Skip to content

ForecasterRnn

skforecast.deep_learning._forecaster_rnn.ForecasterRnn

ForecasterRnn(
    regressor,
    levels,
    lags="auto",
    steps="auto",
    transformer_series=MinMaxScaler(feature_range=(0, 1)),
    weight_func=None,
    fit_kwargs={},
    forecaster_id=None,
    n_jobs=None,
    transformer_exog=None,
)

Bases: ForecasterBase

This class turns any regressor compatible with the Keras API into a Keras RNN multi-serie multi-step forecaster. A unique model is created to forecast all time steps and series. Keras enables workflows on top of either JAX, TensorFlow, or PyTorch. See documentation for more details.

Parameters:

Name Type Description Default
regressor regressor or pipeline compatible with the Keras API

An instance of a regressor or pipeline compatible with the Keras API.

required
levels (str, list)

Name of one or more time series to be predicted. This determine the series the forecaster will be handling. If None, all series used during training will be available for prediction.

required
lags (int, list, str)

Lags used as predictors. If 'auto', lags used are from 1 to N, where N is extracted from the input layer self.regressor.layers[0].input_shape[0][1].

`'auto'`
transformer_series (object, dict)

An instance of a transformer (preprocessor) compatible with the scikit-learn preprocessing API with methods: fit, transform, fit_transform and inverse_transform. Transformation is applied to each series before training the forecaster. ColumnTransformers are not allowed since they do not have inverse_transform method.

  • If single transformer: it is cloned and applied to all series.
  • If dict of transformers: a different transformer can be used for each series.
`sklearn.preprocessing.MinMaxScaler(feature_range=(0, 1))`
fit_kwargs dict

Additional arguments to be passed to the fit method of the regressor.

`None`
forecaster_id (str, int)

Name used as an identifier of the forecaster.

`None`
steps (int, list, str)

Steps to be predicted. If 'auto', steps used are from 1 to N, where N is extracted from the output layer self.regressor.layers[-1].output_shape[1].

`'auto'`
lags Optional[Union[int, list, str]]

Not used, present here for API consistency by convention.

'auto'
transformer_exog Ignored

Not used, present here for API consistency by convention.

None
weight_func Ignored

Not used, present here for API consistency by convention.

None
n_jobs Ignored

Not used, present here for API consistency by convention.

None

Attributes:

Name Type Description
regressor regressor or pipeline compatible with the Keras API

An instance of a regressor or pipeline compatible with the Keras API. An instance of this regressor is trained for each step. All of them are stored in self.regressors_.

levels (str, list)

Name of one or more time series to be predicted. This determine the series the forecaster will be handling. If None, all series used during training will be available for prediction.

steps numpy ndarray

Number of future steps the forecaster will predict when using method predict(). Since a different model is created for each step, this value should be defined before training.

lags numpy ndarray

Lags used as predictors.

transformer_series (object, dict)

An instance of a transformer (preprocessor) compatible with the scikit-learn preprocessing API with methods: fit, transform, fit_transform and inverse_transform. Transformation is applied to each series before training the forecaster. ColumnTransformers are not allowed since they do not have inverse_transform method.

transformer_series_ dict

Dictionary with the transformer for each series. It is created cloning the objects in transformer_series and is used internally to avoid overwriting.

transformer_exog Ignored

Not used, present here for API consistency by convention.

max_lag int

Maximum lag included in lags.

window_size int

Size of the window needed to create the predictors.

last_window_ pandas Series

Last window seen by the forecaster during training. It stores the values needed to predict the next step immediately after the training data.

index_type_ type

Type of index of the input used in training.

index_freq_ str

Frequency of Index of the input used in training.

training_range_ pandas Index

First and last values of index of the data used during training.

series_names_in_ list

Names of the series used during training.

exog_in_ bool

If the forecaster has been trained using exogenous variable/s.

exog_names_in_ list

Names of the exogenous variables used during training.

exog_type_in_ type

Type of exogenous variable/s used in training.

exog_dtypes_in_ dict

Type of each exogenous variable/s used in training. If transformer_exog is used, the dtypes are calculated after the transformation.

X_train_dim_names_ dict

Labels for the multi-dimensional arrays created internally for training.

y_train_dim_names_ dict

Labels for the multi-dimensional arrays created internally for training.

fit_kwargs dict

Additional arguments to be passed to the fit method of the regressor.

in_sample_residuals_ dict

Residuals of the models when predicting training data. Only stored up to 1000 values per model in the form {step: residuals}. If transformer_series is not None, residuals are stored in the transformed scale.

out_sample_residuals dict

Residuals of the models when predicting non training data. Only stored up to 1000 values per model in the form {step: residuals}. If transformer_series is not None, residuals are assumed to be in the transformed scale. Use set_out_sample_residuals() method to set values.

creation_date str

Date of creation.

is_fitted bool

Tag to identify if the regressor has been fitted (trained).

fit_date str

Date of last fit.

skforcast_version str

Version of skforecast library used to create the forecaster.

python_version str

Version of python used to create the forecaster.

forecaster_id (str, int)

Name used as an identifier of the forecaster.

history dict

Dictionary with the history of the training of each step. It is created internally to avoid overwriting.

_probabilistic_mode (str, bool)

Private attribute used to indicate whether the forecaster should perform some calculations during backtesting.

dropna_from_series Ignored

Not used, present here for API consistency by convention.

encoding Ignored

Not used, present here for API consistency by convention.

differentiation Ignored

Not used, present here for API consistency by convention.

differentiation_max Ignored

Not used, present here for API consistency by convention.

differentiator Ignored

Not used, present here for API consistency by convention.

differentiator_ Ignored

Not used, present here for API consistency by convention.

