are selected based on the predicted values (binned selection). If False, residuals are selected randomly. New in version 0.15.0

True

Returns:

Name Type Description
predictions numpy ndarray

Predicted values.

Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
def _recursive_predict(
    self,
    steps: int,
    levels: list,
    last_window: pd.DataFrame,
    exog_values_dict: dict[str, np.ndarray] | None = None,
    residuals: np.ndarray | None = None,
    use_binned_residuals: bool = True
) -> np.ndarray:
    """
    Predict n steps for one or multiple levels. It is an iterative process
    in which, each prediction, is used as a predictor for the next step.

    Parameters
    ----------
    steps : int
        Number of steps to predict. 
    levels : list
        Time series to be predicted.
    last_window : pandas DataFrame
        Series values used to create the predictors needed in the first 
        iteration of the prediction (t + 1).
    exog_values_dict : dict, default None
        Exogenous variable/s included as predictor/s for each series in 
        each step. The keys are the steps and the values are numpy arrays
        where each column is an exog and each row a series (level).
    residuals : numpy ndarray, default None
        Residuals used to generate bootstrapping predictions in the form
        (steps, levels).
    use_binned_residuals : bool, default True
        If `True`, residuals are selected based on the predicted values 
        (binned selection).
        If `False`, residuals are selected randomly.
        **New in version 0.15.0**

    Returns
    -------
    predictions : numpy ndarray
        Predicted values.

    """

    n_levels = len(levels)
    n_lags = len(self.lags) if self.lags is not None else 0
    n_window_features = (
        len(self.X_train_window_features_names_out_)
        if self.window_features is not None
        else 0
    )
    n_autoreg = n_lags + n_window_features
    n_exog = len(self.X_train_exog_names_out_) if exog_values_dict is not None else 0

    if self.encoding is not None:
        if self.encoding == "onehot":
            levels_encoded = np.zeros(
                (n_levels, len(self.X_train_series_names_in_)), dtype=float
            )
            for i, level in enumerate(levels):
                if level in self.X_train_series_names_in_:
                    levels_encoded[i, self.X_train_series_names_in_.index(level)] = 1.
        else:
            levels_encoded = np.array(
                [self.encoding_mapping_.get(level, None) for level in levels],
                dtype="float64"
            ).reshape(-1, 1)
        levels_encoded_shape = levels_encoded.shape[1]
    else:
        levels_encoded_shape = 0

    features_shape = n_autoreg + levels_encoded_shape + n_exog
    features = np.full(
        shape=(n_levels, features_shape), fill_value=np.nan, order='F', dtype=float
    )
    if self.encoding is not None:
        features[:, n_autoreg: n_autoreg + levels_encoded_shape] = levels_encoded

    predictions = np.full(
        shape=(steps, n_levels), fill_value=np.nan, order='C', dtype=float
    )
    last_window = np.concatenate((last_window.to_numpy(), predictions), axis=0)

    for i in range(steps):

        if self.lags is not None:
            features[:, :n_lags] = last_window[
                -self.lags - (steps - i), :
            ].transpose()
        if self.window_features is not None:
            features[:, n_lags:n_autoreg] = np.concatenate(
                [
                    wf.transform(last_window[i:-(steps - i), :]) 
                    for wf in self.window_features
                ],
                axis=1
            )
        if exog_values_dict is not None:
            features[:, -n_exog:] = exog_values_dict[i + 1]

        pred = self.regressor.predict(features)

        if residuals is not None:

            if use_binned_residuals:
                step_residual = np.full(
                    shape=n_levels, fill_value=np.nan, dtype=float
                )
                for j, level in enumerate(levels):
                    predicted_bin = (
                        self.binner
                        .get(level, self.binner['_unknown_level'])
                        .transform(pred[j])
                        .item()
                    )
                    step_residual[j] = residuals[predicted_bin][i, j]
            else:
                step_residual = residuals[i, :]

            pred += step_residual

        predictions[i, :] = pred 

        # Update `last_window` values. The first position is discarded and 
        # the new prediction is added at the end.
        last_window[-(steps - i), :] = pred

    return predictions

create_predict_X

create_predict_X(
    steps,
    levels=None,
    last_window=None,
    exog=None,
    suppress_warnings=False,
)

Create the predictors needed to predict steps ahead. As it is a recursive process, the predictors are created at each iteration of the prediction process.

Parameters:

Name Type Description Default
steps int

Number of steps to predict.

required
levels (str, list)

Time series to be predicted. If None all levels whose last window ends at the same datetime index will be predicted together.

None
last_window pandas DataFrame

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1). If last_window = None, the values stored in self.last_window_ are used to calculate the initial predictors, and the predictions start right after training data.

None
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s.

None
suppress_warnings bool

If True, skforecast warnings will be suppressed during the prediction process. See skforecast.exceptions.warn_skforecast_categories for more information.

False

Returns:

Name Type Description
X_predict_dict dict

Dict in the form {level: X_predict} with the predictors for each step and series. The index is the same as the prediction index.

Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
def create_predict_X(
    self,
    steps: int,
    levels: str | list[str] | None = None,
    last_window: pd.DataFrame | None = None,
    exog: pd.Series | pd.DataFrame | dict[str, pd.Series | pd.DataFrame] | None = None,
    suppress_warnings: bool = False
) -> dict:
    """
    Create the predictors needed to predict `steps` ahead. As it is a recursive
    process, the predictors are created at each iteration of the prediction 
    process.

    Parameters
    ----------
    steps : int
        Number of steps to predict. 
    levels : str, list, default None
        Time series to be predicted. If `None` all levels whose last window
        ends at the same datetime index will be predicted together.
    last_window : pandas DataFrame, default None
        Series values used to create the predictors (lags) needed in the 
        first iteration of the prediction (t + 1).
        If `last_window = None`, the values stored in `self.last_window_` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : pandas Series, pandas DataFrame, default None
        Exogenous variable/s included as predictor/s.
    suppress_warnings : bool, default False
        If `True`, skforecast warnings will be suppressed during the prediction 
        process. See skforecast.exceptions.warn_skforecast_categories for more
        information.

    Returns
    -------
    X_predict_dict : dict
        Dict in the form `{level: X_predict}` with the predictors for each 
        step and series. The index is the same as the prediction index.

    """

    set_skforecast_warnings(suppress_warnings, action='ignore')

    (
        last_window,
        exog_values_dict,
        levels,
        prediction_index
    ) = self._create_predict_inputs(
            steps        = steps,
            levels       = levels,
            last_window  = last_window,
            exog         = exog
        )

    with warnings.catch_warnings():
        warnings.filterwarnings(
            "ignore", 
            message="X does not have valid feature names", 
            category=UserWarning
        )
        predictions = self._recursive_predict(
                          steps            = steps,
                          levels           = levels,
                          last_window      = last_window,
                          exog_values_dict = exog_values_dict
                      )

    X_predict_dict = {}
    if self.lags is not None:
        idx_lags = np.arange(-steps, 0)[:, None] - self.lags
    len_X_train_series_names_in_ = len(self.X_train_series_names_in_)
    exog_shape = len(self.X_train_exog_names_out_) if exog is not None else 0

    for i, level in enumerate(levels):

        X_predict_level = []
        full_predictors_level = np.concatenate(
            (last_window[level].to_numpy(), predictions[:, i])
        )

        if self.lags is not None:
            X_predict_level.append(
                full_predictors_level[idx_lags + len(full_predictors_level)]
            )

        if self.window_features is not None:
            X_window_features = np.full(
                shape      = (steps, len(self.X_train_window_features_names_out_)), 
                fill_value = np.nan, 
                order      = 'C',
                dtype      = float
            )
            for j in range(steps):
                X_window_features[j, :] = np.concatenate(
                    [
                        wf.transform(full_predictors_level[j:-(steps - j)]) 
                        for wf in self.window_features
                    ]
                )
            X_predict_level.append(X_window_features)

        if self.encoding is not None:
            if self.encoding == 'onehot':
                level_encoded = np.zeros(
                                    shape = (1, len_X_train_series_names_in_),
                                    dtype = float
                                )
                level_encoded[0][self.X_train_series_names_in_.index(level)] = 1.
            else:
                level_encoded = np.array(
                                    [self.encoding_mapping_.get(level, None)],
                                    dtype = 'float64'
                                )

            level_encoded = np.tile(level_encoded, (steps, 1))
            X_predict_level.append(level_encoded)

        if exog is not None:
            exog_cols = np.full(
                shape=(steps, exog_shape), fill_value=np.nan, order='C', dtype=float
            )
            for j in range(steps):
                exog_cols[j, :] = exog_values_dict[j + 1][i, :]
            X_predict_level.append(exog_cols)

        X_predict_dict[level] = pd.DataFrame(
                                    data    = np.concatenate(X_predict_level, axis=1),
                                    columns = self.X_train_features_names_out_,
                                    index   = prediction_index
                                )

    if self.transformer_series is not None or self.differentiation is not None:
        warnings.warn(
            "The output matrix is in the transformed scale due to the "
            "inclusion of transformations or differentiation in the Forecaster. "
            "As a result, any predictions generated using this matrix will also "
            "be in the transformed scale. Please refer to the documentation "
            "for more details: "
            "https://skforecast.org/latest/user_guides/training-and-prediction-matrices.html",
            DataTransformationWarning
        )

    set_skforecast_warnings(suppress_warnings, action='default')

    return X_predict_dict

predict

predict(
    steps,
    levels=None,
    last_window=None,
    exog=None,
    suppress_warnings=False,
    check_inputs=True,
)

Predict n steps ahead. It is an recursive process in which, each prediction, is used as a predictor for the next step. Only levels whose last window ends at the same datetime index can be predicted together.

