Skip to content

ForecasterRecursive

skforecast.recursive._forecaster_recursive.ForecasterRecursive

ForecasterRecursive(
    regressor,
    lags=None,
    window_features=None,
    transformer_y=None,
    transformer_exog=None,
    weight_func=None,
    differentiation=None,
    fit_kwargs=None,
    binner_kwargs=None,
    forecaster_id=None,
)

Bases: ForecasterBase

This class turns any regressor compatible with the scikit-learn API into a recursive autoregressive (multi-step) forecaster.

Parameters:

Name Type Description Default
regressor regressor or pipeline compatible with the scikit-learn API

An instance of a regressor or pipeline compatible with the scikit-learn API.

required
lags int, list, numpy ndarray, range

Lags used as predictors. Index starts at 1, so lag 1 is equal to t-1.

  • int: include lags from 1 to lags (included).
  • list, 1d numpy ndarray or range: include only lags present in lags, all elements must be int.
  • None: no lags are included as predictors.
None
window_features (object, list)

Instance or list of instances used to create window features. Window features are created from the original time series and are included as predictors.

None
transformer_y object transformer (preprocessor)

An instance of a transformer (preprocessor) compatible with the scikit-learn preprocessing API with methods: fit, transform, fit_transform and inverse_transform. ColumnTransformers are not allowed since they do not have inverse_transform method. The transformation is applied to y before training the forecaster.

None
transformer_exog object transformer (preprocessor)

An instance of a transformer (preprocessor) compatible with the scikit-learn preprocessing API. The transformation is applied to exog before training the forecaster. inverse_transform is not available when using ColumnTransformers.

None
weight_func Callable

Function that defines the individual weights for each sample based on the index. For example, a function that assigns a lower weight to certain dates. Ignored if regressor does not have the argument sample_weight in its fit method. The resulting sample_weight cannot have negative values.

None
differentiation int

Order of differencing applied to the time series before training the forecaster. If None, no differencing is applied. The order of differentiation is the number of times the differencing operation is applied to a time series. Differencing involves computing the differences between consecutive data points in the series. Before returning a prediction, the differencing operation is reversed.

None
fit_kwargs dict

Additional arguments to be passed to the fit method of the regressor.

None
binner_kwargs dict

Additional arguments to pass to the QuantileBinner used to discretize the residuals into k bins according to the predicted values associated with each residual. Available arguments are: n_bins, method, subsample, random_state and dtype. Argument method is passed internally to the function numpy.percentile. New in version 0.14.0

None
forecaster_id (str, int)

Name used as an identifier of the forecaster.

None

Attributes:

Name Type Description
regressor regressor or pipeline compatible with the scikit-learn API

An instance of a regressor or pipeline compatible with the scikit-learn API.

lags numpy ndarray

Lags used as predictors.

lags_names list

Names of the lags used as predictors.

max_lag int

Maximum lag included in lags.

window_features list

Class or list of classes used to create window features.

window_features_names list

Names of the window features to be included in the X_train matrix.

window_features_class_names list

Names of the classes used to create the window features.

max_size_window_features int

Maximum window size required by the window features.

window_size int

The window size needed to create the predictors. It is calculated as the maximum value between max_lag and max_size_window_features. If differentiation is used, window_size is increased by n units equal to the order of differentiation so that predictors can be generated correctly.

transformer_y object transformer (preprocessor)

An instance of a transformer (preprocessor) compatible with the scikit-learn preprocessing API with methods: fit, transform, fit_transform and inverse_transform. ColumnTransformers are not allowed since they do not have inverse_transform method. The transformation is applied to y before training the forecaster.

transformer_exog object transformer (preprocessor)

An instance of a transformer (preprocessor) compatible with the scikit-learn preprocessing API. The transformation is applied to exog before training the forecaster. inverse_transform is not available when using ColumnTransformers.

weight_func Callable

Function that defines the individual weights for each sample based on the index. For example, a function that assigns a lower weight to certain dates. Ignored if regressor does not have the argument sample_weight in its fit method. The resulting sample_weight cannot have negative values.

source_code_weight_func str

Source code of the custom function used to create weights.

differentiation int

Order of differencing applied to the time series before training the forecaster.

differentiation_max int

Maximum order of differentiation. For this Forecaster, it is equal to the value of the differentiation parameter.

differentiator TimeSeriesDifferentiator

Skforecast object used to differentiate the time series.

last_window_ pandas DataFrame

This window represents the most recent data observed by the predictor during its training phase. It contains the values needed to predict the next step immediately after the training data. These values are stored in the original scale of the time series before undergoing any transformations or differentiation. When differentiation parameter is specified, the dimensions of the last_window_ are expanded as many values as the order of differentiation. For example, if lags = 7 and differentiation = 1, last_window_ will have 8 values.

index_type_ type

Type of index of the input used in training.

index_freq_ str

Frequency of Index of the input used in training.

training_range_ pandas Index

First and last values of index of the data used during training.

exog_in_ bool

If the forecaster has been trained using exogenous variable/s.

exog_names_in_ list

Names of the exogenous variables used during training.

exog_type_in_ type

Type of exogenous data (pandas Series or DataFrame) used in training.

exog_dtypes_in_ dict

Type of each exogenous variable/s used in training. If transformer_exog is used, the dtypes are calculated before the transformation.

X_train_window_features_names_out_ list

Names of the window features included in the matrix X_train created internally for training.

X_train_exog_names_out_ list

Names of the exogenous variables included in the matrix X_train created internally for training. It can be different from exog_names_in_ if some exogenous variables are transformed during the training process.

X_train_features_names_out_ list

Names of columns of the matrix created internally for training.

fit_kwargs dict

Additional arguments to be passed to the fit method of the regressor.

in_sample_residuals_ numpy ndarray

Residuals of the model when predicting training data. Only stored up to 10_000 values. If transformer_y is not None, residuals are stored in the transformed scale. If differentiation is not None, residuals are stored after differentiation.

in_sample_residuals_by_bin_ dict

In sample residuals binned according to the predicted value each residual is associated with. The number of residuals stored per bin is limited to 10_000 // self.binner.n_bins_ in the form {bin: residuals}. If transformer_y is not None, residuals are stored in the transformed scale. If differentiation is not None, residuals are stored after differentiation.

out_sample_residuals_ numpy ndarray

Residuals of the model when predicting non-training data. Only stored up to 10_000 values. Use set_out_sample_residuals() method to set values. If transformer_y is not None, residuals are stored in the transformed scale. If differentiation is not None, residuals are stored after differentiation.

out_sample_residuals_by_bin_ dict

Out of sample residuals binned according to the predicted value each residual is associated with. The number of residuals stored per bin is limited to 10_000 // self.binner.n_bins_ in the form {bin: residuals}. If transformer_y is not None, residuals are stored in the transformed scale. If differentiation is not None, residuals are stored after differentiation.

binner QuantileBinner

QuantileBinner used to discretize residuals into k bins according to the predicted values associated with each residual.

binner_intervals_ dict

Intervals used to discretize residuals into k bins according to the predicted values associated with each residual.

binner_kwargs dict

Additional arguments to pass to the QuantileBinner.

creation_date str

Date of creation.

is_fitted bool

Tag to identify if the regressor has been fitted (trained).

fit_date str

Date of last fit.

skforecast_version str

Version of skforecast library used to create the forecaster.

python_version str

Version of python used to create the forecaster.

forecaster_id (str, int)

Name used as an identifier of the forecaster.

_probabilistic_mode (str, bool)

Private attribute used to indicate whether the forecaster should perform some calculations during backtesting.

Source code in skforecast\recursive\_forecaster_recursive.py
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
def __init__(
    self,
    regressor: object,
    lags: int | list[int] | np.ndarray[int] | range[int] | None = None,
    window_features: object | list[object] | None = None,
    transformer_y: object | None = None,
    transformer_exog: object | None = None,
    weight_func: Callable | None = None,
    differentiation: int | None = None,
    fit_kwargs: dict[str, object] | None = None,
    binner_kwargs: dict[str, object] | None = None,
    forecaster_id: str | int | None = None
) -> None:

    self.regressor                          = copy(regressor)
    self.transformer_y                      = transformer_y
    self.transformer_exog                   = transformer_exog
    self.weight_func                        = weight_func
    self.source_code_weight_func            = None
    self.differentiation                    = differentiation
    self.differentiation_max                = None
    self.differentiator                     = None
    self.last_window_                       = None
    self.index_type_                        = None
    self.index_freq_                        = None
    self.training_range_                    = None
    self.exog_in_                           = False
    self.exog_names_in_                     = None
    self.exog_type_in_                      = None
    self.exog_dtypes_in_                    = None
    self.X_train_window_features_names_out_ = None
    self.X_train_exog_names_out_            = None
    self.X_train_features_names_out_        = None
    self.in_sample_residuals_               = None
    self.out_sample_residuals_              = None
    self.in_sample_residuals_by_bin_        = None
    self.out_sample_residuals_by_bin_       = None
    self.creation_date                      = pd.Timestamp.today().strftime('%Y-%m-%d %H:%M:%S')
    self.is_fitted                          = False
    self.fit_date                           = None
    self.skforecast_version                 = skforecast.__version__
    self.python_version                     = sys.version.split(" ")[0]
    self.forecaster_id                      = forecaster_id
    self._probabilistic_mode                = "binned"

    self.lags, self.lags_names, self.max_lag = initialize_lags(type(self).__name__, lags)
    self.window_features, self.window_features_names, self.max_size_window_features = (
        initialize_window_features(window_features)
    )
    if self.window_features is None and self.lags is None:
        raise ValueError(
            "At least one of the arguments `lags` or `window_features` "
            "must be different from None. This is required to create the "
            "predictors used in training the forecaster."
        )

    self.window_size = max(
        [ws for ws in [self.max_lag, self.max_size_window_features] 
         if ws is not None]
    )
    self.window_features_class_names = None
    if window_features is not None:
        self.window_features_class_names = [
            type(wf).__name__ for wf in self.window_features
        ]

    self.weight_func, self.source_code_weight_func, _ = initialize_weights(
        forecaster_name = type(self).__name__, 
        regressor       = regressor, 
        weight_func     = weight_func, 
        series_weights  = None
    )

    if differentiation is not None:
        if not isinstance(differentiation, int) or differentiation < 1:
            raise ValueError(
                f"Argument `differentiation` must be an integer equal to or "
                f"greater than 1. Got {differentiation}."
            )
        self.differentiation = differentiation
        self.differentiation_max = differentiation
        self.window_size += differentiation
        self.differentiator = TimeSeriesDifferentiator(
            order=differentiation, window_size=self.window_size
        )

    self.fit_kwargs = check_select_fit_kwargs(
                          regressor  = regressor,
                          fit_kwargs = fit_kwargs
                      )

    self.binner_kwargs = binner_kwargs
    if binner_kwargs is None:
        self.binner_kwargs = {
            'n_bins': 10, 'method': 'linear', 'subsample': 200000,
            'random_state': 789654, 'dtype': np.float64
        }
    self.binner = QuantileBinner(**self.binner_kwargs)
    self.binner_intervals_ = None

_repr_html_

_repr_html_()

HTML representation of the object. The "General Information" section is expanded by default.

Source code in skforecast\recursive\_forecaster_recursive.py
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
def _repr_html_(self):
    """
    HTML representation of the object.
    The "General Information" section is expanded by default.
    """

    (
        params,
        _,
        _,
        exog_names_in_,
        _,
    ) = self._preprocess_repr(
            regressor      = self.regressor,
            exog_names_in_ = self.exog_names_in_
        )

    style, unique_id = get_style_repr_html(self.is_fitted)

    content = f"""
    <div class="container-{unique_id}">
        <h2>{type(self).__name__}</h2>
        <details open>
            <summary>General Information</summary>
            <ul>
                <li><strong>Regressor:</strong> {type(self.regressor).__name__}</li>
                <li><strong>Lags:</strong> {self.lags}</li>
                <li><strong>Window features:</strong> {self.window_features_names}</li>
                <li><strong>Window size:</strong> {self.window_size}</li>
                <li><strong>Exogenous included:</strong> {self.exog_in_}</li>
                <li><strong>Weight function included:</strong> {self.weight_func is not None}</li>
                <li><strong>Differentiation order:</strong> {self.differentiation}</li>
                <li><strong>Creation date:</strong> {self.creation_date}</li>
                <li><strong>Last fit date:</strong> {self.fit_date}</li>
                <li><strong>Skforecast version:</strong> {self.skforecast_version}</li>
                <li><strong>Python version:</strong> {self.python_version}</li>
                <li><strong>Forecaster id:</strong> {self.forecaster_id}</li>
            </ul>
        </details>
        <details>
            <summary>Exogenous Variables</summary>
            <ul>
                {exog_names_in_}
            </ul>
        </details>
        <details>
            <summary>Data Transformations</summary>
            <ul>
                <li><strong>Transformer for y:</strong> {self.transformer_y}</li>
                <li><strong>Transformer for exog:</strong> {self.transformer_exog}</li>
            </ul>
        </details>
        <details>
            <summary>Training Information</summary>
            <ul>
                <li><strong>Training range:</strong> {self.training_range_.to_list() if self.is_fitted else 'Not fitted'}</li>
                <li><strong>Training index type:</strong> {str(self.index_type_).split('.')[-1][:-2] if self.is_fitted else 'Not fitted'}</li>
                <li><strong>Training index frequency:</strong> {self.index_freq_ if self.is_fitted else 'Not fitted'}</li>
            </ul>
        </details>
        <details>
            <summary>Regressor Parameters</summary>
            <ul>
                {params}
            </ul>
        </details>
        <details>
            <summary>Fit Kwargs</summary>
            <ul>
                {self.fit_kwargs}
            </ul>
        </details>
        <p>
            <a href="https://skforecast.org/{skforecast.__version__}/api/forecasterrecursive.html">&#128712 <strong>API Reference</strong></a>
            &nbsp;&nbsp;
            <a href="https://skforecast.org/{skforecast.__version__}/user_guides/autoregresive-forecaster.html">&#128462 <strong>User Guide</strong></a>
        </p>
    </div>
    """

    return style + content

_create_lags

_create_lags(y, X_as_pandas=False, train_index=None)

Create the lagged values and their target variable from a time series.