Source code in skforecast\deep_learning\_forecaster_rnn.py
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
def __init__(
    self,
    regressor: object,
    levels: Union[str, list],
    lags: Optional[Union[int, list, str]] = "auto",
    steps: Optional[Union[int, list, str]] = "auto",
    transformer_series: Optional[Union[object, dict]] = MinMaxScaler(
        feature_range=(0, 1)
    ),
    weight_func: Optional[Callable] = None,
    fit_kwargs: Optional[dict] = {},
    forecaster_id: Optional[Union[str, int]] = None,
    n_jobs: Any = None,
    transformer_exog: Any = None,
) -> None:
    self.levels = None
    self.transformer_series = transformer_series
    self.transformer_series_ = None
    self.transformer_exog = None
    self.weight_func = weight_func
    self.source_code_weight_func = None
    self.max_lag = None
    self.window_size = None
    self.last_window_ = None
    self.index_type_ = None
    self.index_freq_ = None
    self.training_range_ = None
    self.exog_in_ = False
    self.exog_type_in_ = None
    self.exog_dtypes_in_ = None
    self.exog_names_in_ = None
    self.series_names_in_ = None
    self.X_train_dim_names_ = None
    self.y_train_dim_names_ = None
    self.is_fitted = False
    self.creation_date = pd.Timestamp.today().strftime("%Y-%m-%d %H:%M:%S")
    self.fit_date = None
    self.skforecast_version = skforecast.__version__
    self.python_version = sys.version.split(" ")[0]
    self.forecaster_id = forecaster_id
    self._probabilistic_mode = "no_binned"
    self.history = None  # TODO: Change to history_ as come from fit method?
    self.dropna_from_series = False  # Ignored in this forecaster
    self.encoding = None   # Ignored in this forecaster
    self.differentiation = None   # Ignored in this forecaster
    self.differentiation_max = None   # Ignored in this forecaster
    self.differentiator = None   # Ignored in this forecaster
    self.differentiator_ = None   # Ignored in this forecaster

    # Infer parameters from the model
    self.regressor = regressor  # TODO: Create copy of regressor copy(regressor)
    layer_init = self.regressor.layers[0]

    if lags == "auto":
        if keras.__version__ < "3.0":
            self.lags = np.arange(layer_init.input_shape[0][1]) + 1
        else:
            self.lags = np.arange(layer_init.output.shape[1]) + 1

        warnings.warn(
            "Setting `lags` = 'auto'. `lags` are inferred from the regressor "
            "architecture. Avoid the warning with lags=lags."
        )
    elif isinstance(lags, int):
        self.lags = np.arange(lags) + 1
    elif isinstance(lags, list):
        self.lags = np.array(lags)
    else:
        raise TypeError(
            f"`lags` argument must be an int, list or 'auto'. Got {type(lags)}."
        )

    self.max_lag = np.max(self.lags)
    self.window_size = self.max_lag

    layer_end = self.regressor.layers[-1]

    try:
        if keras.__version__ < "3.0":
            self.series = layer_end.output_shape[-1]
        else:
            self.series = layer_end.output.shape[-1]
    # if does not work, break the and raise an error the input shape should
    # be shape=(lags, n_series))
    except:
        raise TypeError(
            "Input shape of the regressor should be Input(shape=(lags, n_series))."
        )

    if steps == "auto":
        if keras.__version__ < "3.0":
            self.steps = np.arange(layer_end.output_shape[1]) + 1
        else:
            self.steps = np.arange(layer_end.output.shape[1]) + 1
        warnings.warn(
            "`steps` default value = 'auto'. `steps` inferred from regressor "
            "architecture. Avoid the warning with steps=steps."
        )
    elif isinstance(steps, int):
        self.steps = np.arange(steps) + 1
    elif isinstance(steps, list):
        self.steps = np.array(steps)
    else:
        raise TypeError(
            f"`steps` argument must be an int, list or 'auto'. Got {type(steps)}."
        )

    self.max_step = np.max(self.steps)
    if keras.__version__ < "3.0":
        self.outputs = layer_end.output_shape[-1]
    else:
        self.outputs = layer_end.output.shape[-1]

    if not isinstance(levels, (list, str, type(None))):
        raise TypeError(
            f"`levels` argument must be a string, list or. Got {type(levels)}."
        )

    if isinstance(levels, str):
        self.levels = [levels]
    elif isinstance(levels, list):
        self.levels = levels
    else:
        raise TypeError(
            f"`levels` argument must be a string or a list. Got {type(levels)}."
        )

    self.in_sample_residuals_ = {step: None for step in self.steps}
    self.out_sample_residuals_ = None

    self.series_val = fit_kwargs.pop("series_val", None)
    self.fit_kwargs = check_select_fit_kwargs(
        regressor=self.regressor, fit_kwargs=fit_kwargs
    )

_create_lags

_create_lags(y)

Transforms a 1d array into a 3d array (X) and a 3d array (y). Each row in X is associated with a value of y and it represents the lags that precede it.

Notice that, the returned matrix X_data, contains the lag 1 in the first column, the lag 2 in the second column and so on.