Parameters:

Name Type Description Default
steps int

Number of steps to predict.

required
levels (str, list)

Time series to be predicted. If None all levels whose last window ends at the same datetime index will be predicted together.

None
last_window pandas DataFrame

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1). If last_window = None, the values stored in self.last_window_ are used to calculate the initial predictors, and the predictions start right after training data.

None
exog pandas Series, pandas DataFrame, dict

Exogenous variable/s included as predictor/s.

None
suppress_warnings bool

If True, skforecast warnings will be suppressed during the prediction process. See skforecast.exceptions.warn_skforecast_categories for more information.

False
check_inputs bool

If True, the input is checked for possible warnings and errors with the check_predict_input function. This argument is created for internal use and is not recommended to be changed.

True

Returns:

Name Type Description
predictions pandas DataFrame

Long-format DataFrame with the predictions. The columns are level and pred.

Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
def predict(
    self,
    steps: int,
    levels: str | list[str] | None = None,
    last_window: pd.DataFrame | None = None,
    exog: pd.Series | pd.DataFrame | dict[str, pd.Series | pd.DataFrame] | None = None,
    suppress_warnings: bool = False,
    check_inputs: bool = True
) -> pd.DataFrame:
    """
    Predict n steps ahead. It is an recursive process in which, each prediction,
    is used as a predictor for the next step. Only levels whose last window
    ends at the same datetime index can be predicted together.

    Parameters
    ----------
    steps : int
        Number of steps to predict. 
    levels : str, list, default None
        Time series to be predicted. If `None` all levels whose last window
        ends at the same datetime index will be predicted together.
    last_window : pandas DataFrame, default None
        Series values used to create the predictors (lags) needed in the 
        first iteration of the prediction (t + 1).
        If `last_window = None`, the values stored in `self.last_window_` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : pandas Series, pandas DataFrame, dict, default None
        Exogenous variable/s included as predictor/s.
    suppress_warnings : bool, default False
        If `True`, skforecast warnings will be suppressed during the prediction 
        process. See skforecast.exceptions.warn_skforecast_categories for more
        information.
    check_inputs : bool, default True
        If `True`, the input is checked for possible warnings and errors 
        with the `check_predict_input` function. This argument is created 
        for internal use and is not recommended to be changed.

    Returns
    -------
    predictions : pandas DataFrame
        Long-format DataFrame with the predictions. The columns are `level`
        and `pred`.

    """

    set_skforecast_warnings(suppress_warnings, action='ignore')

    (
        last_window,
        exog_values_dict,
        levels,
        prediction_index
    ) = self._create_predict_inputs(
        steps        = steps,
        levels       = levels,
        last_window  = last_window,
        exog         = exog,
        check_inputs = check_inputs
    )

    with warnings.catch_warnings():
        warnings.filterwarnings(
            "ignore", 
            message="X does not have valid feature names", 
            category=UserWarning
        )
        predictions = self._recursive_predict(
                          steps            = steps,
                          levels           = levels,
                          last_window      = last_window,
                          exog_values_dict = exog_values_dict
                      )

    for i, level in enumerate(levels):
        if self.differentiation is not None and self.differentiator_[level] is not None:
            predictions[:, i] = (
                self
                .differentiator_[level]
                .inverse_transform_next_window(predictions[:, i])
            )

        predictions[:, i] = transform_numpy(
            array             = predictions[:, i],
            transformer       = self.transformer_series_.get(level, self.transformer_series_['_unknown_level']),
            fit               = False,
            inverse_transform = True
        )

    n_steps, n_levels = predictions.shape
    predictions = pd.DataFrame(
        {"level": np.tile(levels, n_steps), "pred": predictions.ravel()},
        index = np.repeat(prediction_index, n_levels),
    )

    set_skforecast_warnings(suppress_warnings, action='default')

    return predictions

predict_bootstrapping

predict_bootstrapping(
    steps,
    levels=None,
    last_window=None,
    exog=None,
    n_boot=250,
    use_in_sample_residuals=True,
    use_binned_residuals=True,
    random_state=123,
    suppress_warnings=False,
)

Generate multiple forecasting predictions using a bootstrapping process. By sampling from a collection of past observed errors (the residuals), each iteration of bootstrapping generates a different set of predictions. Only levels whose last window ends at the same datetime index can be predicted together. See the References section for more information.

Parameters:

Name Type Description Default
steps int

Number of steps to predict.

required
levels (str, list)

Time series to be predicted. If None all levels whose last window ends at the same datetime index will be predicted together.

None
last_window pandas DataFrame

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1). If last_window = None, the values stored in self.last_window_ are used to calculate the initial predictors, and the predictions start right after training data.

None
exog pandas Series, pandas DataFrame, dict

Exogenous variable/s included as predictor/s.

None
n_boot int

Number of bootstrapping iterations to perform when estimating prediction intervals.

250
use_in_sample_residuals bool

If True, residuals from the training data are used as proxy of prediction error to create predictions. If False, out of sample residuals (calibration) are used. Out-of-sample residuals must be precomputed using Forecaster's set_out_sample_residuals() method.

True
use_binned_residuals bool

If True, residuals are selected based on the predicted values (binned selection). If False, residuals are selected randomly. New in version 0.15.0

True
random_state int

Seed for the random number generator to ensure reproducibility.

123
suppress_warnings bool

If True, skforecast warnings will be suppressed during the prediction process. See skforecast.exceptions.warn_skforecast_categories for more information.

False

Returns:

Name Type Description
boot_predictions pandas DataFrame

Long-format DataFrame with the bootstrapping predictions. The columns are level, pred_boot_0, pred_boot_1, ..., pred_boot_n_boot.

References

.. [1] Forecasting: Principles and Practice (3rd ed) Rob J Hyndman and George Athanasopoulos. https://otexts.com/fpp3/prediction-intervals.html

Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
def predict_bootstrapping(
    self,
    steps: int,
    levels: str | list[str] | None = None,
    last_window: pd.DataFrame | None = None,
    exog: pd.Series | pd.DataFrame | dict[str, pd.Series | pd.DataFrame] | None = None,
    n_boot: int = 250,
    use_in_sample_residuals: bool = True,
    use_binned_residuals: bool = True,
    random_state: int = 123,
    suppress_warnings: bool = False
) -> pd.DataFrame:
    """
    Generate multiple forecasting predictions using a bootstrapping process. 
    By sampling from a collection of past observed errors (the residuals),
    each iteration of bootstrapping generates a different set of predictions. 
    Only levels whose last window ends at the same datetime index can be 
    predicted together. See the References section for more information. 

    Parameters
    ----------
    steps : int
        Number of steps to predict. 
    levels : str, list, default None
        Time series to be predicted. If `None` all levels whose last window
        ends at the same datetime index will be predicted together.
    last_window : pandas DataFrame, default None
        Series values used to create the predictors (lags) needed in the 
        first iteration of the prediction (t + 1).
        If `last_window = None`, the values stored in `self.last_window_` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : pandas Series, pandas DataFrame, dict, default None
        Exogenous variable/s included as predictor/s.
    n_boot : int, default 250
        Number of bootstrapping iterations to perform when estimating prediction
        intervals.
    use_in_sample_residuals : bool, default True
        If `True`, residuals from the training data are used as proxy of
        prediction error to create predictions. 
        If `False`, out of sample residuals (calibration) are used. 
        Out-of-sample residuals must be precomputed using Forecaster's
        `set_out_sample_residuals()` method.
    use_binned_residuals : bool, default True
        If `True`, residuals are selected based on the predicted values 
        (binned selection).
        If `False`, residuals are selected randomly.
        **New in version 0.15.0**
    random_state : int, default 123
        Seed for the random number generator to ensure reproducibility.
    suppress_warnings : bool, default False
        If `True`, skforecast warnings will be suppressed during the prediction 
        process. See skforecast.exceptions.warn_skforecast_categories for more
        information.

    Returns
    -------
    boot_predictions : pandas DataFrame
        Long-format DataFrame with the bootstrapping predictions. The columns
        are `level`, `pred_boot_0`, `pred_boot_1`, ..., `pred_boot_n_boot`.