Note that the returned matrix X_data contains the lag 1 in the first column, the lag 2 in the in the second column and so on.

Parameters:

Name Type Description Default
y numpy ndarray

Training time series values.

required
X_as_pandas bool

If True, the returned matrix X_data is a pandas DataFrame.

False
train_index pandas Index

Index of the training data. It is used to create the pandas DataFrame X_data when X_as_pandas is True.

None

Returns:

Name Type Description
X_data numpy ndarray, pandas DataFrame, None

Lagged values (predictors).

y_data numpy ndarray

Values of the time series related to each row of X_data.

Source code in skforecast\recursive\_forecaster_recursive.py
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
def _create_lags(
    self,
    y: np.ndarray,
    X_as_pandas: bool = False,
    train_index: pd.Index | None = None
) -> tuple[np.ndarray | pd.DataFrame | None, np.ndarray]:
    """
    Create the lagged values and their target variable from a time series.

    Note that the returned matrix `X_data` contains the lag 1 in the first 
    column, the lag 2 in the in the second column and so on.

    Parameters
    ----------
    y : numpy ndarray
        Training time series values.
    X_as_pandas : bool, default False
        If `True`, the returned matrix `X_data` is a pandas DataFrame.
    train_index : pandas Index, default None
        Index of the training data. It is used to create the pandas DataFrame
        `X_data` when `X_as_pandas` is `True`.

    Returns
    -------
    X_data : numpy ndarray, pandas DataFrame, None
        Lagged values (predictors).
    y_data : numpy ndarray
        Values of the time series related to each row of `X_data`.

    """

    X_data = None
    if self.lags is not None:
        n_rows = len(y) - self.window_size
        X_data = np.full(
            shape=(n_rows, len(self.lags)), fill_value=np.nan, order='F', dtype=float
        )
        for i, lag in enumerate(self.lags):
            X_data[:, i] = y[self.window_size - lag: -lag]

        if X_as_pandas:
            X_data = pd.DataFrame(
                         data    = X_data,
                         columns = self.lags_names,
                         index   = train_index
                     )

    y_data = y[self.window_size:]

    return X_data, y_data

_create_window_features

_create_window_features(y, train_index, X_as_pandas=False)

Parameters:

Name Type Description Default
y pandas Series

Training time series.

required
train_index pandas Index

Index of the training data. It is used to create the pandas DataFrame X_train_window_features when X_as_pandas is True.

required
X_as_pandas bool

If True, the returned matrix X_train_window_features is a pandas DataFrame.

False

Returns:

Name Type Description
X_train_window_features list

List of numpy ndarrays or pandas DataFrames with the window features.

X_train_window_features_names_out_ list

Names of the window features.

Source code in skforecast\recursive\_forecaster_recursive.py
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
def _create_window_features(
    self, 
    y: pd.Series,
    train_index: pd.Index,
    X_as_pandas: bool = False,
) -> tuple[list[np.ndarray | pd.DataFrame], list[str]]:
    """

    Parameters
    ----------
    y : pandas Series
        Training time series.
    train_index : pandas Index
        Index of the training data. It is used to create the pandas DataFrame
        `X_train_window_features` when `X_as_pandas` is `True`.
    X_as_pandas : bool, default False
        If `True`, the returned matrix `X_train_window_features` is a 
        pandas DataFrame.

    Returns
    -------
    X_train_window_features : list
        List of numpy ndarrays or pandas DataFrames with the window features.
    X_train_window_features_names_out_ : list
        Names of the window features.

    """

    len_train_index = len(train_index)
    X_train_window_features = []
    X_train_window_features_names_out_ = []
    for wf in self.window_features:
        X_train_wf = wf.transform_batch(y)
        if not isinstance(X_train_wf, pd.DataFrame):
            raise TypeError(
                f"The method `transform_batch` of {type(wf).__name__} "
                f"must return a pandas DataFrame."
            )
        X_train_wf = X_train_wf.iloc[-len_train_index:]
        if not len(X_train_wf) == len_train_index:
            raise ValueError(
                f"The method `transform_batch` of {type(wf).__name__} "
                f"must return a DataFrame with the same number of rows as "
                f"the input time series - `window_size`: {len_train_index}."
            )
        if not (X_train_wf.index == train_index).all():
            raise ValueError(
                f"The method `transform_batch` of {type(wf).__name__} "
                f"must return a DataFrame with the same index as "
                f"the input time series - `window_size`."
            )

        X_train_window_features_names_out_.extend(X_train_wf.columns)
        if not X_as_pandas:
            X_train_wf = X_train_wf.to_numpy()     
        X_train_window_features.append(X_train_wf)

    return X_train_window_features, X_train_window_features_names_out_

_create_train_X_y

_create_train_X_y(y, exog=None)

Create training matrices from univariate time series and exogenous variables.

Parameters:

Name Type Description Default
y pandas Series

Training time series.

required
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s. Must have the same number of observations as y and their indexes must be aligned.

None

Returns:

Name Type Description
X_train pandas DataFrame

Training values (predictors).

y_train pandas Series

Values of the time series related to each row of X_train.

exog_names_in_ list

Names of the exogenous variables used during training.

X_train_window_features_names_out_ list

Names of the window features included in the matrix X_train created internally for training.

X_train_exog_names_out_ list

Names of the exogenous variables included in the matrix X_train created internally for training. It can be different from exog_names_in_ if some exogenous variables are transformed during the training process.

X_train_features_names_out_ list

Names of the columns of the matrix created internally for training.

exog_dtypes_in_ dict

Type of each exogenous variable/s used in training. If transformer_exog is used, the dtypes are calculated before the transformation.

Source code in skforecast\recursive\_forecaster_recursive.py
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
def _create_train_X_y(
    self,
    y: pd.Series,
    exog: pd.Series | pd.DataFrame | None = None
) -> tuple[
    pd.DataFrame, 
    pd.Series, 
    list[str], 
    list[str], 
    list[str], 
    list[str], 
    dict[str, type]
]:
    """
    Create training matrices from univariate time series and exogenous
    variables.

    Parameters
    ----------
    y : pandas Series
        Training time series.
    exog : pandas Series, pandas DataFrame, default None
        Exogenous variable/s included as predictor/s. Must have the same
        number of observations as `y` and their indexes must be aligned.

    Returns
    -------
    X_train : pandas DataFrame
        Training values (predictors).
    y_train : pandas Series
        Values of the time series related to each row of `X_train`.
    exog_names_in_ : list
        Names of the exogenous variables used during training.
    X_train_window_features_names_out_ : list
        Names of the window features included in the matrix `X_train` created
        internally for training.
    X_train_exog_names_out_ : list
        Names of the exogenous variables included in the matrix `X_train` created
        internally for training. It can be different from `exog_names_in_` if
        some exogenous variables are transformed during the training process.
    X_train_features_names_out_ : list
        Names of the columns of the matrix created internally for training.
    exog_dtypes_in_ : dict
        Type of each exogenous variable/s used in training. If `transformer_exog` 
        is used, the dtypes are calculated before the transformation.

    """

    check_y(y=y)
    y = input_to_frame(data=y, input_name='y')

    if len(y) <= self.window_size:
        raise ValueError(
            f"Length of `y` must be greater than the maximum window size "
            f"needed by the forecaster.\n"
            f"    Length `y`: {len(y)}.\n"
            f"    Max window size: {self.window_size}.\n"
            f"    Lags window size: {self.max_lag}.\n"
            f"    Window features window size: {self.max_size_window_features}."
        )

    fit_transformer = False if self.is_fitted else True
    y = transform_dataframe(
            df                = y, 
            transformer       = self.transformer_y,
            fit               = fit_transformer,
            inverse_transform = False,
        )
    y_values, y_index = preprocess_y(y=y)
    train_index = y_index[self.window_size:]

    if self.differentiation is not None:
        if not self.is_fitted:
            y_values = self.differentiator.fit_transform(y_values)
        else:
            differentiator = copy(self.differentiator)
            y_values = differentiator.fit_transform(y_values)

    exog_names_in_ = None
    exog_dtypes_in_ = None
    categorical_features = False
    if exog is not None:
        check_exog(exog=exog, allow_nan=True)
        exog = input_to_frame(data=exog, input_name='exog')

        len_y = len(y_values)
        len_train_index = len(train_index)
        len_exog = len(exog)
        if not len_exog == len_y and not len_exog == len_train_index:
            raise ValueError(
                f"Length of `exog` must be equal to the length of `y` (if index is "
                f"fully aligned) or length of `y` - `window_size` (if `exog` "
                f"starts after the first `window_size` values).\n"
                f"    `exog`              : ({exog.index[0]} -- {exog.index[-1]})  (n={len_exog})\n"
                f"    `y`                 : ({y.index[0]} -- {y.index[-1]})  (n={len_y})\n"
                f"    `y` - `window_size` : ({train_index[0]} -- {train_index[-1]})  (n={len_train_index})"
            )

        exog_names_in_ = exog.columns.to_list()
        exog_dtypes_in_ = get_exog_dtypes(exog=exog)

        exog = transform_dataframe(
                   df                = exog,
                   transformer       = self.transformer_exog,
                   fit               = fit_transformer,
                   inverse_transform = False
               )

        check_exog_dtypes(exog, call_check_exog=True)
        categorical_features = (
            exog.select_dtypes(include=np.number).shape[1] != exog.shape[1]
        )

        _, exog_index = preprocess_exog(exog=exog, return_values=False)
        if len_exog == len_y:
            if not (exog_index == y_index).all():
                raise ValueError(
                    "When `exog` has the same length as `y`, the index of "
                    "`exog` must be aligned with the index of `y` "
                    "to ensure the correct alignment of values."
                )
            # The first `self.window_size` positions have to be removed from 
            # exog since they are not in X_train.
            exog = exog.iloc[self.window_size:, ]
        else:
            if not (exog_index == train_index).all():
                raise ValueError(
                    "When `exog` doesn't contain the first `window_size` observations, "
                    "the index of `exog` must be aligned with the index of `y` minus "
                    "the first `window_size` observations to ensure the correct "
                    "alignment of values."
                )

    X_train = []
    X_train_features_names_out_ = []
    X_as_pandas = True if categorical_features else False

    X_train_lags, y_train = self._create_lags(
        y=y_values, X_as_pandas=X_as_pandas, train_index=train_index
    )
    if X_train_lags is not None:
        X_train.append(X_train_lags)
        X_train_features_names_out_.extend(self.lags_names)

    X_train_window_features_names_out_ = None
    if self.window_features is not None:
        n_diff = 0 if self.differentiation is None else self.differentiation
        y_window_features = pd.Series(y_values[n_diff:], index=y_index[n_diff:])
        X_train_window_features, X_train_window_features_names_out_ = (
            self._create_window_features(
                y=y_window_features, X_as_pandas=X_as_pandas, train_index=train_index
            )
        )
        X_train.extend(X_train_window_features)
        X_train_features_names_out_.extend(X_train_window_features_names_out_)

    X_train_exog_names_out_ = None
    if exog is not None:
        X_train_exog_names_out_ = exog.columns.to_list()  
        if not X_as_pandas:
            exog = exog.to_numpy()     
        X_train_features_names_out_.extend(X_train_exog_names_out_)
        X_train.append(exog)

    if len(X_train) == 1:
        X_train = X_train[0]
    else:
        if X_as_pandas:
            X_train = pd.concat(X_train, axis=1)
        else:
            X_train = np.concatenate(X_train, axis=1)

    if X_as_pandas:
        X_train.index = train_index
    else:
        X_train = pd.DataFrame(
                      data    = X_train,
                      index   = train_index,
                      columns = X_train_features_names_out_
                  )

    y_train = pd.Series(
                  data  = y_train,
                  index = train_index,
                  name  = 'y'
              )

    return (
        X_train,
        y_train,
        exog_names_in_,
        X_train_window_features_names_out_,
        X_train_exog_names_out_,
        X_train_features_names_out_,
        exog_dtypes_in_
    )

create_train_X_y

create_train_X_y(y, exog=None)

Create training matrices from univariate time series and exogenous variables.