Parameters:

Name Type Description Default
y numpy ndarray

1d numpy ndarray Training time series.

required

Returns:

Name Type Description
X_data numpy ndarray

3d numpy ndarray with the lagged values (predictors). Shape: (samples - max(lags), len(lags))

y_data numpy ndarray

3d numpy ndarray with the values of the time series related to each row of X_data for each step. Shape: (len(max_step), samples - max(lags))

Source code in skforecast\deep_learning\_forecaster_rnn.py
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
def _create_lags(self, y: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
    """
    Transforms a 1d array into a 3d array (X) and a 3d array (y). Each row
    in X is associated with a value of y and it represents the lags that
    precede it.

    Notice that, the returned matrix X_data, contains the lag 1 in the first
    column, the lag 2 in the second column and so on.

    Parameters
    ----------
    y : numpy ndarray
        1d numpy ndarray Training time series.

    Returns
    -------
    X_data : numpy ndarray
        3d numpy ndarray with the lagged values (predictors).
        Shape: (samples - max(lags), len(lags))
    y_data : numpy ndarray
        3d numpy ndarray with the values of the time series related to each
        row of `X_data` for each step.
        Shape: (len(max_step), samples - max(lags))

    """

    n_splits = len(y) - self.max_lag - self.max_step + 1  # rows of y_data
    if n_splits <= 0:
        raise ValueError(
            (
                f"The maximum lag ({self.max_lag}) must be less than the length "
                f"of the series minus the maximum of steps ({len(y) - self.max_step})."
            )
        )

    X_data = np.full(
        shape=(n_splits, (self.max_lag)), fill_value=np.nan, order="F", dtype=float
    )
    for i, lag in enumerate(range(self.max_lag - 1, -1, -1)):
        X_data[:, i] = y[self.max_lag - lag - 1 : -(lag + self.max_step)]

    y_data = np.full(
        shape=(n_splits, self.max_step), fill_value=np.nan, order="F", dtype=float
    )
    for step in range(self.max_step):
        y_data[:, step] = y[self.max_lag + step : self.max_lag + step + n_splits]

    # Get lags index
    X_data = X_data[:, self.lags - 1]

    # Get steps index
    y_data = y_data[:, self.steps - 1]

    return X_data, y_data

create_train_X_y

create_train_X_y(series, exog=None)

Create training matrices. The resulting multi-dimensional matrices contain the target variable and predictors needed to train the model.

Parameters:

Name Type Description Default
series pandas DataFrame

Training time series.

required
exog Ignored

Not used, present here for API consistency by convention. This type of forecaster does not allow exogenous variables.

None

Returns:

Name Type Description
X_train ndarray

Training values (predictors) for each step. The resulting array has 3 dimensions: (time_points, n_lags, n_series)

y_train ndarray

Values (target) of the time series related to each row of X_train. The resulting array has 3 dimensions: (time_points, n_steps, n_levels)

dimension_names dict

Labels for the multi-dimensional arrays created internally for training.

Source code in skforecast\deep_learning\_forecaster_rnn.py
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
def create_train_X_y(
    self, series: pd.DataFrame, exog: Any = None
) -> Tuple[np.ndarray, np.ndarray, dict]:
    """
    Create training matrices. The resulting multi-dimensional matrices contain
    the target variable and predictors needed to train the model.

    Parameters
    ----------
    series : pandas DataFrame
        Training time series.
    exog : Ignored
        Not used, present here for API consistency by convention. This type of
        forecaster does not allow exogenous variables.

    Returns
    -------
    X_train : np.ndarray
        Training values (predictors) for each step. The resulting array has
        3 dimensions: (time_points, n_lags, n_series)
    y_train : np.ndarray
        Values (target) of the time series related to each row of `X_train`.
        The resulting array has 3 dimensions: (time_points, n_steps, n_levels)
    dimension_names : dict
        Labels for the multi-dimensional arrays created internally for training.

    """

    if not isinstance(series, pd.DataFrame):
        raise TypeError(f"`series` must be a pandas DataFrame. Got {type(series)}.")

    series_names_in_ = list(series.columns)

    if not set(self.levels).issubset(set(series.columns)):
        raise ValueError(
            (
                f"`levels` defined when initializing the forecaster must be included "
                f"in `series` used for trainng. {set(self.levels) - set(series.columns)} "
                f"not found."
            )
        )

    if len(series) < self.max_lag + self.max_step:
        raise ValueError(
            (
                f"Minimum length of `series` for training this forecaster is "
                f"{self.max_lag + self.max_step}. Got {len(series)}. Reduce the "
                f"number of predicted steps, {self.max_step}, or the maximum "
                f"lag, {self.max_lag}, if no more data is available."
            )
        )

    if self.transformer_series is None:
        self.transformer_series_ = {serie: None for serie in series_names_in_}
    elif not isinstance(self.transformer_series, dict):
        self.transformer_series_ = {
            serie: clone(self.transformer_series) for serie in series_names_in_
        }
    else:
        self.transformer_series_ = {serie: None for serie in series_names_in_}
        # Only elements already present in transformer_series_ are updated
        self.transformer_series_.update(
            (k, v)
            for k, v in deepcopy(self.transformer_series).items()
            if k in self.transformer_series_
        )
        series_not_in_transformer_series = set(series.columns) - set(
            self.transformer_series.keys()
        )
        if series_not_in_transformer_series:
            warnings.warn(
                (
                    f"{series_not_in_transformer_series} not present in "
                    f"`transformer_series`. No transformation is applied to "
                    f"these series."
                ),
                IgnoredArgumentWarning,
            )