    References
    ----------
    .. [1] Forecasting: Principles and Practice (3rd ed) Rob J Hyndman and George Athanasopoulos.
           https://otexts.com/fpp3/prediction-intervals.html

    """

    set_skforecast_warnings(suppress_warnings, action='ignore')

    (
        last_window,
        exog_values_dict,
        levels,
        prediction_index
    ) = self._create_predict_inputs(
            steps                   = steps,
            levels                  = levels,
            last_window             = last_window,
            exog                    = exog,
            predict_probabilistic   = True,
            use_in_sample_residuals = use_in_sample_residuals,
            use_binned_residuals    = use_binned_residuals
        )

    if use_in_sample_residuals:
        residuals = self.in_sample_residuals_
        residuals_by_bin = self.in_sample_residuals_by_bin_
    else:
        residuals = self.out_sample_residuals_
        residuals_by_bin = self.out_sample_residuals_by_bin_

    n_levels = len(levels)
    rng = np.random.default_rng(seed=random_state)
    sampled_residuals_grid = np.full(
                                 shape      = (steps, n_boot, n_levels),
                                 fill_value = np.nan,
                                 order      = 'F',
                                 dtype      = float
                             )
    if use_binned_residuals:
        sampled_residuals = {
            k: sampled_residuals_grid.copy() 
            for k in range(self.binner_kwargs['n_bins'])
        }
        for bin in sampled_residuals.keys():
            for i, level in enumerate(levels):
                sampled_residuals[bin][:, :, i] = rng.choice(
                    a       = residuals_by_bin.get(level, residuals_by_bin['_unknown_level'])[bin],
                    size    = (steps, n_boot),
                    replace = True
                )
    else:
        for i, level in enumerate(levels):
            sampled_residuals_grid[:, :, i] = rng.choice(
                a       = residuals.get(level, residuals['_unknown_level']),
                size    = (steps, n_boot),
                replace = True
            )
        sampled_residuals = {'all': sampled_residuals_grid}

    boot_columns = []
    boot_predictions = np.full(
                           shape      = (steps, n_levels, n_boot),
                           fill_value = np.nan,
                           order      = 'F',
                           dtype      = float
                       )

    with warnings.catch_warnings():
        warnings.filterwarnings(
            "ignore", 
            message="X does not have valid feature names", 
            category=UserWarning
        )
        for i in range(n_boot):

            if use_binned_residuals:
                boot_sampled_residuals = {
                    k: v[:, i, :]
                    for k, v in sampled_residuals.items()
                }
            else:
                boot_sampled_residuals = sampled_residuals['all'][:, i, :]

            boot_columns.append(f"pred_boot_{i}")
            boot_predictions[:, :, i] = self._recursive_predict(
                steps                = steps,
                levels               = levels,
                last_window          = last_window,
                exog_values_dict     = exog_values_dict,
                residuals            = boot_sampled_residuals,
                use_binned_residuals = use_binned_residuals,
            )

    for i, level in enumerate(levels):

        if self.differentiation is not None and self.differentiator_[level] is not None:
            boot_predictions[:, i, :] = (
                self.differentiator_[level]
                .inverse_transform_next_window(boot_predictions[:, i, :])
            )

        transformer_level = self.transformer_series_.get(
                                level,
                                self.transformer_series_['_unknown_level']
                            )
        if transformer_level is not None:
            boot_predictions[:, i, :] = np.apply_along_axis(
                func1d            = transform_numpy,
                axis              = 0,
                arr               = boot_predictions[:, i, :],
                transformer       = transformer_level,
                fit               = False,
                inverse_transform = True
            )

    boot_predictions = pd.DataFrame(
                           data    = boot_predictions.reshape(-1, n_boot),
                           index   = np.repeat(prediction_index, n_levels),
                           columns = boot_columns
                       )
    boot_predictions.insert(0, 'level', np.tile(levels, steps))

    set_skforecast_warnings(suppress_warnings, action='default')

    return boot_predictions

_predict_interval_conformal

_predict_interval_conformal(
    steps,
    levels=None,
    last_window=None,
    exog=None,
    nominal_coverage=0.95,
    use_in_sample_residuals=True,
    use_binned_residuals=True,
)

Generate prediction intervals using the conformal prediction split method [1]_.

Parameters:

Name Type Description Default
steps int, str, pandas Timestamp

Number of steps to predict.

  • If steps is int, number of steps to predict.
  • If str or pandas Datetime, the prediction will be up to that date.
required
levels (str, list)

Time series to be predicted. If None all levels whose last window ends at the same datetime index will be predicted together.

None
last_window pandas Series, pandas DataFrame

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1). If last_window = None, the values stored inself.last_window_ are used to calculate the initial predictors, and the predictions start right after training data.

None
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s.

None
nominal_coverage float

Nominal coverage, also known as expected coverage, of the prediction intervals. Must be between 0 and 1.

0.95
use_in_sample_residuals bool

If True, residuals from the training data are used as proxy of prediction error to create predictions. If False, out of sample residuals (calibration) are used. Out-of-sample residuals must be precomputed using Forecaster's set_out_sample_residuals() method.

True
use_binned_residuals bool

If True, residuals are selected based on the predicted values (binned selection). If False, residuals are selected randomly.

True

Returns:

Name Type Description
predictions pandas DataFrame

Values predicted by the forecaster and their estimated interval.

  • pred: predictions.
  • lower_bound: lower bound of the interval.
  • upper_bound: upper bound of the interval.
References

.. [1] MAPIE - Model Agnostic Prediction Interval Estimator. https://mapie.readthedocs.io/en/stable/theoretical_description_regression.html#the-split-method

Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
def _predict_interval_conformal(
    self,
    steps: int | str | pd.Timestamp,
    levels: str | list[str] | None = None,
    last_window: pd.Series | pd.DataFrame | None = None,
    exog: pd.Series | pd.DataFrame | None = None,
    nominal_coverage: float = 0.95,
    use_in_sample_residuals: bool = True,
    use_binned_residuals: bool = True
) -> pd.DataFrame:
    """
    Generate prediction intervals using the conformal prediction 
    split method [1]_.

    Parameters
    ----------
    steps : int, str, pandas Timestamp
        Number of steps to predict. 

        - If steps is int, number of steps to predict. 
        - If str or pandas Datetime, the prediction will be up to that date.
    levels : str, list, default None
        Time series to be predicted. If `None` all levels whose last window
        ends at the same datetime index will be predicted together.
    last_window : pandas Series, pandas DataFrame, default None
        Series values used to create the predictors (lags) needed in the 
        first iteration of the prediction (t + 1).
        If `last_window = None`, the values stored in` self.last_window_` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : pandas Series, pandas DataFrame, default None
        Exogenous variable/s included as predictor/s.
    nominal_coverage : float, default 0.95
        Nominal coverage, also known as expected coverage, of the prediction
        intervals. Must be between 0 and 1.
    use_in_sample_residuals : bool, default True
        If `True`, residuals from the training data are used as proxy of
        prediction error to create predictions. 
        If `False`, out of sample residuals (calibration) are used. 
        Out-of-sample residuals must be precomputed using Forecaster's
        `set_out_sample_residuals()` method.
    use_binned_residuals : bool, default True
        If `True`, residuals are selected based on the predicted values 
        (binned selection).
        If `False`, residuals are selected randomly.

    Returns
    -------
    predictions : pandas DataFrame
        Values predicted by the forecaster and their estimated interval.

        - pred: predictions.
        - lower_bound: lower bound of the interval.
        - upper_bound: upper bound of the interval.

    References
    ----------
    .. [1] MAPIE - Model Agnostic Prediction Interval Estimator.
           https://mapie.readthedocs.io/en/stable/theoretical_description_regression.html#the-split-method

    """

    (
        last_window,
        exog_values_dict,
        levels,
        prediction_index
    ) = self._create_predict_inputs(
            steps                   = steps,
            levels                  = levels,
            last_window             = last_window,
            exog                    = exog,
            predict_probabilistic   = True,
            use_in_sample_residuals = use_in_sample_residuals,
            use_binned_residuals    = use_binned_residuals
        )

    if use_in_sample_residuals:
        residuals = self.in_sample_residuals_
        residuals_by_bin = self.in_sample_residuals_by_bin_
    else:
        residuals = self.out_sample_residuals_
        residuals_by_bin = self.out_sample_residuals_by_bin_

    with warnings.catch_warnings():
        warnings.filterwarnings(
            "ignore", 
            message="X does not have valid feature names", 
            category=UserWarning
        )
        predictions = self._recursive_predict(
                          steps            = steps,
                          levels           = levels,
                          last_window      = last_window,
                          exog_values_dict = exog_values_dict
                      )

    n_levels = len(levels)
    correction_factor = np.full(
        shape=(steps, n_levels), fill_value=np.nan, order='C', dtype=float
    )
    if use_binned_residuals:
        for i, level in enumerate(levels):
            residuals_level = residuals_by_bin.get(level, residuals_by_bin['_unknown_level'])
            correction_factor_by_bin = {
                k: np.quantile(np.abs(v), nominal_coverage)
                for k, v in residuals_level.items()
            }
            replace_func = np.vectorize(lambda x: correction_factor_by_bin[x])
            predictions_bin = (
                self.binner
                .get(level, self.binner['_unknown_level'])
                .transform(predictions[:, i])
            )
            correction_factor[:, i] = replace_func(predictions_bin)
    else:
        for i, level in enumerate(levels):
            correction_factor[:, i] = np.quantile(
                np.abs(residuals.get(level, residuals['_unknown_level'])), nominal_coverage
            )

    lower_bound = predictions - correction_factor
    upper_bound = predictions + correction_factor

    # NOTE: Create a 3D array with shape (n_levels, intervals, steps)
    predictions = np.array([predictions, lower_bound, upper_bound]).swapaxes(0, 2)

    for i, level in enumerate(levels):

        if self.differentiation is not None and self.differentiator_[level] is not None:
            predictions[i, :, :] = (
                self.differentiator_[level]
                .inverse_transform_next_window(predictions[i, :, :])
            )

        transformer_level = self.transformer_series_.get(
                                level,
                                self.transformer_series_['_unknown_level']
                            )
        if transformer_level is not None:
            predictions[i, :, :] = np.apply_along_axis(
                func1d            = transform_numpy,
                axis              = 0,
                arr               = predictions[i, :, :],
                transformer       = transformer_level,
                fit               = False,
                inverse_transform = True
            )

    predictions = pd.DataFrame(
                      data    = predictions.swapaxes(0, 1).reshape(-1, 3),
                      index   = np.repeat(prediction_index, n_levels),
                      columns = ["pred", "lower_bound", "upper_bound"]
                  )
    predictions.insert(0, 'level', np.tile(levels, steps))

    return predictions

predict_interval

predict_interval(
    steps,
    levels=None,
    last_window=None,
    exog=None,
    method="conformal",
    interval=[5, 95],
    n_boot=250,
    use_in_sample_residuals=True,
    use_binned_residuals=True,
    random_state=123,
    suppress_warnings=False,
)

Predict n steps ahead and estimate prediction intervals using either bootstrapping or conformal prediction methods. Refer to the References section for additional details on these methods.