Parameters:

Name Type Description Default
y pandas Series

Training time series.

required
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s. Must have the same number of observations as y and their indexes must be aligned.

None

Returns:

Name Type Description
X_train pandas DataFrame

Training values (predictors).

y_train pandas Series

Values of the time series related to each row of X_data.

Source code in skforecast\recursive\_forecaster_recursive.py
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
def create_train_X_y(
    self,
    y: pd.Series,
    exog: pd.Series | pd.DataFrame | None = None,
) -> tuple[pd.DataFrame, pd.Series]:
    """
    Create training matrices from univariate time series and exogenous
    variables.

    Parameters
    ----------
    y : pandas Series
        Training time series.
    exog : pandas Series, pandas DataFrame, default None
        Exogenous variable/s included as predictor/s. Must have the same
        number of observations as `y` and their indexes must be aligned.

    Returns
    -------
    X_train : pandas DataFrame
        Training values (predictors).
    y_train : pandas Series
        Values of the time series related to each row of `X_data`.

    """

    output = self._create_train_X_y(y=y, exog=exog)

    X_train = output[0]
    y_train = output[1]

    return X_train, y_train

_train_test_split_one_step_ahead

_train_test_split_one_step_ahead(
    y, initial_train_size, exog=None
)

Create matrices needed to train and test the forecaster for one-step-ahead predictions.

Parameters:

Name Type Description Default
y pandas Series

Training time series.

required
initial_train_size int

Initial size of the training set. It is the number of observations used to train the forecaster before making the first prediction.

required
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s. Must have the same number of observations as y and their indexes must be aligned.

None

Returns:

Name Type Description
X_train pandas DataFrame

Predictor values used to train the model.

y_train pandas Series

Target values related to each row of X_train.

X_test pandas DataFrame

Predictor values used to test the model.

y_test pandas Series

Target values related to each row of X_test.

Source code in skforecast\recursive\_forecaster_recursive.py
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
def _train_test_split_one_step_ahead(
    self,
    y: pd.Series,
    initial_train_size: int,
    exog: pd.Series | pd.DataFrame | None = None
) -> tuple[pd.DataFrame, pd.Series, pd.DataFrame, pd.Series]:
    """
    Create matrices needed to train and test the forecaster for one-step-ahead
    predictions.

    Parameters
    ----------
    y : pandas Series
        Training time series.
    initial_train_size : int
        Initial size of the training set. It is the number of observations used
        to train the forecaster before making the first prediction.
    exog : pandas Series, pandas DataFrame, default None
        Exogenous variable/s included as predictor/s. Must have the same
        number of observations as `y` and their indexes must be aligned.

    Returns
    -------
    X_train : pandas DataFrame
        Predictor values used to train the model.
    y_train : pandas Series
        Target values related to each row of `X_train`.
    X_test : pandas DataFrame
        Predictor values used to test the model.
    y_test : pandas Series
        Target values related to each row of `X_test`.

    """

    is_fitted = self.is_fitted
    self.is_fitted = False
    X_train, y_train, *_ = self._create_train_X_y(
        y    = y.iloc[: initial_train_size],
        exog = exog.iloc[: initial_train_size] if exog is not None else None
    )

    test_init = initial_train_size - self.window_size
    self.is_fitted = True
    X_test, y_test, *_ = self._create_train_X_y(
        y    = y.iloc[test_init:],
        exog = exog.iloc[test_init:] if exog is not None else None
    )

    self.is_fitted = is_fitted

    return X_train, y_train, X_test, y_test

create_sample_weights

create_sample_weights(X_train)

Create weights for each observation according to the forecaster's attribute weight_func.

Parameters:

Name Type Description Default
X_train pandas DataFrame

Dataframe created with the create_train_X_y method, first return.

required

Returns:

Name Type Description
sample_weight numpy ndarray

Weights to use in fit method.

Source code in skforecast\recursive\_forecaster_recursive.py
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
def create_sample_weights(
    self,
    X_train: pd.DataFrame,
) -> np.ndarray:
    """
    Create weights for each observation according to the forecaster's attribute
    `weight_func`.

    Parameters
    ----------
    X_train : pandas DataFrame
        Dataframe created with the `create_train_X_y` method, first return.

    Returns
    -------
    sample_weight : numpy ndarray
        Weights to use in `fit` method.

    """

    sample_weight = None

    if self.weight_func is not None:
        sample_weight = self.weight_func(X_train.index)

    if sample_weight is not None:
        if np.isnan(sample_weight).any():
            raise ValueError(
                "The resulting `sample_weight` cannot have NaN values."
            )
        if np.any(sample_weight < 0):
            raise ValueError(
                "The resulting `sample_weight` cannot have negative values."
            )
        if np.sum(sample_weight) == 0:
            raise ValueError(
                "The resulting `sample_weight` cannot be normalized because "
                "the sum of the weights is zero."
            )

    return sample_weight

fit

fit(
    y,
    exog=None,
    store_last_window=True,
    store_in_sample_residuals=False,
    random_state=123,
)

Training Forecaster.

Additional arguments to be passed to the fit method of the regressor can be added with the fit_kwargs argument when initializing the forecaster.

Parameters:

Name Type Description Default
y pandas Series

Training time series.

required
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s. Must have the same number of observations as y and their indexes must be aligned so that y[i] is regressed on exog[i].

None
store_last_window bool

Whether or not to store the last window (last_window_) of training data.

True
store_in_sample_residuals bool

If True, in-sample residuals will be stored in the forecaster object after fitting (in_sample_residuals_ and in_sample_residuals_by_bin_ attributes). If False, only the intervals of the bins are stored.

False
random_state int

Set a seed for the random generator so that the stored sample residuals are always deterministic.

123

Returns:

Type Description
None
Source code in skforecast\recursive\_forecaster_recursive.py
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
def fit(
    self,
    y: pd.Series,
    exog: pd.Series | pd.DataFrame | None = None,
    store_last_window: bool = True,
    store_in_sample_residuals: bool = False,
    random_state: int = 123
) -> None:
    """
    Training Forecaster.

    Additional arguments to be passed to the `fit` method of the regressor 
    can be added with the `fit_kwargs` argument when initializing the forecaster.

    Parameters
    ----------
    y : pandas Series
        Training time series.
    exog : pandas Series, pandas DataFrame, default None
        Exogenous variable/s included as predictor/s. Must have the same
        number of observations as `y` and their indexes must be aligned so
        that y[i] is regressed on exog[i].
    store_last_window : bool, default True
        Whether or not to store the last window (`last_window_`) of training data.
    store_in_sample_residuals : bool, default False
        If `True`, in-sample residuals will be stored in the forecaster object
        after fitting (`in_sample_residuals_` and `in_sample_residuals_by_bin_`
        attributes).
        If `False`, only the intervals of the bins are stored.
    random_state : int, default 123
        Set a seed for the random generator so that the stored sample 
        residuals are always deterministic.

    Returns
    -------
    None

    """

    # TODO: create a method reset_forecaster() to reset all attributes
    # Reset values in case the forecaster has already been fitted.
    self.last_window_                       = None
    self.index_type_                        = None
    self.index_freq_                        = None
    self.training_range_                    = None
    self.exog_in_                           = False
    self.exog_names_in_                     = None
    self.exog_type_in_                      = None
    self.exog_dtypes_in_                    = None
    self.X_train_window_features_names_out_ = None
    self.X_train_exog_names_out_            = None
    self.X_train_features_names_out_        = None
    self.in_sample_residuals_               = None
    self.in_sample_residuals_by_bin_        = None
    self.binner_intervals_                  = None
    self.is_fitted                          = False
    self.fit_date                           = None

    (
        X_train,
        y_train,
        exog_names_in_,
        X_train_window_features_names_out_,
        X_train_exog_names_out_,
        X_train_features_names_out_,
        exog_dtypes_in_
    ) = self._create_train_X_y(y=y, exog=exog)
    sample_weight = self.create_sample_weights(X_train=X_train)

    if sample_weight is not None:
        self.regressor.fit(
            X             = X_train,
            y             = y_train,
            sample_weight = sample_weight,
            **self.fit_kwargs
        )
    else:
        self.regressor.fit(X=X_train, y=y_train, **self.fit_kwargs)

    self.X_train_window_features_names_out_ = X_train_window_features_names_out_
    self.X_train_features_names_out_ = X_train_features_names_out_

    self.is_fitted = True
    self.fit_date = pd.Timestamp.today().strftime('%Y-%m-%d %H:%M:%S')
    self.training_range_ = preprocess_y(
        y=y, return_values=False, suppress_warnings=True
    )[1][[0, -1]]
    self.index_type_ = type(X_train.index)
    if isinstance(X_train.index, pd.DatetimeIndex):
        self.index_freq_ = X_train.index.freqstr
    else: 
        self.index_freq_ = X_train.index.step

    if exog is not None:
        self.exog_in_ = True
        self.exog_type_in_ = type(exog)
        self.exog_names_in_ = exog_names_in_
        self.exog_dtypes_in_ = exog_dtypes_in_
        self.X_train_exog_names_out_ = X_train_exog_names_out_

    # NOTE: This is done to save time during fit in functions such as backtesting()
    if self._probabilistic_mode is not False:
        self._binning_in_sample_residuals(
            y_true                    = y_train.to_numpy(),
            y_pred                    = self.regressor.predict(X_train).ravel(),
            store_in_sample_residuals = store_in_sample_residuals,
            random_state              = random_state
        )

    if store_last_window:
        self.last_window_ = (
            y.iloc[-self.window_size:]
            .copy()
            .to_frame(name=y.name if y.name is not None else 'y')
        )

_binning_in_sample_residuals

_binning_in_sample_residuals(
    y_true,
    y_pred,
    store_in_sample_residuals=False,
    random_state=123,
)

Bin residuals according to the predicted value each residual is associated with. First a skforecast.preprocessing.QuantileBinner object is fitted to the predicted values. Then, residuals are binned according to the predicted value each residual is associated with. Residuals are stored in the forecaster object as in_sample_residuals_ and in_sample_residuals_by_bin_.

y_true and y_pred assumed to be differentiated and or transformed according to the attributes differentiation and transformer_y. The number of residuals stored per bin is limited to 10_000 // self.binner.n_bins_. The total number of residuals stored is 10_000. New in version 0.14.0

Parameters:

Name Type Description Default
y_true numpy ndarray

True values of the time series.

required
y_pred numpy ndarray

Predicted values of the time series.

required
store_in_sample_residuals bool

If True, in-sample residuals will be stored in the forecaster object after fitting (in_sample_residuals_ and in_sample_residuals_by_bin_ attributes). If False, only the intervals of the bins are stored. If False, only the intervals of the bins are stored.

False
random_state int

Set a seed for the random generator so that the stored sample residuals are always deterministic.

123

Returns:

Type Description
None
Source code in skforecast\recursive\_forecaster_recursive.py
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
def _binning_in_sample_residuals(
    self,
    y_true: np.ndarray,
    y_pred: np.ndarray,
    store_in_sample_residuals: bool = False,
    random_state: int = 123
) -> None:
    """
    Bin residuals according to the predicted value each residual is
    associated with. First a `skforecast.preprocessing.QuantileBinner` object
    is fitted to the predicted values. Then, residuals are binned according
    to the predicted value each residual is associated with. Residuals are
    stored in the forecaster object as `in_sample_residuals_` and
    `in_sample_residuals_by_bin_`.

    `y_true` and `y_pred` assumed to be differentiated and or transformed
    according to the attributes `differentiation` and `transformer_y`.
    The number of residuals stored per bin is limited to 
    `10_000 // self.binner.n_bins_`. The total number of residuals stored is
    `10_000`.
    **New in version 0.14.0**

    Parameters
    ----------
    y_true : numpy ndarray
        True values of the time series.
    y_pred : numpy ndarray
        Predicted values of the time series.
    store_in_sample_residuals : bool, default False
        If `True`, in-sample residuals will be stored in the forecaster object
        after fitting (`in_sample_residuals_` and `in_sample_residuals_by_bin_`
        attributes).
        If `False`, only the intervals of the bins are stored.
        If `False`, only the intervals of the bins are stored.
    random_state : int, default 123
        Set a seed for the random generator so that the stored sample 
        residuals are always deterministic.