    # Step 1: Create lags for all columns
    X_train = []
    y_train = []

    for i, serie in enumerate(series.columns):
        x = series[serie]
        check_y(y=x)
        x = transform_series(
            series=x,
            transformer=self.transformer_series_[serie],
            fit=True,
            inverse_transform=False,
        )
        X, _ = self._create_lags(x)
        X_train.append(X)

    for i, serie in enumerate(self.levels):
        y = series[serie]
        check_y(y=y)
        y = transform_series(
            series=y,
            transformer=self.transformer_series_[serie],
            fit=True,
            inverse_transform=False,
        )

        _, y = self._create_lags(y)
        y_train.append(y)

    X_train = np.stack(X_train, axis=2)
    y_train = np.stack(y_train, axis=2)

    train_index = series.index.to_list()[
        self.max_lag : (len(series.index.to_list()) - self.max_step + 1)
    ]
    dimension_names = {
        "X_train": {
            0: train_index,
            1: ["lag_" + str(l) for l in self.lags],
            2: series.columns.to_list(),
        },
        "y_train": {
            0: train_index,
            1: ["step_" + str(l) for l in self.steps],
            2: self.levels,
        },
    }

    return X_train, y_train, dimension_names

fit

fit(
    series,
    store_in_sample_residuals=True,
    exog=None,
    suppress_warnings=False,
    store_last_window="Ignored",
)

Training Forecaster.

Additional arguments to be passed to the fit method of the regressor can be added with the fit_kwargs argument when initializing the forecaster.

Parameters:

Name Type Description Default
series pandas DataFrame

Training time series.

required
store_in_sample_residuals bool

If True, in-sample residuals will be stored in the forecaster object after fitting (in_sample_residuals_ attribute).

`True`
exog Ignored

Not used, present here for API consistency by convention.

None
suppress_warnings bool

If True, skforecast warnings will be suppressed during the prediction process. See skforecast.exceptions.warn_skforecast_categories for more information.

`False`
store_last_window Ignored

Not used, present here for API consistency by convention.

'Ignored'

Returns:

Type Description
None
Source code in skforecast\deep_learning\_forecaster_rnn.py
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
def fit(
    self,
    series: pd.DataFrame,
    store_in_sample_residuals: bool = True,
    exog: Any = None,
    suppress_warnings: bool = False,
    store_last_window: str = "Ignored",
) -> None:
    """
    Training Forecaster.

    Additional arguments to be passed to the `fit` method of the regressor
    can be added with the `fit_kwargs` argument when initializing the forecaster.

    Parameters
    ----------
    series : pandas DataFrame
        Training time series.
    store_in_sample_residuals : bool, default `True`
        If `True`, in-sample residuals will be stored in the forecaster object
        after fitting (`in_sample_residuals_` attribute).
    exog : Ignored
        Not used, present here for API consistency by convention.
    suppress_warnings : bool, default `False`
        If `True`, skforecast warnings will be suppressed during the prediction
        process. See skforecast.exceptions.warn_skforecast_categories for more
        information.
    store_last_window : Ignored
        Not used, present here for API consistency by convention.

    Returns
    -------
    None

    """

    set_skforecast_warnings(suppress_warnings, action="ignore")

    # Reset values in case the forecaster has already been fitted.
    self.index_type_ = None
    self.index_freq_ = None
    self.last_window_ = None
    self.exog_in_ = None
    self.exog_type_in_ = None
    self.exog_dtypes_in_ = None
    self.exog_names_in_ = None
    self.series_names_in_ = None
    self.X_train_dim_names_ = None
    self.y_train_dim_names_ = None
    self.in_sample_residuals_ = None
    self.is_fitted = False
    self.training_range_ = None

    self.series_names_in_ = list(series.columns)

    X_train, y_train, X_train_dim_names_ = self.create_train_X_y(series=series)
    self.X_train_dim_names_ = X_train_dim_names_["X_train"]
    self.y_train_dim_names_ = X_train_dim_names_["y_train"]
    if keras.__version__ > "3.0" and keras.backend.backend() == "torch":
        import torch

        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        torch_device = torch.device(device)

        print(f"Using device: {device}")
        X_train = torch.tensor(X_train).to(torch_device)
        y_train = torch.tensor(y_train).to(torch_device)

    if self.series_val is not None:
        X_val, y_val, _ = self.create_train_X_y(series=self.series_val)
        if keras.__version__ > "3.0" and keras.backend.backend() == "torch":
            X_val = torch.tensor(X_val).to(torch_device)
            y_val = torch.tensor(y_val).to(torch_device)
            history = self.regressor.fit(
                x=X_train,
                y=y_train,
                validation_data=(X_val, y_val),
                **self.fit_kwargs,
            )
        else:
            history = self.regressor.fit(
                x=X_train,
                y=y_train,
                validation_data=(X_val, y_val),
                **self.fit_kwargs,
            )
    else:
        history = self.regressor.fit(
            x=X_train,
            y=y_train,
            **self.fit_kwargs,
        )

    self.history = history.history
    self.is_fitted = True
    self.fit_date = pd.Timestamp.today().strftime("%Y-%m-%d %H:%M:%S")
    _, y_index = preprocess_y(y=series[self.levels], return_values=False)
    self.training_range_ = y_index[[0, -1]]
    self.index_type_ = type(y_index)
    if isinstance(y_index, pd.DatetimeIndex):
        self.index_freq_ = y_index.freqstr
    else:
        self.index_freq_ = y_index.step

    self.last_window_ = series.iloc[-self.max_lag :].copy()

    set_skforecast_warnings(suppress_warnings, action="default")

    if store_in_sample_residuals:
        residuals = y_train - self.regressor.predict(x=X_train, verbose=0)
        self.in_sample_residuals_ = {step: residuals[:, i, :] for i, step in enumerate(self.steps)}

predict

predict(
    steps=None,
    levels=None,
    last_window=None,
    exog=None,
    suppress_warnings=False,
    check_inputs=None,
)

Predict n steps ahead

Parameters:

Name Type Description Default
steps (int, list, None)

Predict n steps. The value of steps must be less than or equal to the value of steps defined when initializing the forecaster. Starts at 1.