Parameters:

Name Type Description Default
steps int

Number of steps to predict.

required
levels (str, list)

Time series to be predicted. If None all levels whose last window ends at the same datetime index will be predicted together.

None
last_window pandas DataFrame

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1). If last_window = None, the values stored in self.last_window_ are used to calculate the initial predictors, and the predictions start right after training data.

None
exog pandas Series, pandas DataFrame, dict

Exogenous variable/s included as predictor/s.

None
method str

Technique used to estimate prediction intervals. Available options:

  • 'bootstrapping': Bootstrapping is used to generate prediction intervals [1]_.
  • 'conformal': Employs the conformal prediction split method for interval estimation [2]_.
'conformal'
interval (float, list, tuple)

Confidence level of the prediction interval. Interpretation depends on the method used:

  • If float, represents the nominal (expected) coverage (between 0 and 1). For instance, interval=0.95 corresponds to [2.5, 97.5] percentiles.
  • If list or tuple, defines the exact percentiles to compute, which must be between 0 and 100 inclusive. For example, interval of 95% should be as interval = [2.5, 97.5].
  • When using method='conformal', the interval must be a float or a list/tuple defining a symmetric interval.
[5, 95]
n_boot int

Number of bootstrapping iterations to perform when estimating prediction intervals.

250
use_in_sample_residuals bool

If True, residuals from the training data are used as proxy of prediction error to create predictions. If False, out of sample residuals (calibration) are used. Out-of-sample residuals must be precomputed using Forecaster's set_out_sample_residuals() method.

True
use_binned_residuals bool

If True, residuals are selected based on the predicted values (binned selection). If False, residuals are selected randomly. New in version 0.15.0

True
random_state int

Seed for the random number generator to ensure reproducibility.

123
suppress_warnings bool

If True, skforecast warnings will be suppressed during the prediction process. See skforecast.exceptions.warn_skforecast_categories for more information.

False

Returns:

Name Type Description
predictions pandas DataFrame

Long-format DataFrame with the predictions and the lower and upper bounds of the estimated interval. The columns are level, pred, lower_bound, upper_bound.

References

.. [1] Forecasting: Principles and Practice (3rd ed) Rob J Hyndman and George Athanasopoulos. https://otexts.com/fpp3/prediction-intervals.html

.. [2] MAPIE - Model Agnostic Prediction Interval Estimator. https://mapie.readthedocs.io/en/stable/theoretical_description_regression.html#the-split-method

Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
def predict_interval(
    self,
    steps: int,
    levels: str | list[str] | None = None,
    last_window: pd.DataFrame | None = None,
    exog: pd.Series | pd.DataFrame | dict[str, pd.Series | pd.DataFrame] | None = None,
    method: str = 'conformal',
    interval: float | list[float] | tuple[float] = [5, 95],
    n_boot: int = 250,
    use_in_sample_residuals: bool = True,
    use_binned_residuals: bool = True,
    random_state: int = 123,
    suppress_warnings: bool = False
) -> pd.DataFrame:
    """
    Predict n steps ahead and estimate prediction intervals using either 
    bootstrapping or conformal prediction methods. Refer to the References 
    section for additional details on these methods.

    Parameters
    ----------
    steps : int
        Number of steps to predict. 
    levels : str, list, default None
        Time series to be predicted. If `None` all levels whose last window
        ends at the same datetime index will be predicted together.
    last_window : pandas DataFrame, default None
        Series values used to create the predictors (lags) needed in the 
        first iteration of the prediction (t + 1).
        If `last_window = None`, the values stored in `self.last_window_` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : pandas Series, pandas DataFrame, dict, default None
        Exogenous variable/s included as predictor/s.
    method : str, default 'conformal'
        Technique used to estimate prediction intervals. Available options:

        - 'bootstrapping': Bootstrapping is used to generate prediction 
        intervals [1]_.
        - 'conformal': Employs the conformal prediction split method for 
        interval estimation [2]_.
    interval : float, list, tuple, default [5, 95]
        Confidence level of the prediction interval. Interpretation depends 
        on the method used:

        - If `float`, represents the nominal (expected) coverage (between 0 
        and 1). For instance, `interval=0.95` corresponds to `[2.5, 97.5]` 
        percentiles.
        - If `list` or `tuple`, defines the exact percentiles to compute, which 
        must be between 0 and 100 inclusive. For example, interval 
        of 95% should be as `interval = [2.5, 97.5]`.
        - When using `method='conformal'`, the interval must be a float or 
        a list/tuple defining a symmetric interval.
    n_boot : int, default 250
        Number of bootstrapping iterations to perform when estimating prediction
        intervals.
    use_in_sample_residuals : bool, default True
        If `True`, residuals from the training data are used as proxy of
        prediction error to create predictions. 
        If `False`, out of sample residuals (calibration) are used. 
        Out-of-sample residuals must be precomputed using Forecaster's
        `set_out_sample_residuals()` method.
    use_binned_residuals : bool, default True
        If `True`, residuals are selected based on the predicted values 
        (binned selection).
        If `False`, residuals are selected randomly.
        **New in version 0.15.0**
    random_state : int, default 123
        Seed for the random number generator to ensure reproducibility.
    suppress_warnings : bool, default False
        If `True`, skforecast warnings will be suppressed during the prediction 
        process. See skforecast.exceptions.warn_skforecast_categories for more
        information.

    Returns
    -------
    predictions : pandas DataFrame
        Long-format DataFrame with the predictions and the lower and upper
        bounds of the estimated interval. The columns are `level`, `pred`,
        `lower_bound`, `upper_bound`.

    References
    ----------
    .. [1] Forecasting: Principles and Practice (3rd ed) Rob J Hyndman and George Athanasopoulos.
           https://otexts.com/fpp3/prediction-intervals.html

    .. [2] MAPIE - Model Agnostic Prediction Interval Estimator.
           https://mapie.readthedocs.io/en/stable/theoretical_description_regression.html#the-split-method

    """

    set_skforecast_warnings(suppress_warnings, action='ignore')

    if method == "bootstrapping":

        if isinstance(interval, (list, tuple)):
            check_interval(interval=interval, ensure_symmetric_intervals=False)
            interval = np.array(interval) / 100
        else:
            check_interval(alpha=interval, alpha_literal='interval')
            interval = np.array([0.5 - interval / 2, 0.5 + interval / 2])

        boot_predictions = self.predict_bootstrapping(
                               steps                   = steps,
                               levels                  = levels,
                               last_window             = last_window,
                               exog                    = exog,
                               n_boot                  = n_boot,
                               use_in_sample_residuals = use_in_sample_residuals,
                               use_binned_residuals    = use_binned_residuals,
                               random_state            = random_state,
                               suppress_warnings       = suppress_warnings
                           )

        predictions = self.predict(
                          steps             = steps,
                          levels            = levels,
                          last_window       = last_window,
                          exog              = exog,
                          suppress_warnings = suppress_warnings,
                          check_inputs      = False
                      )

        boot_predictions[['lower_bound', 'upper_bound']] = (
            boot_predictions.iloc[:, 1:].quantile(q=interval, axis=1).transpose()
        )
        predictions = pd.concat([
            predictions, boot_predictions[['lower_bound', 'upper_bound']]
        ], axis=1)

    elif method == 'conformal':

        if isinstance(interval, (list, tuple)):
            check_interval(interval=interval, ensure_symmetric_intervals=True)
            nominal_coverage = (interval[1] - interval[0]) / 100
        else:
            check_interval(alpha=interval, alpha_literal='interval')
            nominal_coverage = interval

        predictions = self._predict_interval_conformal(
                          steps                   = steps,
                          levels                  = levels,
                          last_window             = last_window,
                          exog                    = exog,
                          nominal_coverage        = nominal_coverage,
                          use_in_sample_residuals = use_in_sample_residuals,
                          use_binned_residuals    = use_binned_residuals
                      )
    else:
        raise ValueError(
            f"Invalid `method` '{method}'. Choose 'bootstrapping' or 'conformal'."
        )

    set_skforecast_warnings(suppress_warnings, action='default')

    return predictions

predict_quantiles

predict_quantiles(
    steps,
    levels=None,
    last_window=None,
    exog=None,
    quantiles=[0.05, 0.5, 0.95],
    n_boot=250,
    use_in_sample_residuals=True,
    use_binned_residuals=True,
    random_state=123,
    suppress_warnings=False,
)

Calculate the specified quantiles for each step. After generating multiple forecasting predictions through a bootstrapping process, each quantile is calculated for each step.

Parameters:

Name Type Description Default
steps int

Number of steps to predict.

required
levels (str, list)

Time series to be predicted. If None all levels whose last window ends at the same datetime index will be predicted together.