    Returns
    -------
    None

    """

    residuals = y_true - y_pred

    if self._probabilistic_mode == "binned":
        data = pd.DataFrame({'prediction': y_pred, 'residuals': residuals})
        self.binner.fit(y_pred)
        self.binner_intervals_ = self.binner.intervals_

    if store_in_sample_residuals:
        rng = np.random.default_rng(seed=random_state)
        if self._probabilistic_mode == "binned":
            data['bin'] = self.binner.transform(y_pred).astype(int)
            self.in_sample_residuals_by_bin_ = (
                data.groupby('bin')['residuals'].apply(np.array).to_dict()
            )

            max_sample = 10_000 // self.binner.n_bins_
            for k, v in self.in_sample_residuals_by_bin_.items():
                if len(v) > max_sample:
                    sample = v[rng.integers(low=0, high=len(v), size=max_sample)]
                    self.in_sample_residuals_by_bin_[k] = sample

        if len(residuals) > 10_000:
            residuals = residuals[
                rng.integers(low=0, high=len(residuals), size=10_000)
            ]

        self.in_sample_residuals_ = residuals

_create_predict_inputs

_create_predict_inputs(
    steps,
    last_window=None,
    exog=None,
    predict_probabilistic=False,
    use_in_sample_residuals=True,
    use_binned_residuals=True,
    check_inputs=True,
)

Create the inputs needed for the first iteration of the prediction process. As this is a recursive process, the last window is updated at each iteration of the prediction process.

Parameters:

Name Type Description Default
steps int, str, pandas Timestamp

Number of steps to predict.

  • If steps is int, number of steps to predict.
  • If str or pandas Datetime, the prediction will be up to that date.
required
last_window pandas Series, pandas DataFrame

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1). If last_window = None, the values stored in self.last_window_ are used to calculate the initial predictors, and the predictions start right after training data.

None
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s.

None
predict_probabilistic bool

If True, the necessary checks for probabilistic predictions will be performed.

False
use_in_sample_residuals bool

If True, residuals from the training data are used as proxy of prediction error to create predictions. If False, out of sample residuals (calibration) are used. Out-of-sample residuals must be precomputed using Forecaster's set_out_sample_residuals() method.

True
use_binned_residuals bool

If True, residuals are selected based on the predicted values (binned selection). If False, residuals are selected randomly.

True
check_inputs bool

If True, the input is checked for possible warnings and errors with the check_predict_input function. This argument is created for internal use and is not recommended to be changed.

True

Returns:

Name Type Description
last_window_values numpy ndarray

Series values used to create the predictors needed in the first iteration of the prediction (t + 1).

exog_values numpy ndarray, None

Exogenous variable/s included as predictor/s.

prediction_index pandas Index

Index of the predictions.

steps int

Number of future steps predicted.

Source code in skforecast\recursive\_forecaster_recursive.py
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
def _create_predict_inputs(
    self,
    steps: int | str | pd.Timestamp, 
    last_window: pd.Series | pd.DataFrame | None = None,
    exog: pd.Series | pd.DataFrame | None = None,
    predict_probabilistic: bool = False,
    use_in_sample_residuals: bool = True,
    use_binned_residuals: bool = True,
    check_inputs: bool = True
) -> tuple[np.ndarray, np.ndarray | None, pd.Index, int]:
    """
    Create the inputs needed for the first iteration of the prediction 
    process. As this is a recursive process, the last window is updated at 
    each iteration of the prediction process.

    Parameters
    ----------
    steps : int, str, pandas Timestamp
        Number of steps to predict. 

        - If steps is int, number of steps to predict. 
        - If str or pandas Datetime, the prediction will be up to that date.
    last_window : pandas Series, pandas DataFrame, default None
        Series values used to create the predictors (lags) needed in the 
        first iteration of the prediction (t + 1).
        If `last_window = None`, the values stored in `self.last_window_` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : pandas Series, pandas DataFrame, default None
        Exogenous variable/s included as predictor/s.
    predict_probabilistic : bool, default False
        If `True`, the necessary checks for probabilistic predictions will be 
        performed.
    use_in_sample_residuals : bool, default True
        If `True`, residuals from the training data are used as proxy of
        prediction error to create predictions. 
        If `False`, out of sample residuals (calibration) are used. 
        Out-of-sample residuals must be precomputed using Forecaster's
        `set_out_sample_residuals()` method.
    use_binned_residuals : bool, default True
        If `True`, residuals are selected based on the predicted values 
        (binned selection).
        If `False`, residuals are selected randomly.
    check_inputs : bool, default True
        If `True`, the input is checked for possible warnings and errors 
        with the `check_predict_input` function. This argument is created 
        for internal use and is not recommended to be changed.

    Returns
    -------
    last_window_values : numpy ndarray
        Series values used to create the predictors needed in the first 
        iteration of the prediction (t + 1).
    exog_values : numpy ndarray, None
        Exogenous variable/s included as predictor/s.
    prediction_index : pandas Index
        Index of the predictions.
    steps: int
        Number of future steps predicted.

    """

    if last_window is None:
        last_window = self.last_window_

    if self.is_fitted:
        steps = date_to_index_position(
                    index        = last_window.index,
                    date_input   = steps,
                    method       = 'prediction',
                    date_literal = 'steps'
                )

    if check_inputs:
        check_predict_input(
            forecaster_name  = type(self).__name__,
            steps            = steps,
            is_fitted        = self.is_fitted,
            exog_in_         = self.exog_in_,
            index_type_      = self.index_type_,
            index_freq_      = self.index_freq_,
            window_size      = self.window_size,
            last_window      = last_window,
            exog             = exog,
            exog_type_in_    = self.exog_type_in_,
            exog_names_in_   = self.exog_names_in_,
            interval         = None
        )

        if predict_probabilistic:
            check_residuals_input(
                forecaster_name              = type(self).__name__,
                use_in_sample_residuals      = use_in_sample_residuals,
                in_sample_residuals_         = self.in_sample_residuals_,
                out_sample_residuals_        = self.out_sample_residuals_,
                use_binned_residuals         = use_binned_residuals,
                in_sample_residuals_by_bin_  = self.in_sample_residuals_by_bin_,
                out_sample_residuals_by_bin_ = self.out_sample_residuals_by_bin_
            )

    last_window = last_window.iloc[-self.window_size:].copy()
    last_window_values, last_window_index = preprocess_last_window(
                                                last_window = last_window
                                            )

    last_window_values = transform_numpy(
                             array             = last_window_values,
                             transformer       = self.transformer_y,
                             fit               = False,
                             inverse_transform = False
                         )
    if self.differentiation is not None:
        last_window_values = self.differentiator.fit_transform(last_window_values)

    if exog is not None:
        exog = input_to_frame(data=exog, input_name='exog')
        exog = exog.loc[:, self.exog_names_in_]
        exog = transform_dataframe(
                   df                = exog,
                   transformer       = self.transformer_exog,
                   fit               = False,
                   inverse_transform = False
               )
        check_exog_dtypes(exog=exog)
        exog_values = exog.to_numpy()[:steps]
    else:
        exog_values = None

    prediction_index = expand_index(
                           index = last_window_index,
                           steps = steps,
                       )

    return last_window_values, exog_values, prediction_index, steps

_recursive_predict

_recursive_predict(
    steps,
    last_window_values,
    exog_values=None,
    residuals=None,
    use_binned_residuals=True,
)

Predict n steps ahead. It is an iterative process in which, each prediction, is used as a predictor for the next step.

Parameters:

Name Type Description Default
steps int

Number of steps to predict.

required
last_window_values numpy ndarray

Series values used to create the predictors needed in the first iteration of the prediction (t + 1).

required
exog_values numpy ndarray

Exogenous variable/s included as predictor/s.

None
residuals numpy ndarray, dict

Residuals used to generate bootstrapping predictions.

None
use_binned_residuals bool

If True, residuals are selected based on the predicted values (binned selection). If False, residuals are selected randomly.

True

Returns:

Name Type Description
predictions numpy ndarray

Predicted values.

Source code in skforecast\recursive\_forecaster_recursive.py
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
def _recursive_predict(
    self,
    steps: int,
    last_window_values: np.ndarray,
    exog_values: np.ndarray | None = None,
    residuals: np.ndarray | dict[str, np.ndarray] | None = None,
    use_binned_residuals: bool = True,
) -> np.ndarray:
    """
    Predict n steps ahead. It is an iterative process in which, each prediction,
    is used as a predictor for the next step.

    Parameters
    ----------
    steps : int
        Number of steps to predict. 
    last_window_values : numpy ndarray
        Series values used to create the predictors needed in the first 
        iteration of the prediction (t + 1).
    exog_values : numpy ndarray, default None
        Exogenous variable/s included as predictor/s.
    residuals : numpy ndarray, dict, default None
        Residuals used to generate bootstrapping predictions.
    use_binned_residuals : bool, default True
        If `True`, residuals are selected based on the predicted values 
        (binned selection).
        If `False`, residuals are selected randomly.

    Returns
    -------
    predictions : numpy ndarray
        Predicted values.

    """

    n_lags = len(self.lags) if self.lags is not None else 0
    n_window_features = (
        len(self.X_train_window_features_names_out_)
        if self.window_features is not None
        else 0
    )
    n_exog = exog_values.shape[1] if exog_values is not None else 0

    X = np.full(
        shape=(n_lags + n_window_features + n_exog), fill_value=np.nan, dtype=float
    )
    predictions = np.full(shape=steps, fill_value=np.nan, dtype=float)
    last_window = np.concatenate((last_window_values, predictions))

    for i in range(steps):

        if self.lags is not None:
            X[:n_lags] = last_window[-self.lags - (steps - i)]
        if self.window_features is not None:
            X[n_lags : n_lags + n_window_features] = np.concatenate(
                [
                    wf.transform(last_window[i : -(steps - i)])
                    for wf in self.window_features
                ]
            )
        if exog_values is not None:
            X[n_lags + n_window_features:] = exog_values[i]

        pred = self.regressor.predict(X.reshape(1, -1)).ravel()

        if residuals is not None:
            if use_binned_residuals:
                predicted_bin = self.binner.transform(pred).item()
                step_residual = residuals[predicted_bin][i]
            else:
                step_residual = residuals[i]

            pred += step_residual

        predictions[i] = pred[0]

        # Update `last_window` values. The first position is discarded and 
        # the new prediction is added at the end.
        last_window[-(steps - i)] = pred[0]

    return predictions

create_predict_X

create_predict_X(steps, last_window=None, exog=None)

Create the predictors needed to predict steps ahead. As it is a recursive process, the predictors are created at each iteration of the prediction process.

Parameters:

Name Type Description Default
steps int, str, pandas Timestamp

Number of steps to predict.

  • If steps is int, number of steps to predict.
  • If str or pandas Datetime, the prediction will be up to that date.
required
last_window pandas Series, pandas DataFrame

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1). If last_window = None, the values stored in self.last_window_ are used to calculate the initial predictors, and the predictions start right after training data.

None
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s.

None

Returns:

Name Type Description
X_predict pandas DataFrame

Pandas DataFrame with the predictors for each step. The index is the same as the prediction index.

Source code in skforecast\recursive\_forecaster_recursive.py
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
def create_predict_X(
    self,
    steps: int,
    last_window: pd.Series | pd.DataFrame | None = None,
    exog: pd.Series | pd.DataFrame | None = None
) -> pd.DataFrame:
    """
    Create the predictors needed to predict `steps` ahead. As it is a recursive
    process, the predictors are created at each iteration of the prediction 
    process.

    Parameters
    ----------
    steps : int, str, pandas Timestamp
        Number of steps to predict. 

        - If steps is int, number of steps to predict. 
        - If str or pandas Datetime, the prediction will be up to that date.
    last_window : pandas Series, pandas DataFrame, default None
        Series values used to create the predictors (lags) needed in the 
        first iteration of the prediction (t + 1).
        If `last_window = None`, the values stored in `self.last_window_` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : pandas Series, pandas DataFrame, default None
        Exogenous variable/s included as predictor/s.

    Returns
    -------
    X_predict : pandas DataFrame
        Pandas DataFrame with the predictors for each step. The index 
        is the same as the prediction index.