  • If int: Only steps within the range of 1 to int are predicted.
  • If list: List of ints. Only the steps contained in the list are predicted.
  • If None: As many steps are predicted as were defined at initialization.
`None`
levels (str, list)

Name of one or more time series to be predicted. It must be included in levels defined when initializing the forecaster. If None, all all series used during training will be available for prediction.

`None`
last_window pandas DataFrame

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1). If last_window = None, the values stored in self.last_window_ are used to calculate the initial predictors, and the predictions start right after training data.

`None`
exog Ignored

Not used, present here for API consistency by convention.

None
suppress_warnings bool

If True, skforecast warnings will be suppressed during the fitting process. See skforecast.exceptions.warn_skforecast_categories for more information.

`False`
check_inputs Ignored

Not used, present here for API consistency by convention.

None

Returns:

Name Type Description
predictions pandas DataFrame

Predicted values.

Source code in skforecast\deep_learning\_forecaster_rnn.py
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
def predict(
    self,
    steps: Optional[Union[int, list]] = None,
    levels: Optional[Union[str, list]] = None,
    last_window: Optional[pd.DataFrame] = None,
    exog: Any = None,
    suppress_warnings: bool = False,
    check_inputs: Any = None
) -> pd.DataFrame:
    """
    Predict n steps ahead

    Parameters
    ----------
    steps : int, list, None, default `None`
        Predict n steps. The value of `steps` must be less than or equal to the
        value of steps defined when initializing the forecaster. Starts at 1.

        - If `int`: Only steps within the range of 1 to int are predicted.
        - If `list`: List of ints. Only the steps contained in the list
        are predicted.
        - If `None`: As many steps are predicted as were defined at
        initialization.
    levels : str, list, default `None`
        Name of one or more time series to be predicted. It must be included
        in `levels` defined when initializing the forecaster. If `None`, all
        all series used during training will be available for prediction.
    last_window : pandas DataFrame, default `None`
        Series values used to create the predictors (lags) needed in the
        first iteration of the prediction (t + 1).
        If `last_window = None`, the values stored in `self.last_window_` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : Ignored
        Not used, present here for API consistency by convention.
    suppress_warnings : bool, default `False`
        If `True`, skforecast warnings will be suppressed during the fitting
        process. See skforecast.exceptions.warn_skforecast_categories for more
        information.
    check_inputs : Ignored
        Not used, present here for API consistency by convention.

    Returns
    -------
    predictions : pandas DataFrame
        Predicted values.

    """

    set_skforecast_warnings(suppress_warnings, action="ignore")

    if levels is None:
        levels = self.levels
    elif isinstance(levels, str):
        levels = [levels]
    if isinstance(steps, int):
        steps = list(np.arange(steps) + 1)
    elif steps is None:
        if isinstance(self.steps, int):
            steps = list(np.arange(self.steps) + 1)
        elif isinstance(self.steps, (list, np.ndarray)):
            steps = list(np.array(self.steps))
    elif isinstance(steps, list):
        steps = list(np.array(steps))

    for step in steps:
        if not isinstance(step, (int, np.int64, np.int32)):
            raise TypeError(
                (
                    f"`steps` argument must be an int, a list of ints or `None`. "
                    f"Got {type(steps)}."
                )
            )

    if last_window is None:
        last_window = self.last_window_

    check_predict_input(
        forecaster_name=type(self).__name__,
        steps=steps,
        is_fitted=self.is_fitted,
        exog_in_=self.exog_in_,
        index_type_=self.index_type_,
        index_freq_=self.index_freq_,
        window_size=self.window_size,
        last_window=last_window,
        exog=None,
        exog_type_in_=None,
        exog_names_in_=None,
        interval=None,
        max_steps=self.max_step,
        levels=levels,
        levels_forecaster=self.levels,
        series_names_in_=self.series_names_in_,
    )

    last_window = last_window.iloc[-self.window_size :,].copy()

    for serie_name in self.series_names_in_:
        last_window_serie = transform_series(
            series=last_window[serie_name],
            transformer=self.transformer_series_[serie_name],
            fit=False,
            inverse_transform=False,
        )
        last_window_values, last_window_index = preprocess_last_window(
            last_window=last_window_serie
        )
        last_window.loc[:, serie_name] = last_window_values

    X = np.reshape(last_window.to_numpy(), (1, self.max_lag, last_window.shape[1]))
    predictions = self.regressor.predict(X, verbose=0)
    predictions_reshaped = np.reshape(
        predictions, (predictions.shape[1], predictions.shape[2])
    )

    # if len(self.levels) == 1:
    #     predictions_reshaped = np.reshape(predictions, (predictions.shape[1], 1))
    # else:
    #     predictions_reshaped = np.reshape(
    #         predictions, (predictions.shape[1], predictions.shape[2])
    #     )
    idx = expand_index(index=last_window_index, steps=max(steps))

    predictions = pd.DataFrame(
        data=predictions_reshaped[np.array(steps) - 1],
        columns=self.levels,
        index=idx[np.array(steps) - 1],
    )
    predictions = predictions[levels]

    for serie in levels:
        x = predictions[serie]
        check_y(y=x)
        x = transform_series(
            series=x,
            transformer=self.transformer_series_[serie],
            fit=False,
            inverse_transform=True,
        )
        predictions.loc[:, serie] = x