None
last_window pandas DataFrame

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1). If last_window = None, the values stored in self.last_window_ are used to calculate the initial predictors, and the predictions start right after training data.

None
exog pandas Series, pandas DataFrame, dict

Exogenous variable/s included as predictor/s.

None
quantiles (list, tuple)

Sequence of quantiles to compute, which must be between 0 and 1 inclusive. For example, quantiles of 0.05, 0.5 and 0.95 should be as quantiles = [0.05, 0.5, 0.95].

[0.05, 0.5, 0.95]
n_boot int

Number of bootstrapping iterations to perform when estimating quantiles.

250
use_in_sample_residuals bool

If True, residuals from the training data are used as proxy of prediction error to create predictions. If False, out of sample residuals (calibration) are used. Out-of-sample residuals must be precomputed using Forecaster's set_out_sample_residuals() method.

True
use_binned_residuals bool

If True, residuals are selected based on the predicted values (binned selection). If False, residuals are selected randomly. New in version 0.15.0

True
random_state int

Seed for the random number generator to ensure reproducibility.

123
suppress_warnings bool

If True, skforecast warnings will be suppressed during the prediction process. See skforecast.exceptions.warn_skforecast_categories for more information.

False

Returns:

Name Type Description
predictions pandas DataFrame

Long-format DataFrame with the quantiles predicted by the forecaster. For example, if quantiles = [0.05, 0.5, 0.95], the columns are level, q_0.05, q_0.5, q_0.95.

References

.. [1] Forecasting: Principles and Practice (3rd ed) Rob J Hyndman and George Athanasopoulos. https://otexts.com/fpp3/prediction-intervals.html

Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
def predict_quantiles(
    self,
    steps: int,
    levels: str | list[str] | None = None,
    last_window: pd.DataFrame | None = None,
    exog: pd.Series | pd.DataFrame | dict[str, pd.Series | pd.DataFrame] | None = None,
    quantiles: list[float] | tuple[float] = [0.05, 0.5, 0.95],
    n_boot: int = 250,
    use_in_sample_residuals: bool = True,
    use_binned_residuals: bool = True,
    random_state: int = 123,
    suppress_warnings: bool = False
) -> pd.DataFrame:
    """
    Calculate the specified quantiles for each step. After generating 
    multiple forecasting predictions through a bootstrapping process, each 
    quantile is calculated for each step.

    Parameters
    ----------
    steps : int
        Number of steps to predict. 
    levels : str, list, default None
        Time series to be predicted. If `None` all levels whose last window
        ends at the same datetime index will be predicted together.
    last_window : pandas DataFrame, default None
        Series values used to create the predictors (lags) needed in the 
        first iteration of the prediction (t + 1).
        If `last_window = None`, the values stored in `self.last_window_` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : pandas Series, pandas DataFrame, dict, default None
        Exogenous variable/s included as predictor/s.
    quantiles : list, tuple, default [0.05, 0.5, 0.95]
        Sequence of quantiles to compute, which must be between 0 and 1 
        inclusive. For example, quantiles of 0.05, 0.5 and 0.95 should be as 
        `quantiles = [0.05, 0.5, 0.95]`.
    n_boot : int, default 250
        Number of bootstrapping iterations to perform when estimating quantiles.
    use_in_sample_residuals : bool, default True
        If `True`, residuals from the training data are used as proxy of
        prediction error to create predictions. 
        If `False`, out of sample residuals (calibration) are used. 
        Out-of-sample residuals must be precomputed using Forecaster's
        `set_out_sample_residuals()` method.
    use_binned_residuals : bool, default True
        If `True`, residuals are selected based on the predicted values 
        (binned selection).
        If `False`, residuals are selected randomly.
        **New in version 0.15.0**
    random_state : int, default 123
        Seed for the random number generator to ensure reproducibility.
    suppress_warnings : bool, default False
        If `True`, skforecast warnings will be suppressed during the prediction 
        process. See skforecast.exceptions.warn_skforecast_categories for more
        information.

    Returns
    -------
    predictions : pandas DataFrame
        Long-format DataFrame with the quantiles predicted by the forecaster.
        For example, if `quantiles = [0.05, 0.5, 0.95]`, the columns are
        `level`, `q_0.05`, `q_0.5`, `q_0.95`.

    References
    ----------
    .. [1] Forecasting: Principles and Practice (3rd ed) Rob J Hyndman and George Athanasopoulos.
           https://otexts.com/fpp3/prediction-intervals.html

    """

    set_skforecast_warnings(suppress_warnings, action='ignore')

    check_interval(quantiles=quantiles)

    predictions = self.predict_bootstrapping(
                      steps                   = steps,
                      levels                  = levels,
                      last_window             = last_window,
                      exog                    = exog,
                      n_boot                  = n_boot,
                      use_in_sample_residuals = use_in_sample_residuals,
                      use_binned_residuals    = use_binned_residuals,
                      random_state            = random_state,
                      suppress_warnings       = suppress_warnings
                  )

    quantiles_cols = [f'q_{q}' for q in quantiles]
    predictions[quantiles_cols] = (
        predictions.iloc[:, 1:].quantile(q=quantiles, axis=1).transpose()
    )
    predictions = predictions[['level'] + quantiles_cols]

    set_skforecast_warnings(suppress_warnings, action='default')

    return predictions

predict_dist

predict_dist(
    steps,
    distribution,
    levels=None,
    last_window=None,
    exog=None,
    n_boot=250,
    use_in_sample_residuals=True,
    use_binned_residuals=True,
    random_state=123,
    suppress_warnings=False,
)

Fit a given probability distribution for each step. After generating multiple forecasting predictions through a bootstrapping process, each step is fitted to the given distribution.

Parameters:

Name Type Description Default
steps int

Number of steps to predict.

required
distribution object

A distribution object from scipy.stats with methods _pdf and fit. For example scipy.stats.norm.

required
levels (str, list)

Time series to be predicted. If None all levels whose last window ends at the same datetime index will be predicted together.

None
last_window pandas DataFrame

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1). If last_window = None, the values stored in self.last_window_ are used to calculate the initial predictors, and the predictions start right after training data.

None
exog pandas Series, pandas DataFrame, dict

Exogenous variable/s included as predictor/s.

None
n_boot int

Number of bootstrapping iterations to perform when estimating prediction intervals.

250
use_in_sample_residuals bool

If True, residuals from the training data are used as proxy of prediction error to create predictions. If False, out of sample residuals (calibration) are used. Out-of-sample residuals must be precomputed using Forecaster's set_out_sample_residuals() method.

True
use_binned_residuals bool

If True, residuals are selected based on the predicted values (binned selection). If False, residuals are selected randomly. New in version 0.15.0

True
random_state int

Seed for the random number generator to ensure reproducibility.

123
suppress_warnings bool

If True, skforecast warnings will be suppressed during the prediction process. See skforecast.exceptions.warn_skforecast_categories for more information.

False

Returns:

Name Type Description
predictions pandas DataFrame

Long-format DataFrame with the parameters of the fitted distribution for each step. The columns are level, param_0, param_1, ..., param_n, where param_i are the parameters of the distribution.

References

.. [1] Forecasting: Principles and Practice (3rd ed) Rob J Hyndman and George Athanasopoulos. https://otexts.com/fpp3/prediction-intervals.html

Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
def predict_dist(
    self,
    steps: int,
    distribution: object,
    levels: str | list[str] | None = None,
    last_window: pd.DataFrame | None = None,
    exog: pd.Series | pd.DataFrame | dict[str, pd.Series | pd.DataFrame] | None = None,
    n_boot: int = 250,
    use_in_sample_residuals: bool = True,
    use_binned_residuals: bool = True,
    random_state: int = 123,
    suppress_warnings: bool = False
) -> pd.DataFrame:
    """
    Fit a given probability distribution for each step. After generating 
    multiple forecasting predictions through a bootstrapping process, each 
    step is fitted to the given distribution.

    Parameters
    ----------
    steps : int
        Number of steps to predict. 
    distribution : object
        A distribution object from scipy.stats with methods `_pdf` and `fit`. 
        For example scipy.stats.norm.
    levels : str, list, default None
        Time series to be predicted. If `None` all levels whose last window
        ends at the same datetime index will be predicted together.
    last_window : pandas DataFrame, default None
        Series values used to create the predictors (lags) needed in the 
        first iteration of the prediction (t + 1).
        If `last_window = None`, the values stored in `self.last_window_` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : pandas Series, pandas DataFrame, dict, default None
        Exogenous variable/s included as predictor/s.
    n_boot : int, default 250
        Number of bootstrapping iterations to perform when estimating prediction
        intervals.
    use_in_sample_residuals : bool, default True
        If `True`, residuals from the training data are used as proxy of
        prediction error to create predictions. 
        If `False`, out of sample residuals (calibration) are used. 
        Out-of-sample residuals must be precomputed using Forecaster's
        `set_out_sample_residuals()` method.
    use_binned_residuals : bool, default True
        If `True`, residuals are selected based on the predicted values 
        (binned selection).
        If `False`, residuals are selected randomly.
        **New in version 0.15.0**
    random_state : int, default 123
        Seed for the random number generator to ensure reproducibility.
    suppress_warnings : bool, default False
        If `True`, skforecast warnings will be suppressed during the prediction 
        process. See skforecast.exceptions.warn_skforecast_categories for more
        information.

    Returns
    -------
    predictions : pandas DataFrame
        Long-format DataFrame with the parameters of the fitted distribution
        for each step. The columns are `level`, `param_0`, `param_1`, ..., 
        `param_n`, where `param_i` are the parameters of the distribution.