    """

    last_window_values, exog_values, prediction_index, steps = (
        self._create_predict_inputs(steps=steps, last_window=last_window, exog=exog)
    )

    with warnings.catch_warnings():
        warnings.filterwarnings(
            "ignore", 
            message="X does not have valid feature names", 
            category=UserWarning
        )
        predictions = self._recursive_predict(
                          steps              = steps,
                          last_window_values = last_window_values,
                          exog_values        = exog_values
                      )

    X_predict = []
    full_predictors = np.concatenate((last_window_values, predictions))

    if self.lags is not None:
        idx = np.arange(-steps, 0)[:, None] - self.lags
        X_lags = full_predictors[idx + len(full_predictors)]
        X_predict.append(X_lags)

    if self.window_features is not None:
        X_window_features = np.full(
            shape      = (steps, len(self.X_train_window_features_names_out_)), 
            fill_value = np.nan, 
            order      = 'C',
            dtype      = float
        )
        for i in range(steps):
            X_window_features[i, :] = np.concatenate(
                [wf.transform(full_predictors[i:-(steps - i)]) 
                 for wf in self.window_features]
            )
        X_predict.append(X_window_features)

    if exog is not None:
        X_predict.append(exog_values)

    X_predict = pd.DataFrame(
                    data    = np.concatenate(X_predict, axis=1),
                    columns = self.X_train_features_names_out_,
                    index   = prediction_index
                )

    if self.transformer_y is not None or self.differentiation is not None:
        warnings.warn(
            "The output matrix is in the transformed scale due to the "
            "inclusion of transformations or differentiation in the Forecaster. "
            "As a result, any predictions generated using this matrix will also "
            "be in the transformed scale. Please refer to the documentation "
            "for more details: "
            "https://skforecast.org/latest/user_guides/training-and-prediction-matrices.html",
            DataTransformationWarning
        )

    return X_predict

predict

predict(
    steps, last_window=None, exog=None, check_inputs=True
)

Predict n steps ahead. It is an recursive process in which, each prediction, is used as a predictor for the next step.

Parameters:

Name Type Description Default
steps int, str, pandas Timestamp

Number of steps to predict.

  • If steps is int, number of steps to predict.
  • If str or pandas Datetime, the prediction will be up to that date.
required
last_window pandas Series, pandas DataFrame

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1). If last_window = None, the values stored in self.last_window_ are used to calculate the initial predictors, and the predictions start right after training data.

None
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s.

None
check_inputs bool

If True, the input is checked for possible warnings and errors with the check_predict_input function. This argument is created for internal use and is not recommended to be changed.

True

Returns:

Name Type Description
predictions pandas Series

Predicted values.

Source code in skforecast\recursive\_forecaster_recursive.py
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
def predict(
    self,
    steps: int | str | pd.Timestamp,
    last_window: pd.Series | pd.DataFrame | None = None,
    exog: pd.Series | pd.DataFrame | None = None,
    check_inputs: bool = True
) -> pd.Series:
    """
    Predict n steps ahead. It is an recursive process in which, each prediction,
    is used as a predictor for the next step.

    Parameters
    ----------
    steps : int, str, pandas Timestamp
        Number of steps to predict. 

        - If steps is int, number of steps to predict. 
        - If str or pandas Datetime, the prediction will be up to that date.
    last_window : pandas Series, pandas DataFrame, default None
        Series values used to create the predictors (lags) needed in the 
        first iteration of the prediction (t + 1).
        If `last_window = None`, the values stored in `self.last_window_` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : pandas Series, pandas DataFrame, default None
        Exogenous variable/s included as predictor/s.
    check_inputs : bool, default True
        If `True`, the input is checked for possible warnings and errors 
        with the `check_predict_input` function. This argument is created 
        for internal use and is not recommended to be changed.

    Returns
    -------
    predictions : pandas Series
        Predicted values.

    """

    (
        last_window_values,
        exog_values,
        prediction_index,
        steps
    ) = self._create_predict_inputs(
            steps        = steps,
            last_window  = last_window,
            exog         = exog,
            check_inputs = check_inputs,
        )

    with warnings.catch_warnings():
        warnings.filterwarnings(
            "ignore", 
            message="X does not have valid feature names", 
            category=UserWarning
        )
        predictions = self._recursive_predict(
                          steps              = steps,
                          last_window_values = last_window_values,
                          exog_values        = exog_values
                      )

    if self.differentiation is not None:
        predictions = self.differentiator.inverse_transform_next_window(predictions)

    predictions = transform_numpy(
                      array             = predictions,
                      transformer       = self.transformer_y,
                      fit               = False,
                      inverse_transform = True
                  )

    predictions = pd.Series(
                      data  = predictions,
                      index = prediction_index,
                      name  = 'pred'
                  )

    return predictions

predict_bootstrapping

predict_bootstrapping(
    steps,
    last_window=None,
    exog=None,
    n_boot=250,
    use_in_sample_residuals=True,
    use_binned_residuals=True,
    random_state=123,
)

Generate multiple forecasting predictions using a bootstrapping process. By sampling from a collection of past observed errors (the residuals), each iteration of bootstrapping generates a different set of predictions. See the References section for more information.

Parameters:

Name Type Description Default
steps int, str, pandas Timestamp

Number of steps to predict.

  • If steps is int, number of steps to predict.
  • If str or pandas Datetime, the prediction will be up to that date.
required
last_window pandas Series, pandas DataFrame

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1). If last_window = None, the values stored in self.last_window_ are used to calculate the initial predictors, and the predictions start right after training data.

None
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s.

None
n_boot int

Number of bootstrapping iterations to perform when estimating prediction intervals.

250
use_in_sample_residuals bool

If True, residuals from the training data are used as proxy of prediction error to create predictions. If False, out of sample residuals (calibration) are used. Out-of-sample residuals must be precomputed using Forecaster's set_out_sample_residuals() method.

True
use_binned_residuals bool

If True, residuals are selected based on the predicted values (binned selection). If False, residuals are selected randomly.

True
random_state int

Seed for the random number generator to ensure reproducibility.

123

Returns:

Name Type Description
boot_predictions pandas DataFrame

Predictions generated by bootstrapping. Shape: (steps, n_boot)

References

.. [1] Forecasting: Principles and Practice (3rd ed) Rob J Hyndman and George Athanasopoulos. https://otexts.com/fpp3/prediction-intervals.html

Source code in skforecast\recursive\_forecaster_recursive.py
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
def predict_bootstrapping(
    self,
    steps: int | str | pd.Timestamp,
    last_window: pd.Series | pd.DataFrame | None = None,
    exog: pd.Series | pd.DataFrame | None = None,
    n_boot: int = 250,
    use_in_sample_residuals: bool = True,
    use_binned_residuals: bool = True,
    random_state: int = 123
) -> pd.DataFrame:
    """
    Generate multiple forecasting predictions using a bootstrapping process.
    By sampling from a collection of past observed errors (the residuals),
    each iteration of bootstrapping generates a different set of predictions. 
    See the References section for more information. 

    Parameters
    ----------
    steps : int, str, pandas Timestamp
        Number of steps to predict. 

        - If steps is int, number of steps to predict. 
        - If str or pandas Datetime, the prediction will be up to that date.
    last_window : pandas Series, pandas DataFrame, default None
        Series values used to create the predictors (lags) needed in the 
        first iteration of the prediction (t + 1).
        If `last_window = None`, the values stored in `self.last_window_` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : pandas Series, pandas DataFrame, default None
        Exogenous variable/s included as predictor/s.
    n_boot : int, default 250
        Number of bootstrapping iterations to perform when estimating prediction
        intervals.
    use_in_sample_residuals : bool, default True
        If `True`, residuals from the training data are used as proxy of
        prediction error to create predictions. 
        If `False`, out of sample residuals (calibration) are used. 
        Out-of-sample residuals must be precomputed using Forecaster's
        `set_out_sample_residuals()` method.
    use_binned_residuals : bool, default True
        If `True`, residuals are selected based on the predicted values 
        (binned selection).
        If `False`, residuals are selected randomly.
    random_state : int, default 123
        Seed for the random number generator to ensure reproducibility.

    Returns
    -------
    boot_predictions : pandas DataFrame
        Predictions generated by bootstrapping.
        Shape: (steps, n_boot)

    References
    ----------
    .. [1] Forecasting: Principles and Practice (3rd ed) Rob J Hyndman and George Athanasopoulos.
           https://otexts.com/fpp3/prediction-intervals.html

    """

    (
        last_window_values,
        exog_values,
        prediction_index,
        steps
    ) = self._create_predict_inputs(
            steps                   = steps, 
            last_window             = last_window, 
            exog                    = exog,
            predict_probabilistic   = True, 
            use_in_sample_residuals = use_in_sample_residuals,
            use_binned_residuals    = use_binned_residuals
        )

    if use_in_sample_residuals:
        residuals = self.in_sample_residuals_
        residuals_by_bin = self.in_sample_residuals_by_bin_
    else:
        residuals = self.out_sample_residuals_
        residuals_by_bin = self.out_sample_residuals_by_bin_

    rng = np.random.default_rng(seed=random_state)
    if use_binned_residuals:
        sampled_residuals = {
            k: v[rng.integers(low=0, high=len(v), size=(steps, n_boot))]
            for k, v in residuals_by_bin.items()
        }
    else:
        sampled_residuals = residuals[
            rng.integers(low=0, high=len(residuals), size=(steps, n_boot))
        ]

    boot_columns = []
    boot_predictions = np.full(
                           shape      = (steps, n_boot),
                           fill_value = np.nan,
                           order      = 'F',
                           dtype      = float
                       )
    with warnings.catch_warnings():
        warnings.filterwarnings(
            "ignore", 
            message="X does not have valid feature names", 
            category=UserWarning
        )
        for i in range(n_boot):

            if use_binned_residuals:
                boot_sampled_residuals = {
                    k: v[:, i]
                    for k, v in sampled_residuals.items()
                }
            else:
                boot_sampled_residuals = sampled_residuals[:, i]

            boot_columns.append(f"pred_boot_{i}")
            boot_predictions[:, i] = self._recursive_predict(
                steps                = steps,
                last_window_values   = last_window_values,
                exog_values          = exog_values,
                residuals            = boot_sampled_residuals,
                use_binned_residuals = use_binned_residuals,
            )

    if self.differentiation is not None:
        boot_predictions = (
            self.differentiator.inverse_transform_next_window(boot_predictions)
        )

    if self.transformer_y:
        boot_predictions = np.apply_along_axis(
                               func1d            = transform_numpy,
                               axis              = 0,
                               arr               = boot_predictions,
                               transformer       = self.transformer_y,
                               fit               = False,
                               inverse_transform = True
                           )

    boot_predictions = pd.DataFrame(
                           data    = boot_predictions,
                           index   = prediction_index,
                           columns = boot_columns
                       )

    return boot_predictions

_predict_interval_conformal

_predict_interval_conformal(
    steps,
    last_window=None,
    exog=None,
    nominal_coverage=0.95,
    use_in_sample_residuals=True,
    use_binned_residuals=True,
)

Generate prediction intervals using the conformal prediction split method [1]_.

Parameters:

Name Type Description Default
steps int, str, pandas Timestamp

Number of steps to predict.

  • If steps is int, number of steps to predict.
  • If str or pandas Datetime, the prediction will be up to that date.
required
last_window pandas Series, pandas DataFrame

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1). If last_window = None, the values stored inself.last_window_ are used to calculate the initial predictors, and the predictions start right after training data.

None
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s.

None
nominal_coverage float

Nominal coverage, also known as expected coverage, of the prediction intervals. Must be between 0 and 1.

0.95
use_in_sample_residuals bool

If True, residuals from the training data are used as proxy of prediction error to create predictions. If False, out of sample residuals (calibration) are used. Out-of-sample residuals must be precomputed using Forecaster's set_out_sample_residuals() method.

True
use_binned_residuals bool

If True, residuals are selected based on the predicted values (binned selection). If False, residuals are selected randomly.

True

Returns:

Name Type Description
predictions pandas DataFrame

Values predicted by the forecaster and their estimated interval.

  • pred: predictions.
  • lower_bound: lower bound of the interval.
  • upper_bound: upper bound of the interval.
References

.. [1] MAPIE - Model Agnostic Prediction Interval Estimator. https://mapie.readthedocs.io/en/stable/theoretical_description_regression.html#the-split-method

Source code in skforecast\recursive\_forecaster_recursive.py
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
def _predict_interval_conformal(
    self,
    steps: int | str | pd.Timestamp,
    last_window: pd.Series | pd.DataFrame | None = None,
    exog: pd.Series | pd.DataFrame | None = None,
    nominal_coverage: float = 0.95,
    use_in_sample_residuals: bool = True,
    use_binned_residuals: bool = True
) -> pd.DataFrame:
    """
    Generate prediction intervals using the conformal prediction 
    split method [1]_.

    Parameters
    ----------
    steps : int, str, pandas Timestamp
        Number of steps to predict. 

        - If steps is int, number of steps to predict. 
        - If str or pandas Datetime, the prediction will be up to that date.
    last_window : pandas Series, pandas DataFrame, default None
        Series values used to create the predictors (lags) needed in the 
        first iteration of the prediction (t + 1).
        If `last_window = None`, the values stored in` self.last_window_` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : pandas Series, pandas DataFrame, default None
        Exogenous variable/s included as predictor/s.
    nominal_coverage : float, default 0.95
        Nominal coverage, also known as expected coverage, of the prediction
        intervals. Must be between 0 and 1.
    use_in_sample_residuals : bool, default True
        If `True`, residuals from the training data are used as proxy of
        prediction error to create predictions. 
        If `False`, out of sample residuals (calibration) are used. 
        Out-of-sample residuals must be precomputed using Forecaster's
        `set_out_sample_residuals()` method.
    use_binned_residuals : bool, default True
        If `True`, residuals are selected based on the predicted values 
        (binned selection).
        If `False`, residuals are selected randomly.