    # Temporal standardization. Pending full refactoring
    predictions = (
        predictions.melt(var_name="level", value_name="pred", ignore_index=False)
        .reset_index()
        .sort_values(by=["index", "level"])
        .set_index("index")
        .rename_axis(None, axis=0)
    )

    set_skforecast_warnings(suppress_warnings, action="default")

    return predictions

predict_bootstrapping

predict_bootstrapping(
    steps=None,
    last_window=None,
    exog=None,
    n_boot=250,
    random_state=123,
    use_in_sample_residuals=True,
    suppress_warnings=False,
    levels=None,
)

Generate multiple forecasting predictions using a bootstrapping process. By sampling from a collection of past observed errors (the residuals), each iteration of bootstrapping generates a different set of predictions. Only levels whose last window ends at the same datetime index can be predicted together. See the Notes section for more information.

Parameters:

Name Type Description Default
steps int

Number of steps to predict.

None
levels (str, list)

Time series to be predicted. If None all levels whose last window ends at the same datetime index will be predicted together.

None
last_window pandas DataFrame

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1). If last_window = None, the values stored in self.last_window_ are used to calculate the initial predictors, and the predictions start right after training data.

None
exog pandas Series, pandas DataFrame, dict

Exogenous variable/s included as predictor/s.

None
n_boot int

Number of bootstrapping iterations used to estimate predictions.

250
random_state int

Sets a seed to the random generator, so that boot predictions are always deterministic.

123
use_in_sample_residuals bool

If True, residuals from the training data are used as proxy of prediction error to create predictions. If False, out of sample residuals are used. In the latter case, the user should have calculated and stored the residuals within the forecaster (see set_out_sample_residuals()).

True
suppress_warnings bool

If True, skforecast warnings will be suppressed during the prediction process. See skforecast.exceptions.warn_skforecast_categories for more information.

False

Returns:

Name Type Description
boot_predictions dict

Predictions generated by bootstrapping for each level.

Notes

More information about prediction intervals in forecasting: https://otexts.com/fpp3/prediction-intervals.html#prediction-intervals-from-bootstrapped-residuals Forecasting: Principles and Practice (3rd ed) Rob J Hyndman and George Athanasopoulos.

Source code in skforecast\deep_learning\_forecaster_rnn.py
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
def predict_bootstrapping(
        self,
        steps: Optional[Union[int, list]] = None,
        last_window: Optional[pd.DataFrame] = None,
        exog: Optional[Union[pd.Series, pd.DataFrame]] = None,
        n_boot: int = 250,
        random_state: int = 123,
        use_in_sample_residuals: bool = True,
        suppress_warnings: bool = False,
        levels: Any = None
) -> dict:
    """
    Generate multiple forecasting predictions using a bootstrapping process.
    By sampling from a collection of past observed errors (the residuals),
    each iteration of bootstrapping generates a different set of predictions.
    Only levels whose last window ends at the same datetime index can be
    predicted together. See the Notes section for more information.

    Parameters
    ----------
    steps : int
        Number of steps to predict. 
    levels : str, list, default None
        Time series to be predicted. If `None` all levels whose last window
        ends at the same datetime index will be predicted together.
    last_window : pandas DataFrame, default None
        Series values used to create the predictors (lags) needed in the
        first iteration of the prediction (t + 1).
        If `last_window = None`, the values stored in `self.last_window_` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : pandas Series, pandas DataFrame, dict, default None
        Exogenous variable/s included as predictor/s.
    n_boot : int, default 250
        Number of bootstrapping iterations used to estimate predictions.
    random_state : int, default 123
        Sets a seed to the random generator, so that boot predictions are always
        deterministic.
    use_in_sample_residuals : bool, default True
        If `True`, residuals from the training data are used as proxy of
        prediction error to create predictions. If `False`, out of sample
        residuals are used. In the latter case, the user should have
        calculated and stored the residuals within the forecaster (see
        `set_out_sample_residuals()`).
    suppress_warnings : bool, default False
        If `True`, skforecast warnings will be suppressed during the prediction
        process. See skforecast.exceptions.warn_skforecast_categories for more
        information.

    Returns
    -------
    boot_predictions : dict
        Predictions generated by bootstrapping for each level.
        {level: pandas DataFrame, shape (steps, n_boot)}

    Notes
    -----
    More information about prediction intervals in forecasting:
    https://otexts.com/fpp3/prediction-intervals.html#prediction-intervals-from-bootstrapped-residuals
    Forecasting: Principles and Practice (3rd ed) Rob J Hyndman and George Athanasopoulos.