    References
    ----------
    .. [1] Forecasting: Principles and Practice (3rd ed) Rob J Hyndman and George Athanasopoulos.
           https://otexts.com/fpp3/prediction-intervals.html

    """

    if not hasattr(distribution, "_pdf") or not callable(getattr(distribution, "fit", None)):
        raise TypeError(
            "`distribution` must be a valid probability distribution object "
            "from scipy.stats, with methods `_pdf` and `fit`."
        )

    set_skforecast_warnings(suppress_warnings, action='ignore')

    predictions = self.predict_bootstrapping(
                      steps                   = steps,
                      levels                  = levels,
                      last_window             = last_window,
                      exog                    = exog,
                      n_boot                  = n_boot,
                      use_in_sample_residuals = use_in_sample_residuals,
                      use_binned_residuals    = use_binned_residuals,
                      random_state            = random_state,
                      suppress_warnings       = suppress_warnings
                  )

    param_names = [
        p for p in inspect.signature(distribution._pdf).parameters 
        if not p == "x"
    ] + ["loc", "scale"]

    predictions[param_names] = (
        predictions.iloc[:, 1:].apply(
            lambda x: distribution.fit(x), axis=1, result_type='expand'
        )
    )
    predictions = predictions[['level'] + param_names]

    set_skforecast_warnings(suppress_warnings, action='default')

    return predictions

set_params

set_params(params)

Set new values to the parameters of the scikit-learn model stored in the forecaster.

Parameters:

Name Type Description Default
params dict

Parameters values.

required

Returns:

Type Description
None
Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
def set_params(
    self, 
    params: dict[str, object]
) -> None:
    """
    Set new values to the parameters of the scikit-learn model stored in the
    forecaster.

    Parameters
    ----------
    params : dict
        Parameters values.

    Returns
    -------
    None

    """

    self.regressor = clone(self.regressor)
    self.regressor.set_params(**params)

set_fit_kwargs

set_fit_kwargs(fit_kwargs)

Set new values for the additional keyword arguments passed to the fit method of the regressor.

Parameters:

Name Type Description Default
fit_kwargs dict

Dict of the form {"argument": new_value}.

required

Returns:

Type Description
None
Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
def set_fit_kwargs(
    self, 
    fit_kwargs: dict[str, object]
) -> None:
    """
    Set new values for the additional keyword arguments passed to the `fit` 
    method of the regressor.

    Parameters
    ----------
    fit_kwargs : dict
        Dict of the form {"argument": new_value}.

    Returns
    -------
    None

    """

    self.fit_kwargs = check_select_fit_kwargs(self.regressor, fit_kwargs=fit_kwargs)

set_lags

set_lags(lags=None)

Set new value to the attribute lags. Attributes lags_names, max_lag and window_size are also updated.

Parameters:

Name Type Description Default
lags int, list, numpy ndarray, range

Lags used as predictors. Index starts at 1, so lag 1 is equal to t-1.

  • int: include lags from 1 to lags (included).
  • list, 1d numpy ndarray or range: include only lags present in lags, all elements must be int.
  • None: no lags are included as predictors.
None

Returns:

Type Description
None
Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
def set_lags(
    self, 
    lags: int | list[int] | np.ndarray[int] | range[int] | None = None
) -> None:
    """
    Set new value to the attribute `lags`. Attributes `lags_names`, 
    `max_lag` and `window_size` are also updated.

    Parameters
    ----------
    lags : int, list, numpy ndarray, range, default None
        Lags used as predictors. Index starts at 1, so lag 1 is equal to t-1. 

        - `int`: include lags from 1 to `lags` (included).
        - `list`, `1d numpy ndarray` or `range`: include only lags present in 
        `lags`, all elements must be int.
        - `None`: no lags are included as predictors. 

    Returns
    -------
    None

    """

    if self.window_features is None and lags is None:
        raise ValueError(
            "At least one of the arguments `lags` or `window_features` "
            "must be different from None. This is required to create the "
            "predictors used in training the forecaster."
        )

    self.lags, self.lags_names, self.max_lag = initialize_lags(type(self).__name__, lags)
    self.window_size = max(
        [ws for ws in [self.max_lag, self.max_size_window_features] 
         if ws is not None]
    )

    if self.differentiation is not None:
        self.window_size += self.differentiation_max
        if isinstance(self.differentiator, dict):
            for series in self.differentiator.keys():
                if self.differentiator[series] is not None:
                    self.differentiator[series].set_params(window_size=self.window_size)
        else:
            self.differentiator.set_params(window_size=self.window_size)

set_window_features

set_window_features(window_features=None)

Set new value to the attribute window_features. Attributes max_size_window_features, window_features_names, window_features_class_names and window_size are also updated.

Parameters:

Name Type Description Default
window_features (object, list)

Instance or list of instances used to create window features. Window features are created from the original time series and are included as predictors.

None

Returns:

Type Description
None
Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
def set_window_features(
    self, 
    window_features: object | list[object] | None = None
) -> None:
    """
    Set new value to the attribute `window_features`. Attributes 
    `max_size_window_features`, `window_features_names`, 
    `window_features_class_names` and `window_size` are also updated.

    Parameters
    ----------
    window_features : object, list, default None
        Instance or list of instances used to create window features. Window features
        are created from the original time series and are included as predictors.

    Returns
    -------
    None

    """

    if window_features is None and self.lags is None:
        raise ValueError(
            "At least one of the arguments `lags` or `window_features` "
            "must be different from None. This is required to create the "
            "predictors used in training the forecaster."
        )

    self.window_features, self.window_features_names, self.max_size_window_features = (
        initialize_window_features(window_features)
    )
    self.window_features_class_names = None
    if window_features is not None:
        self.window_features_class_names = [
            type(wf).__name__ for wf in self.window_features
        ] 
    self.window_size = max(
        [ws for ws in [self.max_lag, self.max_size_window_features] 
         if ws is not None]
    )

    if self.differentiation is not None:
        self.window_size += self.differentiation_max
        if isinstance(self.differentiator, dict):
            for series in self.differentiator.keys():
                if self.differentiator[series] is not None:
                    self.differentiator[series].set_params(window_size=self.window_size)
        else:
            self.differentiator.set_params(window_size=self.window_size)

set_in_sample_residuals

set_in_sample_residuals(
    series,
    exog=None,
    random_state=123,
    suppress_warnings=False,
)

Set in-sample residuals in case they were not calculated during the training process.

In-sample residuals are calculated as the difference between the true values and the predictions made by the forecaster using the training data. The following internal attributes are updated:

  • in_sample_residuals_: Dictionary containing a numpy ndarray with the residuals for each series in the form {series: residuals}.
  • binner_intervals_: intervals used to bin the residuals are calculated using the quantiles of the predicted values.
  • in_sample_residuals_by_bin_: residuals are binned according to the predicted value they are associated with and stored in a dictionary per series, where the keys are the intervals of the predicted values and the values are the residuals associated with that range.

A total of 10_000 residuals are stored in the attribute in_sample_residuals_. If the number of residuals is greater than 10_000, a random sample of 10_000 residuals is stored. The number of residuals stored per bin is limited to 10_000 // self.binner.n_bins_.

Parameters:

Name Type Description Default
series pandas DataFrame, dict

Training time series.

required
exog pandas Series, pandas DataFrame, dict

Exogenous variable/s included as predictor/s.

None
random_state int

Sets a seed to the random sampling for reproducible output.

123
suppress_warnings bool

If True, skforecast warnings will be suppressed during the sampling process. See skforecast.exceptions.warn_skforecast_categories for more information.

False

Returns:

Type Description
None
Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
def set_in_sample_residuals(
    self,
    series: pd.DataFrame | dict[str, pd.Series | pd.DataFrame],
    exog: pd.Series | pd.DataFrame | dict[str, pd.Series | pd.DataFrame] | None = None,
    random_state: int = 123,
    suppress_warnings: bool = False
) -> None:
    """
    Set in-sample residuals in case they were not calculated during the
    training process. 

    In-sample residuals are calculated as the difference between the true 
    values and the predictions made by the forecaster using the training 
    data. The following internal attributes are updated:

    + `in_sample_residuals_`: Dictionary containing a numpy ndarray with the
    residuals for each series in the form `{series: residuals}`.
    + `binner_intervals_`: intervals used to bin the residuals are calculated
    using the quantiles of the predicted values.
    + `in_sample_residuals_by_bin_`: residuals are binned according to the
    predicted value they are associated with and stored in a dictionary per
    series, where the keys are the intervals of the predicted values and the 
    values are the residuals associated with that range. 

    A total of 10_000 residuals are stored in the attribute `in_sample_residuals_`.
    If the number of residuals is greater than 10_000, a random sample of
    10_000 residuals is stored. The number of residuals stored per bin is
    limited to `10_000 // self.binner.n_bins_`.

    Parameters
    ----------
    series : pandas DataFrame, dict
        Training time series.
    exog : pandas Series, pandas DataFrame, dict, default None
        Exogenous variable/s included as predictor/s.
    random_state : int, default 123
        Sets a seed to the random sampling for reproducible output.
    suppress_warnings : bool, default False
        If `True`, skforecast warnings will be suppressed during the sampling 
        process. See skforecast.exceptions.warn_skforecast_categories for more
        information.