    Returns
    -------
    predictions : pandas DataFrame
        Values predicted by the forecaster and their estimated interval.

        - pred: predictions.
        - lower_bound: lower bound of the interval.
        - upper_bound: upper bound of the interval.

    References
    ----------
    .. [1] MAPIE - Model Agnostic Prediction Interval Estimator.
           https://mapie.readthedocs.io/en/stable/theoretical_description_regression.html#the-split-method

    """

    (
        last_window_values,
        exog_values,
        prediction_index,
        steps
    ) = self._create_predict_inputs(
            steps                   = steps,
            last_window             = last_window,
            exog                    = exog,
            predict_probabilistic   = True,
            use_in_sample_residuals = use_in_sample_residuals,
            use_binned_residuals    = use_binned_residuals
        )

    if use_in_sample_residuals:
        residuals = self.in_sample_residuals_
        residuals_by_bin = self.in_sample_residuals_by_bin_
    else:
        residuals = self.out_sample_residuals_
        residuals_by_bin = self.out_sample_residuals_by_bin_

    with warnings.catch_warnings():
        warnings.filterwarnings(
            "ignore", 
            message="X does not have valid feature names", 
            category=UserWarning
        )
        predictions = self._recursive_predict(
                          steps              = steps,
                          last_window_values = last_window_values,
                          exog_values        = exog_values
                      )

    if use_binned_residuals:
        correction_factor_by_bin = {
            k: np.quantile(np.abs(v), nominal_coverage)
            for k, v in residuals_by_bin.items()
        }
        replace_func = np.vectorize(lambda x: correction_factor_by_bin[x])
        predictions_bin = self.binner.transform(predictions)
        correction_factor = replace_func(predictions_bin)
    else:
        correction_factor = np.quantile(np.abs(residuals), nominal_coverage)

    lower_bound = predictions - correction_factor
    upper_bound = predictions + correction_factor
    predictions = np.column_stack([predictions, lower_bound, upper_bound])

    if self.differentiation is not None:
        predictions = (
            self.differentiator.inverse_transform_next_window(predictions)
        )

    if self.transformer_y:
        predictions = np.apply_along_axis(
                          func1d            = transform_numpy,
                          axis              = 0,
                          arr               = predictions,
                          transformer       = self.transformer_y,
                          fit               = False,
                          inverse_transform = True
                      )

    predictions = pd.DataFrame(
                      data    = predictions,
                      index   = prediction_index,
                      columns = ["pred", "lower_bound", "upper_bound"]
                  )

    return predictions

predict_interval

predict_interval(
    steps,
    last_window=None,
    exog=None,
    method="bootstrapping",
    interval=[5, 95],
    n_boot=250,
    use_in_sample_residuals=True,
    use_binned_residuals=True,
    random_state=123,
)

Predict n steps ahead and estimate prediction intervals using either bootstrapping or conformal prediction methods. Refer to the References section for additional details on these methods.

Parameters:

Name Type Description Default
steps int, str, pandas Timestamp

Number of steps to predict.

  • If steps is int, number of steps to predict.
  • If str or pandas Datetime, the prediction will be up to that date.
required
last_window pandas Series, pandas DataFrame

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1). If last_window = None, the values stored inself.last_window_ are used to calculate the initial predictors, and the predictions start right after training data.

None
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s.

None
method str

Technique used to estimate prediction intervals. Available options:

  • 'bootstrapping': Bootstrapping is used to generate prediction intervals [1]_.
  • 'conformal': Employs the conformal prediction split method for interval estimation [2]_.
'bootstrapping'
interval (float, list, tuple)

Confidence level of the prediction interval. Interpretation depends on the method used:

  • If float, represents the nominal (expected) coverage (between 0 and 1). For instance, interval=0.95 corresponds to [2.5, 97.5] percentiles.
  • If list or tuple, defines the exact percentiles to compute, which must be between 0 and 100 inclusive. For example, interval of 95% should be as interval = [2.5, 97.5].
  • When using method='conformal', the interval must be a float or a list/tuple defining a symmetric interval.
[5, 95]
n_boot int

Number of bootstrapping iterations to perform when estimating prediction intervals.

250
use_in_sample_residuals bool

If True, residuals from the training data are used as proxy of prediction error to create predictions. If False, out of sample residuals (calibration) are used. Out-of-sample residuals must be precomputed using Forecaster's set_out_sample_residuals() method.

True
use_binned_residuals bool

If True, residuals are selected based on the predicted values (binned selection). If False, residuals are selected randomly.

True
random_state int

Seed for the random number generator to ensure reproducibility.

123

Returns:

Name Type Description
predictions pandas DataFrame

Values predicted by the forecaster and their estimated interval.

  • pred: predictions.
  • lower_bound: lower bound of the interval.
  • upper_bound: upper bound of the interval.
References

.. [1] Forecasting: Principles and Practice (3rd ed) Rob J Hyndman and George Athanasopoulos. https://otexts.com/fpp3/prediction-intervals.html

.. [2] MAPIE - Model Agnostic Prediction Interval Estimator. https://mapie.readthedocs.io/en/stable/theoretical_description_regression.html#the-split-method

Source code in skforecast\recursive\_forecaster_recursive.py
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
def predict_interval(
    self,
    steps: int | str | pd.Timestamp,
    last_window: pd.Series | pd.DataFrame | None = None,
    exog: pd.Series | pd.DataFrame | None = None,
    method: str = 'bootstrapping',
    interval: float | list[float] | tuple[float] = [5, 95],
    n_boot: int = 250,
    use_in_sample_residuals: bool = True,
    use_binned_residuals: bool = True,
    random_state: int = 123
) -> pd.DataFrame:
    """
    Predict n steps ahead and estimate prediction intervals using either 
    bootstrapping or conformal prediction methods. Refer to the References 
    section for additional details on these methods.

    Parameters
    ----------
    steps : int, str, pandas Timestamp
        Number of steps to predict. 

        - If steps is int, number of steps to predict. 
        - If str or pandas Datetime, the prediction will be up to that date.
    last_window : pandas Series, pandas DataFrame, default None
        Series values used to create the predictors (lags) needed in the 
        first iteration of the prediction (t + 1).
        If `last_window = None`, the values stored in` self.last_window_` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : pandas Series, pandas DataFrame, default None
        Exogenous variable/s included as predictor/s.
    method : str, default 'bootstrapping'
        Technique used to estimate prediction intervals. Available options:

        - 'bootstrapping': Bootstrapping is used to generate prediction 
        intervals [1]_.
        - 'conformal': Employs the conformal prediction split method for 
        interval estimation [2]_.
    interval : float, list, tuple, default [5, 95]
        Confidence level of the prediction interval. Interpretation depends 
        on the method used:

        - If `float`, represents the nominal (expected) coverage (between 0 
        and 1). For instance, `interval=0.95` corresponds to `[2.5, 97.5]` 
        percentiles.
        - If `list` or `tuple`, defines the exact percentiles to compute, which 
        must be between 0 and 100 inclusive. For example, interval 
        of 95% should be as `interval = [2.5, 97.5]`.
        - When using `method='conformal'`, the interval must be a float or 
        a list/tuple defining a symmetric interval.
    n_boot : int, default 250
        Number of bootstrapping iterations to perform when estimating prediction
        intervals.
    use_in_sample_residuals : bool, default True
        If `True`, residuals from the training data are used as proxy of
        prediction error to create predictions. 
        If `False`, out of sample residuals (calibration) are used. 
        Out-of-sample residuals must be precomputed using Forecaster's
        `set_out_sample_residuals()` method.
    use_binned_residuals : bool, default True
        If `True`, residuals are selected based on the predicted values 
        (binned selection).
        If `False`, residuals are selected randomly.
    random_state : int, default 123
        Seed for the random number generator to ensure reproducibility.

    Returns
    -------
    predictions : pandas DataFrame
        Values predicted by the forecaster and their estimated interval.

        - pred: predictions.
        - lower_bound: lower bound of the interval.
        - upper_bound: upper bound of the interval.

    References
    ----------
    .. [1] Forecasting: Principles and Practice (3rd ed) Rob J Hyndman and George Athanasopoulos.
           https://otexts.com/fpp3/prediction-intervals.html

    .. [2] MAPIE - Model Agnostic Prediction Interval Estimator.
           https://mapie.readthedocs.io/en/stable/theoretical_description_regression.html#the-split-method

    """

    if method == "bootstrapping":

        if isinstance(interval, (list, tuple)):
            check_interval(interval=interval, ensure_symmetric_intervals=False)
            interval = np.array(interval) / 100
        else:
            check_interval(alpha=interval, alpha_literal='interval')
            interval = np.array([0.5 - interval / 2, 0.5 + interval / 2])

        boot_predictions = self.predict_bootstrapping(
                               steps                   = steps,
                               last_window             = last_window,
                               exog                    = exog,
                               n_boot                  = n_boot,
                               random_state            = random_state,
                               use_in_sample_residuals = use_in_sample_residuals,
                               use_binned_residuals    = use_binned_residuals
                           )

        predictions = self.predict(
                          steps        = steps,
                          last_window  = last_window,
                          exog         = exog,
                          check_inputs = False
                      )

        predictions_interval = boot_predictions.quantile(q=interval, axis=1).transpose()
        predictions_interval.columns = ['lower_bound', 'upper_bound']
        predictions = pd.concat((predictions, predictions_interval), axis=1)

    elif method == 'conformal':

        if isinstance(interval, (list, tuple)):
            check_interval(interval=interval, ensure_symmetric_intervals=True)
            nominal_coverage = (interval[1] - interval[0]) / 100
        else:
            check_interval(alpha=interval, alpha_literal='interval')
            nominal_coverage = interval

        predictions = self._predict_interval_conformal(
                          steps                   = steps,
                          last_window             = last_window,
                          exog                    = exog,
                          nominal_coverage        = nominal_coverage,
                          use_in_sample_residuals = use_in_sample_residuals,
                          use_binned_residuals    = use_binned_residuals
                      )
    else:
        raise ValueError(
            f"Invalid `method` '{method}'. Choose 'bootstrapping' or 'conformal'."
        )

    return predictions

predict_quantiles

predict_quantiles(
    steps,
    last_window=None,
    exog=None,
    quantiles=[0.05, 0.5, 0.95],
    n_boot=250,
    use_in_sample_residuals=True,
    use_binned_residuals=True,
    random_state=123,
)

Calculate the specified quantiles for each step. After generating multiple forecasting predictions through a bootstrapping process, each quantile is calculated for each step.

Parameters:

Name Type Description Default
steps int, str, pandas Timestamp

Number of steps to predict.

  • If steps is int, number of steps to predict.
  • If str or pandas Datetime, the prediction will be up to that date.
required
last_window pandas Series, pandas DataFrame

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1). If last_window = None, the values stored inself.last_window_ are used to calculate the initial predictors, and the predictions start right after training data.

None
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s.

None
quantiles (list, tuple)

Sequence of quantiles to compute, which must be between 0 and 1 inclusive. For example, quantiles of 0.05, 0.5 and 0.95 should be as quantiles = [0.05, 0.5, 0.95].

[0.05, 0.5, 0.95]
n_boot int

Number of bootstrapping iterations to perform when estimating quantiles.

250
use_in_sample_residuals bool

If True, residuals from the training data are used as proxy of prediction error to create predictions. If False, out of sample residuals (calibration) are used. Out-of-sample residuals must be precomputed using Forecaster's set_out_sample_residuals() method.

True
use_binned_residuals bool

If True, residuals are selected based on the predicted values (binned selection). If False, residuals are selected randomly.

True
random_state int

Seed for the random number generator to ensure reproducibility.

123

Returns:

Name Type Description
predictions pandas DataFrame

Quantiles predicted by the forecaster.

References

.. [1] Forecasting: Principles and Practice (3rd ed) Rob J Hyndman and George Athanasopoulos. https://otexts.com/fpp3/prediction-intervals.html

Source code in skforecast\recursive\_forecaster_recursive.py
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
def predict_quantiles(
    self,
    steps: int | str | pd.Timestamp,
    last_window: pd.Series | pd.DataFrame | None = None,
    exog: pd.Series | pd.DataFrame | None = None,
    quantiles: list[float] | tuple[float] = [0.05, 0.5, 0.95],
    n_boot: int = 250,
    use_in_sample_residuals: bool = True,
    use_binned_residuals: bool = True,
    random_state: int = 123,
) -> pd.DataFrame:
    """
    Calculate the specified quantiles for each step. After generating 
    multiple forecasting predictions through a bootstrapping process, each 
    quantile is calculated for each step.