    """

    set_skforecast_warnings(suppress_warnings, action="ignore")

    if levels is None:
        levels = self.levels
    elif isinstance(levels, str):
        levels = [levels]

    if isinstance(steps, int):
        steps = list(np.arange(steps) + 1)
    elif steps is None:
        if isinstance(self.steps, int):
            steps = list(np.arange(self.steps) + 1)
        elif isinstance(self.steps, (list, np.ndarray)):
            steps = list(np.array(self.steps))
    elif isinstance(steps, list):
        steps = list(np.array(steps))

    if use_in_sample_residuals:
        if not set(steps).issubset(set(self.in_sample_residuals_.keys())):
            raise ValueError(
                f"Not `forecaster.in_sample_residuals_` for steps: "
                f"{set(steps) - set(self.in_sample_residuals_.keys())}."
            )
        residuals = self.in_sample_residuals_
    else:
        if self.out_sample_residuals_ is None:
            raise ValueError(
                "`forecaster.out_sample_residuals_` is `None`. Use "
                "`use_in_sample_residuals=True` or the "
                "`set_out_sample_residuals()` method before predicting."
            )
        else:
            if not set(steps).issubset(set(self.out_sample_residuals_.keys())):
                raise ValueError(
                    f"Not `forecaster.out_sample_residuals_` for steps: "
                    f"{set(steps) - set(self.out_sample_residuals_.keys())}. "
                    f"Use method `set_out_sample_residuals()`."
                )
        residuals = self.out_sample_residuals_

    check_residuals = (
        'forecaster.in_sample_residuals_' if use_in_sample_residuals
        else 'forecaster.out_sample_residuals_'
    )
    for step in steps:
        if residuals[step] is None:
            raise ValueError(
                f"forecaster residuals for step {step} are `None`. "
                f"Check {check_residuals}."
            )
        elif (any(element is None for element in residuals[step]) or
              np.any(np.isnan(residuals[step]))):
            raise ValueError(
                f"forecaster residuals for step {step} contains `None` "
                f"or `NaNs` values. Check {check_residuals}."
            )

    if last_window is None:
        last_window = self.last_window_

    check_predict_input(
        forecaster_name=type(self).__name__,
        steps=steps,
        is_fitted=self.is_fitted,
        exog_in_=self.exog_in_,
        index_type_=self.index_type_,
        index_freq_=self.index_freq_,
        window_size=self.window_size,
        last_window=last_window,
        exog=None,
        exog_type_in_=None,
        exog_names_in_=None,
        interval=None,
        max_steps=self.max_step,
        levels=levels,
        levels_forecaster=self.levels,
        series_names_in_=self.series_names_in_,
    )

    last_window = last_window.iloc[-self.window_size:, ].copy()

    for serie_name in self.series_names_in_:
        last_window_serie = transform_series(
            series=last_window[serie_name],
            transformer=self.transformer_series_[serie_name],
            fit=False,
            inverse_transform=False,
        )
        last_window_values, last_window_index = preprocess_last_window(
            last_window=last_window_serie
        )
        last_window.loc[:, serie_name] = last_window_values

    X = np.reshape(last_window.to_numpy(), (1, self.max_lag, last_window.shape[1]))
    prediction_index = expand_index(index=last_window_index, steps=max(steps))

    predictions = self.regressor.predict(X, verbose=0)
    predictions = np.squeeze(predictions, axis=0)

    boot_predictions = {}
    boot_columns = [f"pred_boot_{i}" for i in range(n_boot)]
    rng = np.random.default_rng(seed=random_state)

    for j, level in enumerate(levels):
        boot_level = np.tile(predictions[:, j], (n_boot, 1)).T

        for i, step in enumerate(steps):
            sampled_residuals = residuals[step][rng.integers(low=0, high=len(residuals[step]), size=n_boot), j]
            boot_level[i, :] += sampled_residuals

        if self.transformer_series_[level]:
            boot_level = np.apply_along_axis(
                func1d=transform_numpy,
                axis=0,
                arr=boot_level,
                transformer=self.transformer_series_[level],
                fit=False,
                inverse_transform=True
            )

        boot_level = pd.DataFrame(
            data=boot_level[np.array(steps) - 1],
            index=prediction_index,
            columns=boot_columns
        )

        boot_predictions[level] = boot_level

    # Temporal standardization. Pending full code refactoring:
    boot_predictions = (
        pd.concat([value.assign(level=key) for key, value in boot_predictions.items()])
        .reset_index()
        .sort_values(by=["index", "level"])
        .set_index("index")
        .rename_axis(None, axis=0)
    )
    boot_predictions = boot_predictions[
        ["level"] + [col for col in boot_predictions.columns if col not in ["level", "index"]]
        ]
    if isinstance(boot_predictions.index, pd.DatetimeIndex) and boot_predictions.index.freq is not None:
        boot_predictions.index.freq = None

    set_skforecast_warnings(suppress_warnings, action='default')

    return boot_predictions

predict_interval

predict_interval(
    steps,
    levels=None,
    last_window=None,
    exog=None,
    interval=[5, 95],
    n_boot=250,
    random_state=123,
    use_in_sample_residuals=True,
    suppress_warnings=False,
)

Iterative process in which, each prediction, is used as a predictor for the next step and bootstrapping is used to estimate prediction intervals. Both predictions and intervals are returned.

Parameters:

Name Type Description Default
steps int

Number of steps to predict.

required
levels (str, list)

Time series to be predicted. If None all levels whose last window ends at the same datetime index will be predicted together.

None
last_window pandas DataFrame

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1). If last_window = None, the values stored in self.last_window_ are used to calculate the initial predictors, and the predictions start right after training data.

None
exog pandas Series, pandas DataFrame, dict

Exogenous variable/s included as predictor/s.

None
interval (list, tuple)

Confidence of the prediction interval estimated. Sequence of percentiles to compute, which must be between 0 and 100 inclusive. For example, interval of 95% should be as interval = [2.5, 97.5].

`[5, 95]`
n_boot int

Number of bootstrapping iterations used to estimate prediction intervals.

250
random_state int

Sets a seed to the random generator, so that boot predictions are always deterministic.