    Returns
    -------
    None

    """

    set_skforecast_warnings(suppress_warnings, action='ignore')

    if not self.is_fitted:
        raise NotFittedError(
            "This forecaster is not fitted yet. Call `fit` with appropriate "
            "arguments before using `set_in_sample_residuals()`."
        )

    (
        X_train,
        y_train,
        series_indexes,
        _,
        X_train_series_names_in_,
        *_
    ) = self._create_train_X_y(
            series=series, exog=exog, store_last_window=False
        )

    # NOTE: Same series names as training is checked in _create_train_X_y.
    series_index_range = {k: v[[0, -1]] for k, v in series_indexes.items()}
    for level in self.training_range_.keys():
        if not series_index_range[level].equals(self.training_range_[level]):
            raise IndexError(
                f"The index range for series '{level}' does not match the range "
                f"used during training. Please ensure the index is aligned "
                f"with the training data.\n"
                f"    Expected : {self.training_range_[level]}\n"
                f"    Received : {series_index_range[level]}"
            )

    X_train_regressor = (
        X_train
        if self.encoding is not None
        else X_train.drop(columns="_level_skforecast")
    )
    X_train_features_names_out_ = X_train_regressor.columns.to_list()
    if not X_train_features_names_out_ == self.X_train_features_names_out_:
        raise ValueError(
            f"Feature mismatch detected after matrix creation. The features "
            f"generated from the provided data do not match those used during "
            f"the training process. To correctly set in-sample residuals, "
            f"ensure that the same data and preprocessing steps are applied.\n"
            f"    Expected output : {self.X_train_features_names_out_}\n"
            f"    Current output  : {X_train_features_names_out_}"
        )

    self.in_sample_residuals_ = {}
    self.in_sample_residuals_by_bin_ = {}
    y_pred = self.regressor.predict(X_train_regressor)
    if self.encoding is not None:
        for level in X_train_series_names_in_:
            if self.encoding == 'onehot':
                mask = X_train[level].to_numpy() == 1.
            else:
                encoded_value = self.encoding_mapping_[level]
                mask = X_train['_level_skforecast'].to_numpy() == encoded_value

            self._binning_in_sample_residuals(
                level                     = level,
                y_true                    = y_train[mask],
                y_pred                    = y_pred[mask],
                store_in_sample_residuals = True,
                random_state              = random_state
            )

    # NOTE: the _unknown_level is a random sample of 10_000 residuals of all levels.
    self._binning_in_sample_residuals(
        level                     = '_unknown_level',
        y_true                    = y_train,
        y_pred                    = y_pred,
        store_in_sample_residuals = True,
        random_state              = random_state
    )

    set_skforecast_warnings(suppress_warnings, action='default')

set_out_sample_residuals

set_out_sample_residuals(
    y_true, y_pred, append=False, random_state=123
)

Set new values to the attribute out_sample_residuals_. Out of sample residuals are meant to be calculated using observations that did not participate in the training process. y_true and y_pred are expected to be in the original scale of the time series. Residuals are calculated as y_true - y_pred, after applying the necessary transformations and differentiations if the forecaster includes them (self.transformer_series and self.differentiation).

A total of 10_000 residuals are stored in the attribute out_sample_residuals_. If the number of residuals is greater than 10_000, a random sample of 10_000 residuals is stored.

Parameters:

Name Type Description Default
y_true dict

Dictionary of numpy ndarrays or pandas Series with the true values of the time series for each series in the form {series: y_true}.

required
y_pred dict

Dictionary of numpy ndarrays or pandas Series with the predicted values of the time series for each series in the form {series: y_pred}.

required
append bool

If True, new residuals are added to the once already stored in the attribute out_sample_residuals_. If after appending the new residuals, the limit of 10_000 samples is exceeded, a random sample of 10_000 is kept.

False
random_state int

Sets a seed to the random sampling for reproducible output.

123

Returns:

Type Description
None
Notes

Out-of-sample residuals can only be stored for series seen during fit. To save residuals for unseen levels use the key '_unknown_level'.

Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
def set_out_sample_residuals(
    self, 
    y_true: dict[str, np.ndarray | pd.Series],
    y_pred: dict[str, np.ndarray | pd.Series],
    append: bool = False,
    random_state: int = 123
) -> None:
    """
    Set new values to the attribute `out_sample_residuals_`. Out of sample
    residuals are meant to be calculated using observations that did not
    participate in the training process. `y_true` and `y_pred` are expected
    to be in the original scale of the time series. Residuals are calculated
    as `y_true` - `y_pred`, after applying the necessary transformations and
    differentiations if the forecaster includes them (`self.transformer_series`
    and `self.differentiation`).

    A total of 10_000 residuals are stored in the attribute `out_sample_residuals_`.
    If the number of residuals is greater than 10_000, a random sample of
    10_000 residuals is stored.

    Parameters
    ----------
    y_true : dict
        Dictionary of numpy ndarrays or pandas Series with the true values of
        the time series for each series in the form {series: y_true}.
    y_pred : dict
        Dictionary of numpy ndarrays or pandas Series with the predicted values
        of the time series for each series in the form {series: y_pred}.
    append : bool, default False
        If `True`, new residuals are added to the once already stored in the
        attribute `out_sample_residuals_`. If after appending the new residuals,
        the limit of 10_000 samples is exceeded, a random sample of 10_000 is
        kept.
    random_state : int, default 123
        Sets a seed to the random sampling for reproducible output.

    Returns
    -------
    None

    Notes
    -----
    Out-of-sample residuals can only be stored for series seen during 
    fit. To save residuals for unseen levels use the key '_unknown_level'. 

    """

    if not self.is_fitted:
        raise NotFittedError(
            "This forecaster is not fitted yet. Call `fit` with appropriate "
            "arguments before using `set_out_sample_residuals()`."
        )

    if not isinstance(y_true, dict):
        raise TypeError(
            f"`y_true` must be a dictionary of numpy ndarrays or pandas Series. "
            f"Got {type(y_true)}."
        )

    if not isinstance(y_pred, dict):
        raise TypeError(
            f"`y_pred` must be a dictionary of numpy ndarrays or pandas Series. "
            f"Got {type(y_pred)}."
        )

    if not set(y_true.keys()) == set(y_pred.keys()):
        raise ValueError(
            f"`y_true` and `y_pred` must have the same keys. "
            f"Got {set(y_true.keys())} and {set(y_pred.keys())}."
        )

    for k in y_true.keys():
        if not isinstance(y_true[k], (np.ndarray, pd.Series)):
            raise TypeError(
                f"Values of `y_true` must be numpy ndarrays or pandas Series. "
                f"Got {type(y_true[k])} for series '{k}'."
            )
        if not isinstance(y_pred[k], (np.ndarray, pd.Series)):
            raise TypeError(
                f"Values of `y_pred` must be numpy ndarrays or pandas Series. "
                f"Got {type(y_pred[k])} for series '{k}'."
            )
        if len(y_true[k]) != len(y_pred[k]):
            raise ValueError(
                f"`y_true` and `y_pred` must have the same length. "
                f"Got {len(y_true[k])} and {len(y_pred[k])} for series '{k}'."
            )
        if isinstance(y_true[k], pd.Series) and isinstance(y_pred[k], pd.Series):
            if not y_true[k].index.equals(y_pred[k].index):
                raise ValueError(
                    f"When containing pandas Series, elements in `y_true` and "
                    f"`y_pred` must have the same index. Error with series '{k}'."
                )

    # NOTE: Out-of-sample residuals can only be stored for series seen during 
    # fit. To save residuals for unseen levels use the key '_unknown_level'. 
    series_names_in_ = self.series_names_in_ + ['_unknown_level']        
    if self.out_sample_residuals_ is None:
        if self.encoding is not None:
            self.out_sample_residuals_ = {level: None for level in series_names_in_}
            self.out_sample_residuals_by_bin_ = {level: {} for level in series_names_in_}
        else:
            self.out_sample_residuals_ = {'_unknown_level': None}
            self.out_sample_residuals_by_bin_ = {'_unknown_level': {}}

    series_to_update = set(y_pred.keys()).intersection(set(series_names_in_))
    if not series_to_update:
        raise ValueError(
            "Provided keys in `y_pred` and `y_true` do not match any series "
            "seen during `fit`. Residuals cannot be updated."
        )

    for level in series_to_update:
        residuals_level, residuals_by_bin_level = (
            self._binning_out_sample_residuals(
                level        = level,
                y_true       = y_true[level],
                y_pred       = y_pred[level],
                append       = append,
                random_state = random_state
            )
        )
        self.out_sample_residuals_[level] = residuals_level
        self.out_sample_residuals_by_bin_[level] = residuals_by_bin_level

    if self.encoding is None or '_unknown_level' not in series_to_update:
        if self.encoding is None and list(y_true.keys()) != ['_unknown_level']:
            warnings.warn(
                "As `encoding` is set to `None`, no distinction between levels "
                "is made. All residuals are stored in the '_unknown_level' key.",
                UnknownLevelWarning
            )