    Parameters
    ----------
    steps : int, str, pandas Timestamp
        Number of steps to predict. 

        - If steps is int, number of steps to predict. 
        - If str or pandas Datetime, the prediction will be up to that date.
    last_window : pandas Series, pandas DataFrame, default None
        Series values used to create the predictors (lags) needed in the 
        first iteration of the prediction (t + 1).
        If `last_window = None`, the values stored in` self.last_window_` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : pandas Series, pandas DataFrame, default None
        Exogenous variable/s included as predictor/s.
    quantiles : list, tuple, default [0.05, 0.5, 0.95]
        Sequence of quantiles to compute, which must be between 0 and 1 
        inclusive. For example, quantiles of 0.05, 0.5 and 0.95 should be as 
        `quantiles = [0.05, 0.5, 0.95]`.
    n_boot : int, default 250
        Number of bootstrapping iterations to perform when estimating quantiles.
    use_in_sample_residuals : bool, default True
        If `True`, residuals from the training data are used as proxy of
        prediction error to create predictions. 
        If `False`, out of sample residuals (calibration) are used. 
        Out-of-sample residuals must be precomputed using Forecaster's
        `set_out_sample_residuals()` method.
    use_binned_residuals : bool, default True
        If `True`, residuals are selected based on the predicted values 
        (binned selection).
        If `False`, residuals are selected randomly.
    random_state : int, default 123
        Seed for the random number generator to ensure reproducibility.

    Returns
    -------
    predictions : pandas DataFrame
        Quantiles predicted by the forecaster.

    References
    ----------
    .. [1] Forecasting: Principles and Practice (3rd ed) Rob J Hyndman and George Athanasopoulos.
           https://otexts.com/fpp3/prediction-intervals.html

    """

    check_interval(quantiles=quantiles)

    boot_predictions = self.predict_bootstrapping(
                           steps                   = steps,
                           last_window             = last_window,
                           exog                    = exog,
                           n_boot                  = n_boot,
                           random_state            = random_state,
                           use_in_sample_residuals = use_in_sample_residuals,
                           use_binned_residuals    = use_binned_residuals
                       )

    predictions = boot_predictions.quantile(q=quantiles, axis=1).transpose()
    predictions.columns = [f'q_{q}' for q in quantiles]

    return predictions

predict_dist

predict_dist(
    steps,
    distribution,
    last_window=None,
    exog=None,
    n_boot=250,
    use_in_sample_residuals=True,
    use_binned_residuals=True,
    random_state=123,
)

Fit a given probability distribution for each step. After generating multiple forecasting predictions through a bootstrapping process, each step is fitted to the given distribution.

Parameters:

Name Type Description Default
steps int, str, pandas Timestamp

Number of steps to predict.

  • If steps is int, number of steps to predict.
  • If str or pandas Datetime, the prediction will be up to that date.
required
distribution object

A distribution object from scipy.stats with methods _pdf and fit. For example scipy.stats.norm.

required
last_window pandas Series, pandas DataFrame

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1).
If last_window = None, the values stored inself.last_window_ are used to calculate the initial predictors, and the predictions start right after training data.

None
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s.

None
n_boot int

Number of bootstrapping iterations to perform when estimating prediction intervals.

250
use_in_sample_residuals bool

If True, residuals from the training data are used as proxy of prediction error to create predictions. If False, out of sample residuals (calibration) are used. Out-of-sample residuals must be precomputed using Forecaster's set_out_sample_residuals() method.

True
use_binned_residuals bool

If True, residuals are selected based on the predicted values (binned selection). If False, residuals are selected randomly.

True
random_state int

Seed for the random number generator to ensure reproducibility.

123

Returns:

Name Type Description
predictions pandas DataFrame

Distribution parameters estimated for each step.

References

.. [1] Forecasting: Principles and Practice (3rd ed) Rob J Hyndman and George Athanasopoulos. https://otexts.com/fpp3/prediction-intervals.html

Source code in skforecast\recursive\_forecaster_recursive.py
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
def predict_dist(
    self,
    steps: int | str | pd.Timestamp,
    distribution: object,
    last_window: pd.Series | pd.DataFrame | None = None,
    exog: pd.Series | pd.DataFrame | None = None,
    n_boot: int = 250,
    use_in_sample_residuals: bool = True,
    use_binned_residuals: bool = True,
    random_state: int = 123,
) -> pd.DataFrame:
    """
    Fit a given probability distribution for each step. After generating 
    multiple forecasting predictions through a bootstrapping process, each 
    step is fitted to the given distribution.

    Parameters
    ----------
    steps : int, str, pandas Timestamp
        Number of steps to predict. 

        - If steps is int, number of steps to predict. 
        - If str or pandas Datetime, the prediction will be up to that date.
    distribution : object
        A distribution object from scipy.stats with methods `_pdf` and `fit`. 
        For example scipy.stats.norm.
    last_window : pandas Series, pandas DataFrame, default None
        Series values used to create the predictors (lags) needed in the 
        first iteration of the prediction (t + 1).  
        If `last_window = None`, the values stored in` self.last_window_` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : pandas Series, pandas DataFrame, default None
        Exogenous variable/s included as predictor/s.
    n_boot : int, default 250
        Number of bootstrapping iterations to perform when estimating prediction
        intervals.
    use_in_sample_residuals : bool, default True
        If `True`, residuals from the training data are used as proxy of
        prediction error to create predictions. 
        If `False`, out of sample residuals (calibration) are used. 
        Out-of-sample residuals must be precomputed using Forecaster's
        `set_out_sample_residuals()` method.
    use_binned_residuals : bool, default True
        If `True`, residuals are selected based on the predicted values 
        (binned selection).
        If `False`, residuals are selected randomly.
    random_state : int, default 123
        Seed for the random number generator to ensure reproducibility.

    Returns
    -------
    predictions : pandas DataFrame
        Distribution parameters estimated for each step.

    References
    ----------
    .. [1] Forecasting: Principles and Practice (3rd ed) Rob J Hyndman and George Athanasopoulos.
           https://otexts.com/fpp3/prediction-intervals.html

    """

    if not hasattr(distribution, "_pdf") or not callable(getattr(distribution, "fit", None)):
        raise TypeError(
            "`distribution` must be a valid probability distribution object "
            "from scipy.stats, with methods `_pdf` and `fit`."
        )

    predictions = self.predict_bootstrapping(
                      steps                   = steps,
                      last_window             = last_window,
                      exog                    = exog,
                      n_boot                  = n_boot,
                      random_state            = random_state,
                      use_in_sample_residuals = use_in_sample_residuals,
                      use_binned_residuals    = use_binned_residuals
                  )       

    param_names = [
        p for p in inspect.signature(distribution._pdf).parameters
        if not p == 'x'
    ] + ["loc", "scale"]

    predictions[param_names] = (
        predictions.apply(
            lambda x: distribution.fit(x), axis=1, result_type='expand'
        )
    )
    predictions = predictions[param_names]

    return predictions

set_params

set_params(params)

Set new values to the parameters of the scikit-learn model stored in the forecaster.

Parameters:

Name Type Description Default
params dict

Parameters values.

required

Returns:

Type Description
None
Source code in skforecast\recursive\_forecaster_recursive.py
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
def set_params(
    self, 
    params: dict[str, object]
) -> None:
    """
    Set new values to the parameters of the scikit-learn model stored in the
    forecaster.

    Parameters
    ----------
    params : dict
        Parameters values.

    Returns
    -------
    None

    """

    self.regressor = clone(self.regressor)
    self.regressor.set_params(**params)

set_fit_kwargs

set_fit_kwargs(fit_kwargs)

Set new values for the additional keyword arguments passed to the fit method of the regressor.

Parameters:

Name Type Description Default
fit_kwargs dict

Dict of the form {"argument": new_value}.

required

Returns:

Type Description
None
Source code in skforecast\recursive\_forecaster_recursive.py
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
def set_fit_kwargs(
    self, 
    fit_kwargs: dict[str, object]
) -> None:
    """
    Set new values for the additional keyword arguments passed to the `fit` 
    method of the regressor.

    Parameters
    ----------
    fit_kwargs : dict
        Dict of the form {"argument": new_value}.

    Returns
    -------
    None

    """

    self.fit_kwargs = check_select_fit_kwargs(self.regressor, fit_kwargs=fit_kwargs)

set_lags

set_lags(lags=None)

Set new value to the attribute lags. Attributes lags_names, max_lag and window_size are also updated.

Parameters:

Name Type Description Default
lags int, list, numpy ndarray, range

Lags used as predictors. Index starts at 1, so lag 1 is equal to t-1.

  • int: include lags from 1 to lags (included).
  • list, 1d numpy ndarray or range: include only lags present in lags, all elements must be int.
  • None: no lags are included as predictors.
None

Returns:

Type Description
None
Source code in skforecast\recursive\_forecaster_recursive.py
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
def set_lags(
    self, 
    lags: int | list[int] | np.ndarray[int] | range[int] | None = None
) -> None:
    """
    Set new value to the attribute `lags`. Attributes `lags_names`, 
    `max_lag` and `window_size` are also updated.

    Parameters
    ----------
    lags : int, list, numpy ndarray, range, default None
        Lags used as predictors. Index starts at 1, so lag 1 is equal to t-1. 

        - `int`: include lags from 1 to `lags` (included).
        - `list`, `1d numpy ndarray` or `range`: include only lags present in 
        `lags`, all elements must be int.
        - `None`: no lags are included as predictors. 

    Returns
    -------
    None

    """

    if self.window_features is None and lags is None:
        raise ValueError(
            "At least one of the arguments `lags` or `window_features` "
            "must be different from None. This is required to create the "
            "predictors used in training the forecaster."
        )

    self.lags, self.lags_names, self.max_lag = initialize_lags(type(self).__name__, lags)
    self.window_size = max(
        [ws for ws in [self.max_lag, self.max_size_window_features] 
         if ws is not None]
    )
    if self.differentiation is not None:
        self.window_size += self.differentiation
        self.differentiator.set_params(window_size=self.window_size)

set_window_features

set_window_features(window_features=None)

Set new value to the attribute window_features. Attributes max_size_window_features, window_features_names, window_features_class_names and window_size are also updated.

Parameters:

Name Type Description Default
window_features (object, list)

Instance or list of instances used to create window features. Window features are created from the original time series and are included as predictors.

None

Returns:

Type Description
None
Source code in skforecast\recursive\_forecaster_recursive.py
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
def set_window_features(
    self, 
    window_features: object | list[object] | None = None
) -> None:
    """
    Set new value to the attribute `window_features`. Attributes 
    `max_size_window_features`, `window_features_names`, 
    `window_features_class_names` and `window_size` are also updated.

    Parameters
    ----------
    window_features : object, list, default None
        Instance or list of instances used to create window features. Window features
        are created from the original time series and are included as predictors.

    Returns
    -------
    None

    """

    if window_features is None and self.lags is None:
        raise ValueError(
            "At least one of the arguments `lags` or `window_features` "
            "must be different from None. This is required to create the "
            "predictors used in training the forecaster."
        )

    self.window_features, self.window_features_names, self.max_size_window_features = (
        initialize_window_features(window_features)
    )
    self.window_features_class_names = None
    if window_features is not None:
        self.window_features_class_names = [
            type(wf).__name__ for wf in self.window_features
        ] 
    self.window_size = max(
        [ws for ws in [self.max_lag, self.max_size_window_features] 
         if ws is not None]
    )
    if self.differentiation is not None:
        self.window_size += self.differentiation
        self.differentiator.set_params(window_size=self.window_size)

set_in_sample_residuals

set_in_sample_residuals(y, exog=None, random_state=123)

Set in-sample residuals in case they were not calculated during the training process.

In-sample residuals are calculated as the difference between the true values and the predictions made by the forecaster using the training data. The following internal attributes are updated:

  • in_sample_residuals_: residuals stored in a numpy ndarray.
  • binner_intervals_: intervals used to bin the residuals are calculated using the quantiles of the predicted values.
  • in_sample_residuals_by_bin_: residuals are binned according to the predicted value they are associated with and stored in a dictionary, where the keys are the intervals of the predicted values and the values are the residuals associated with that range.

A total of 10_000 residuals are stored in the attribute in_sample_residuals_. If the number of residuals is greater than 10_000, a random sample of 10_000 residuals is stored. The number of residuals stored per bin is limited to 10_000 // self.binner.n_bins_.

Parameters:

Name Type Description Default
y pandas Series

Training time series.

required
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s. Must have the same number of observations as y and their indexes must be aligned so that y[i] is regressed on exog[i].

None
random_state int

Sets a seed to the random sampling for reproducible output.