        # NOTE: when encoding is None, all levels are combined in '_unknown_level'.
        if list(self.out_sample_residuals_.keys()) != ['_unknown_level']:
            # To update completely _unknown_level later
            self.out_sample_residuals_.pop('_unknown_level', None)

        residuals_all_levels = np.concatenate(
            [
                value 
                for value in self.out_sample_residuals_.values()
                if value is not None
            ]
        )
        rng = np.random.default_rng(seed=random_state)
        if len(residuals_all_levels) > 10_000:
            residuals_all_levels = rng.choice(
                                       a       = residuals_all_levels,
                                       size    = 10_000,
                                       replace = False
                                   )

        all_bins_keys = set(
            bin_key 
            for dict_level_bins in self.out_sample_residuals_by_bin_.values()
            for bin_key in dict_level_bins.keys()
        )
        residuals_by_bin_all_levels = {
            bin_key: np.concatenate(
                [
                    dict_level_bins.get(bin_key, np.array([]))
                    for dict_level_bins in self.out_sample_residuals_by_bin_.values()
                ]
            )
            for bin_key in all_bins_keys
        }
        for key in residuals_by_bin_all_levels.keys():
            if len(residuals_by_bin_all_levels[key]) > 10_000:
                residuals_by_bin_all_levels[key] = rng.choice(
                    a       = residuals_by_bin_all_levels[key],
                    size    = 10_000,
                    replace = False
                )

        if self.encoding is None:
            self.out_sample_residuals_ = {'_unknown_level': residuals_all_levels}
            self.out_sample_residuals_by_bin_ = {'_unknown_level': residuals_by_bin_all_levels}
        else:
            self.out_sample_residuals_['_unknown_level'] = residuals_all_levels
            self.out_sample_residuals_by_bin_['_unknown_level'] = residuals_by_bin_all_levels

_binning_out_sample_residuals

_binning_out_sample_residuals(
    level, y_true, y_pred, append=False, random_state=123
)

Bin out sample residuals using the already fitted binner. y_true and y_pred are expected to be in the original scale of the time series. Residuals are calculated as y_true - y_pred, after applying the necessary transformations and differentiations if the forecaster includes them (self.transformer_series and self.differentiation).

Parameters:

Name Type Description Default
level str

Name of the level y_true and y_pred belong to.

required
y_true numpy ndarray

True values of the time series.

required
y_pred numpy ndarray

Predicted values of the time series.

required
append bool

If True, new residuals are added to the once already stored in the attribute out_sample_residuals_. If after appending the new residuals, the limit of 10_000 samples is exceeded, a random sample of 10_000 is kept.

False
random_state int

Sets a seed to the random sampling for reproducible output.

123

Returns:

Name Type Description
out_sample_residuals numpy ndarray

Array with the residual for level.

out_sample_residuals_by_bin dict

Dictionary with the residuals binned by the fitted binner for level.

Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
def _binning_out_sample_residuals(
    self,
    level: str,
    y_true: np.ndarray,
    y_pred: np.ndarray,
    append: bool = False,
    random_state: int = 123
) -> tuple[np.ndarray, dict[int, np.ndarray]]:
    """
    Bin out sample residuals using the already fitted binner.
    `y_true` and `y_pred` are expected to be in the original scale of the
    time series. Residuals are calculated as `y_true` - `y_pred`, after 
    applying the necessary transformations and differentiations if the
    forecaster includes them (`self.transformer_series` and `self.differentiation`).

    Parameters
    ----------
    level : str
        Name of the level y_true and y_pred belong to.
    y_true : numpy ndarray
        True values of the time series.
    y_pred : numpy ndarray
        Predicted values of the time series.
    append : bool, default False
        If `True`, new residuals are added to the once already stored in the
        attribute `out_sample_residuals_`. If after appending the new residuals,
        the limit of 10_000 samples is exceeded, a random sample of 10_000 is
        kept.
    random_state : int, default 123
        Sets a seed to the random sampling for reproducible output.

    Returns
    -------
    out_sample_residuals : numpy ndarray
        Array with the residual for `level`.
    out_sample_residuals_by_bin : dict
        Dictionary with the residuals binned by the fitted binner for `level`.

    """

    # NOTE: if the level is not known or encoding is None, then transformer,
    # differentiator and binner used are the ones of "_unknown_level"
    transformer = self.transformer_series_.get(level, self.transformer_series_['_unknown_level'])
    differentiator = copy(
        self.differentiator_.get(level, self.differentiator_["_unknown_level"])
    )
    if differentiator is not None:
        differentiator.set_params(window_size=None)

    if isinstance(y_true, pd.Series):
        y_true = y_true.to_numpy()
    if isinstance(y_pred, pd.Series):
        y_pred = y_pred.to_numpy()

    if self.transformer_series:
        y_true = transform_numpy(
                     array             = y_true,
                     transformer       = transformer,
                     fit               = False,
                     inverse_transform = False
                 )
        y_pred = transform_numpy(
                     array             = y_pred,
                     transformer       = transformer,
                     fit               = False,
                     inverse_transform = False
                 )

    if differentiator is not None:
        y_true = differentiator.fit_transform(y_true)[differentiator.order:]
        y_pred = differentiator.fit_transform(y_pred)[differentiator.order:]

    data = pd.DataFrame(
        {'prediction': y_pred, 'residuals': y_true - y_pred}
    ).dropna()
    y_pred = data['prediction'].to_numpy()
    residuals = data['residuals'].to_numpy()

    binner = self.binner.get(level, self.binner['_unknown_level'])
    data['bin'] = binner.transform(y_pred).astype(int)
    residuals_by_bin = data.groupby('bin')['residuals'].apply(np.array).to_dict()

    out_sample_residuals = self.out_sample_residuals_.get(level, np.array([]))
    out_sample_residuals_by_bin = deepcopy(self.out_sample_residuals_by_bin_.get(level, {}))

    out_sample_residuals = (
        np.array([]) 
        if out_sample_residuals is None
        else out_sample_residuals
    )
    out_sample_residuals_by_bin = (
        {} 
        if out_sample_residuals_by_bin is None
        else out_sample_residuals_by_bin
    )
    if append:
        out_sample_residuals = np.concatenate([out_sample_residuals, residuals])
        for k, v in residuals_by_bin.items():
            if k in out_sample_residuals_by_bin:
                out_sample_residuals_by_bin[k] = np.concatenate(
                    (out_sample_residuals_by_bin[k], v)
                )
            else:
                out_sample_residuals_by_bin[k] = v
    else:
        out_sample_residuals = residuals
        out_sample_residuals_by_bin = residuals_by_bin

    max_samples = 10_000 // binner.n_bins_
    rng = np.random.default_rng(seed=random_state)
    for k, v in out_sample_residuals_by_bin.items():
        if len(v) > max_samples:
            sample = rng.choice(a=v, size=max_samples, replace=False)
            out_sample_residuals_by_bin[k] = sample

    for k in self.binner_intervals_.get(level, {}).keys():
        if k not in out_sample_residuals_by_bin:
            out_sample_residuals_by_bin[k] = np.array([])

    empty_bins = [
        k for k, v in out_sample_residuals_by_bin.items() 
        if v.size == 0
    ]
    if empty_bins:
        warnings.warn(
            f"The following bins of level '{level}' have no out of sample residuals: "
            f"{empty_bins}. No predicted values fall in the interval "
            f"{[self.binner_intervals_[level][bin] for bin in empty_bins]}. "
            f"Empty bins will be filled with a random sample of residuals.", 
            ResidualsUsageWarning
        )
        for k in empty_bins:
            out_sample_residuals_by_bin[k] = rng.choice(
                a       = out_sample_residuals,
                size    = min(max_samples, len(out_sample_residuals)),
                replace = False
            )

    if len(out_sample_residuals) > 10_000:
        out_sample_residuals = rng.choice(
            a       = out_sample_residuals, 
            size    = 10_000, 
            replace = False
        )

    return out_sample_residuals, out_sample_residuals_by_bin

get_feature_importances

get_feature_importances(sort_importance=True)

Return feature importances of the regressor stored in the forecaster. Only valid when regressor stores internally the feature importances in the attribute feature_importances_ or coef_.

Parameters:

Name Type Description Default
sort_importance bool

If True, sorts the feature importances in descending order.

True

Returns:

Name Type Description
feature_importances pandas DataFrame

Feature importances associated with each predictor.

Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
def get_feature_importances(
    self,
    sort_importance: bool = True
) -> pd.DataFrame:
    """
    Return feature importances of the regressor stored in the
    forecaster. Only valid when regressor stores internally the feature
    importances in the attribute `feature_importances_` or `coef_`.

    Parameters
    ----------
    sort_importance: bool, default True
        If `True`, sorts the feature importances in descending order.

    Returns
    -------
    feature_importances : pandas DataFrame
        Feature importances associated with each predictor.

    """

    if not self.is_fitted:
        raise NotFittedError(
            ("This forecaster is not fitted yet. Call `fit` with appropriate "
             "arguments before using `get_feature_importances()`.")
        )

    if isinstance(self.regressor, Pipeline):
        estimator = self.regressor[-1]
    else:
        estimator = self.regressor

    if hasattr(estimator, 'feature_importances_'):
        feature_importances = estimator.feature_importances_
    elif hasattr(estimator, 'coef_'):
        feature_importances = estimator.coef_
    else:
        warnings.warn(
            f"Impossible to access feature importances for regressor of type "
            f"{type(estimator)}. This method is only valid when the "
            f"regressor stores internally the feature importances in the "
            f"attribute `feature_importances_` or `coef_`."
        )
        feature_importances = None

    if feature_importances is not None:
        feature_importances = pd.DataFrame({
                                  'feature': self.X_train_features_names_out_,
                                  'importance': feature_importances
                              })
        if sort_importance:
            feature_importances = feature_importances.sort_values(
                                      by='importance', ascending=False
                                  )

    return feature_importances