123

Returns:

Type Description
None
Source code in skforecast\recursive\_forecaster_recursive.py
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
def set_in_sample_residuals(
    self,
    y: pd.Series,
    exog: pd.Series | pd.DataFrame | None = None,
    random_state: int = 123
) -> None:
    """
    Set in-sample residuals in case they were not calculated during the
    training process. 

    In-sample residuals are calculated as the difference between the true 
    values and the predictions made by the forecaster using the training 
    data. The following internal attributes are updated:

    + `in_sample_residuals_`: residuals stored in a numpy ndarray.
    + `binner_intervals_`: intervals used to bin the residuals are calculated
    using the quantiles of the predicted values.
    + `in_sample_residuals_by_bin_`: residuals are binned according to the
    predicted value they are associated with and stored in a dictionary, where
    the keys are the intervals of the predicted values and the values are
    the residuals associated with that range. 

    A total of 10_000 residuals are stored in the attribute `in_sample_residuals_`.
    If the number of residuals is greater than 10_000, a random sample of
    10_000 residuals is stored. The number of residuals stored per bin is
    limited to `10_000 // self.binner.n_bins_`.

    Parameters
    ----------
    y : pandas Series
        Training time series.
    exog : pandas Series, pandas DataFrame, default None
        Exogenous variable/s included as predictor/s. Must have the same
        number of observations as `y` and their indexes must be aligned so
        that y[i] is regressed on exog[i].
    random_state : int, default 123
        Sets a seed to the random sampling for reproducible output.

    Returns
    -------
    None

    """

    if not self.is_fitted:
        raise NotFittedError(
            "This forecaster is not fitted yet. Call `fit` with appropriate "
            "arguments before using `set_in_sample_residuals()`."
        )

    check_y(y=y)
    y_index_range = preprocess_y(
        y=y, return_values=False, suppress_warnings=True
    )[1][[0, -1]]
    if not y_index_range.equals(self.training_range_):
        raise IndexError(
            f"The index range of `y` does not match the range "
            f"used during training. Please ensure the index is aligned "
            f"with the training data.\n"
            f"    Expected : {self.training_range_}\n"
            f"    Received : {y_index_range}"
        )

    (
        X_train,
        y_train,
        _,
        _,
        _,
        X_train_features_names_out_,
        *_
    ) = self._create_train_X_y(y=y, exog=exog)

    if not X_train_features_names_out_ == self.X_train_features_names_out_:
        raise ValueError(
            f"Feature mismatch detected after matrix creation. The features "
            f"generated from the provided data do not match those used during "
            f"the training process. To correctly set in-sample residuals, "
            f"ensure that the same data and preprocessing steps are applied.\n"
            f"    Expected output : {self.X_train_features_names_out_}\n"
            f"    Current output  : {X_train_features_names_out_}"
        )

    self._binning_in_sample_residuals(
        y_true                    = y_train.to_numpy(),
        y_pred                    = self.regressor.predict(X_train).ravel(),
        store_in_sample_residuals = True,
        random_state              = random_state
    )

set_out_sample_residuals

set_out_sample_residuals(
    y_true, y_pred, append=False, random_state=123
)

Set new values to the attribute out_sample_residuals_. Out of sample residuals are meant to be calculated using observations that did not participate in the training process. y_true and y_pred are expected to be in the original scale of the time series. Residuals are calculated as y_true - y_pred, after applying the necessary transformations and differentiations if the forecaster includes them (self.transformer_y and self.differentiation). Two internal attributes are updated:

  • out_sample_residuals_: residuals stored in a numpy ndarray.
  • out_sample_residuals_by_bin_: residuals are binned according to the predicted value they are associated with and stored in a dictionary, where the keys are the intervals of the predicted values and the values are the residuals associated with that range. If a bin binning is empty, it is filled with a random sample of residuals from other bins. This is done to ensure that all bins have at least one residual and can be used in the prediction process.

A total of 10_000 residuals are stored in the attribute out_sample_residuals_. If the number of residuals is greater than 10_000, a random sample of 10_000 residuals is stored. The number of residuals stored per bin is limited to 10_000 // self.binner.n_bins_.

Parameters:

Name Type Description Default
y_true numpy ndarray, pandas Series

True values of the time series from which the residuals have been calculated.

required
y_pred numpy ndarray, pandas Series

Predicted values of the time series.

required
append bool

If True, new residuals are added to the once already stored in the forecaster. If after appending the new residuals, the limit of 10_000 // self.binner.n_bins_ values per bin is reached, a random sample of residuals is stored.

False
random_state int

Sets a seed to the random sampling for reproducible output.

123

Returns:

Type Description
None
Source code in skforecast\recursive\_forecaster_recursive.py
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
def set_out_sample_residuals(
    self,
    y_true: np.ndarray | pd.Series,
    y_pred: np.ndarray | pd.Series,
    append: bool = False,
    random_state: int = 123
) -> None:
    """
    Set new values to the attribute `out_sample_residuals_`. Out of sample
    residuals are meant to be calculated using observations that did not
    participate in the training process. `y_true` and `y_pred` are expected
    to be in the original scale of the time series. Residuals are calculated
    as `y_true` - `y_pred`, after applying the necessary transformations and
    differentiations if the forecaster includes them (`self.transformer_y`
    and `self.differentiation`). Two internal attributes are updated:

    + `out_sample_residuals_`: residuals stored in a numpy ndarray.
    + `out_sample_residuals_by_bin_`: residuals are binned according to the
    predicted value they are associated with and stored in a dictionary, where
    the keys are the  intervals of the predicted values and the values are
    the residuals associated with that range. If a bin binning is empty, it
    is filled with a random sample of residuals from other bins. This is done
    to ensure that all bins have at least one residual and can be used in the
    prediction process.

    A total of 10_000 residuals are stored in the attribute `out_sample_residuals_`.
    If the number of residuals is greater than 10_000, a random sample of
    10_000 residuals is stored. The number of residuals stored per bin is
    limited to `10_000 // self.binner.n_bins_`.

    Parameters
    ----------
    y_true : numpy ndarray, pandas Series
        True values of the time series from which the residuals have been
        calculated.
    y_pred : numpy ndarray, pandas Series
        Predicted values of the time series.
    append : bool, default False
        If `True`, new residuals are added to the once already stored in the
        forecaster. If after appending the new residuals, the limit of
        `10_000 // self.binner.n_bins_` values per bin is reached, a random
        sample of residuals is stored.
    random_state : int, default 123
        Sets a seed to the random sampling for reproducible output.

    Returns
    -------
    None

    """

    if not self.is_fitted:
        raise NotFittedError(
            "This forecaster is not fitted yet. Call `fit` with appropriate "
            "arguments before using `set_out_sample_residuals()`."
        )

    if not isinstance(y_true, (np.ndarray, pd.Series)):
        raise TypeError(
            f"`y_true` argument must be `numpy ndarray` or `pandas Series`. "
            f"Got {type(y_true)}."
        )

    if not isinstance(y_pred, (np.ndarray, pd.Series)):
        raise TypeError(
            f"`y_pred` argument must be `numpy ndarray` or `pandas Series`. "
            f"Got {type(y_pred)}."
        )

    if len(y_true) != len(y_pred):
        raise ValueError(
            f"`y_true` and `y_pred` must have the same length. "
            f"Got {len(y_true)} and {len(y_pred)}."
        )

    if isinstance(y_true, pd.Series) and isinstance(y_pred, pd.Series):
        if not y_true.index.equals(y_pred.index):
            raise ValueError(
                "`y_true` and `y_pred` must have the same index."
            )

    if not isinstance(y_pred, np.ndarray):
        y_pred = y_pred.to_numpy()
    if not isinstance(y_true, np.ndarray):
        y_true = y_true.to_numpy()

    if self.transformer_y:
        y_true = transform_numpy(
                     array             = y_true,
                     transformer       = self.transformer_y,
                     fit               = False,
                     inverse_transform = False
                 )
        y_pred = transform_numpy(
                     array             = y_pred,
                     transformer       = self.transformer_y,
                     fit               = False,
                     inverse_transform = False
                 )

    if self.differentiation is not None:
        differentiator = copy(self.differentiator)
        differentiator.set_params(window_size=None)
        y_true = differentiator.fit_transform(y_true)[self.differentiation:]
        y_pred = differentiator.fit_transform(y_pred)[self.differentiation:]

    data = pd.DataFrame(
        {'prediction': y_pred, 'residuals': y_true - y_pred}
    ).dropna()
    y_pred = data['prediction'].to_numpy()
    residuals = data['residuals'].to_numpy()

    data['bin'] = self.binner.transform(y_pred).astype(int)
    residuals_by_bin = data.groupby('bin')['residuals'].apply(np.array).to_dict()

    out_sample_residuals = (
        np.array([]) 
        if self.out_sample_residuals_ is None
        else self.out_sample_residuals_
    )
    out_sample_residuals_by_bin = (
        {} 
        if self.out_sample_residuals_by_bin_ is None
        else self.out_sample_residuals_by_bin_
    )
    if append:
        out_sample_residuals = np.concatenate([out_sample_residuals, residuals])
        for k, v in residuals_by_bin.items():
            if k in out_sample_residuals_by_bin:
                out_sample_residuals_by_bin[k] = np.concatenate(
                    (out_sample_residuals_by_bin[k], v)
                )
            else:
                out_sample_residuals_by_bin[k] = v
    else:
        out_sample_residuals = residuals
        out_sample_residuals_by_bin = residuals_by_bin

    max_samples = 10_000 // self.binner.n_bins_
    rng = np.random.default_rng(seed=random_state)
    for k, v in out_sample_residuals_by_bin.items():
        if len(v) > max_samples:
            sample = rng.choice(a=v, size=max_samples, replace=False)
            out_sample_residuals_by_bin[k] = sample

    bin_keys = (
        []
        if self.binner_intervals_ is None
        else self.binner_intervals_.keys()
    )
    for k in bin_keys:
        if k not in out_sample_residuals_by_bin:
            out_sample_residuals_by_bin[k] = np.array([])

    empty_bins = [
        k for k, v in out_sample_residuals_by_bin.items() 
        if v.size == 0
    ]
    if empty_bins:
        warnings.warn(
            f"The following bins have no out of sample residuals: {empty_bins}. "
            f"No predicted values fall in the interval "
            f"{[self.binner_intervals_[bin] for bin in empty_bins]}. "
            f"Empty bins will be filled with a random sample of residuals.",
            ResidualsUsageWarning
        )
        for k in empty_bins:
            out_sample_residuals_by_bin[k] = rng.choice(
                a       = out_sample_residuals,
                size    = min(max_samples, len(out_sample_residuals)),
                replace = False
            )

    if len(out_sample_residuals) > 10_000:
        out_sample_residuals = rng.choice(
            a       = out_sample_residuals, 
            size    = 10_000, 
            replace = False
        )

    self.out_sample_residuals_ = out_sample_residuals
    self.out_sample_residuals_by_bin_ = out_sample_residuals_by_bin

get_feature_importances

get_feature_importances(sort_importance=True)

Return feature importances of the regressor stored in the forecaster. Only valid when regressor stores internally the feature importances in the attribute feature_importances_ or coef_. Otherwise, returns None.

Parameters:

Name Type Description Default
sort_importance bool

If True, sorts the feature importances in descending order.

True

Returns:

Name Type Description
feature_importances pandas DataFrame

Feature importances associated with each predictor.

Source code in skforecast\recursive\_forecaster_recursive.py
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
def get_feature_importances(
    self,
    sort_importance: bool = True
) -> pd.DataFrame:
    """
    Return feature importances of the regressor stored in the forecaster.
    Only valid when regressor stores internally the feature importances in the
    attribute `feature_importances_` or `coef_`. Otherwise, returns `None`.

    Parameters
    ----------
    sort_importance: bool, default True
        If `True`, sorts the feature importances in descending order.

    Returns
    -------
    feature_importances : pandas DataFrame
        Feature importances associated with each predictor.

    """

    if not self.is_fitted:
        raise NotFittedError(
            "This forecaster is not fitted yet. Call `fit` with appropriate "
            "arguments before using `get_feature_importances()`."
        )

    if isinstance(self.regressor, Pipeline):
        estimator = self.regressor[-1]
    else:
        estimator = self.regressor

    if hasattr(estimator, 'feature_importances_'):
        feature_importances = estimator.feature_importances_
    elif hasattr(estimator, 'coef_'):
        feature_importances = estimator.coef_
    else:
        warnings.warn(
            f"Impossible to access feature importances for regressor of type "
            f"{type(estimator)}. This method is only valid when the "
            f"regressor stores internally the feature importances in the "
            f"attribute `feature_importances_` or `coef_`."
        )
        feature_importances = None

    if feature_importances is not None:
        feature_importances = pd.DataFrame({
                                  'feature': self.X_train_features_names_out_,
                                  'importance': feature_importances
                              })
        if sort_importance:
            feature_importances = feature_importances.sort_values(
                                      by='importance', ascending=False
                                  )

    return feature_importances