123
use_in_sample_residuals bool

If True, residuals from the training data are used as proxy of prediction error to create predictions. If False, out of sample residuals are used. In the latter case, the user should have calculated and stored the residuals within the forecaster (see set_out_sample_residuals()).

True
suppress_warnings bool

If True, skforecast warnings will be suppressed during the prediction process. See skforecast.exceptions.warn_skforecast_categories for more information.

False

Returns:

Name Type Description
predictions pandas DataFrame

Long-format DataFrame with the predictions and the lower and upper bounds of the estimated interval. The columns are level, pred, lower_bound, upper_bound.

Notes

More information about prediction intervals in forecasting: https://otexts.com/fpp3/prediction-intervals.html Forecasting: Principles and Practice (3rd ed) Rob J Hyndman and George Athanasopoulos.

Source code in skforecast\deep_learning\_forecaster_rnn.py
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
def predict_interval(
        self,
        steps: int,
        levels: str | list[str] | None = None,
        last_window: pd.DataFrame | None = None,
        exog: pd.Series | pd.DataFrame | dict[str, pd.Series | pd.DataFrame] | None = None,
        interval: list[float] | tuple[float] = [5, 95],
        n_boot: int = 250,
        random_state: int = 123,
        use_in_sample_residuals: bool = True,
        suppress_warnings: bool = False
) -> pd.DataFrame:
    """
    Iterative process in which, each prediction, is used as a predictor
    for the next step and bootstrapping is used to estimate prediction
    intervals. Both predictions and intervals are returned.

    Parameters
    ----------
    steps : int
        Number of steps to predict. 
    levels : str, list, default None
        Time series to be predicted. If `None` all levels whose last window
        ends at the same datetime index will be predicted together.
    last_window : pandas DataFrame, default None
        Series values used to create the predictors (lags) needed in the
        first iteration of the prediction (t + 1).
        If `last_window = None`, the values stored in `self.last_window_` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : pandas Series, pandas DataFrame, dict, default None
        Exogenous variable/s included as predictor/s.
    interval : list, tuple, default `[5, 95]`
        Confidence of the prediction interval estimated. Sequence of
        percentiles to compute, which must be between 0 and 100 inclusive.
        For example, interval of 95% should be as `interval = [2.5, 97.5]`.
    n_boot : int, default 250
        Number of bootstrapping iterations used to estimate prediction
        intervals.
    random_state : int, default 123
        Sets a seed to the random generator, so that boot predictions are always
        deterministic.
    use_in_sample_residuals : bool, default True
        If `True`, residuals from the training data are used as proxy of
        prediction error to create predictions. If `False`, out of sample
        residuals are used. In the latter case, the user should have
        calculated and stored the residuals within the forecaster (see
        `set_out_sample_residuals()`).
    suppress_warnings : bool, default False
        If `True`, skforecast warnings will be suppressed during the prediction
        process. See skforecast.exceptions.warn_skforecast_categories for more
        information.

    Returns
    -------
    predictions : pandas DataFrame
        Long-format DataFrame with the predictions and the lower and upper
        bounds of the estimated interval. The columns are `level`, `pred`,
        `lower_bound`, `upper_bound`.

    Notes
    -----
    More information about prediction intervals in forecasting:
    https://otexts.com/fpp3/prediction-intervals.html
    Forecasting: Principles and Practice (3rd ed) Rob J Hyndman and
    George Athanasopoulos.

    """

    set_skforecast_warnings(suppress_warnings, action='ignore')

    check_interval(interval=interval)

    boot_predictions = self.predict_bootstrapping(
        steps=steps,
        levels=levels,
        last_window=last_window,
        exog=exog,
        n_boot=n_boot,
        random_state=random_state,
        use_in_sample_residuals=use_in_sample_residuals,
        suppress_warnings=suppress_warnings
    )

    predictions = self.predict(
        steps=steps,
        levels=levels,
        last_window=last_window,
        exog=exog,
        suppress_warnings=suppress_warnings
        #check_inputs=False
    )

    interval = np.array(interval) / 100
    boot_predictions[['lower_bound', 'upper_bound']] = (
        boot_predictions.iloc[:, 1:].quantile(q=interval, axis=1).transpose()
    )

    predictions = pd.concat([
        predictions, boot_predictions[['lower_bound', 'upper_bound']]
    ], axis=1)

    set_skforecast_warnings(suppress_warnings, action='default')

    return predictions

predict_quantiles

predict_quantiles(
    steps,
    levels=None,
    last_window=None,
    exog=None,
    quantiles=[0.05, 0.5, 0.95],
    n_boot=250,
    random_state=123,
    use_in_sample_residuals=True,
    suppress_warnings=False,
)

Calculate the specified quantiles for each step. After generating multiple forecasting predictions through a bootstrapping process, each quantile is calculated for each step.

Parameters:

Name Type Description Default
steps int

Number of steps to predict.

required
levels (str, list)

Time series to be predicted. If None all levels whose last window ends at the same datetime index will be predicted together.

None
last_window pandas DataFrame

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1). If last_window = None, the values stored in self.last_window_ are used to calculate the initial predictors, and the predictions start right after training data.

None
exog pandas Series, pandas DataFrame, dict

Exogenous variable/s included as predictor/s.

None
quantiles (list, tuple)

Sequence of quantiles to compute, which must be between 0 and 1 inclusive. For example, quantiles of 0.05, 0.5 and 0.95 should be as quantiles = [0.05, 0.5, 0.95].

[0.05, 0.5, 0.95]
n_boot int

Number of bootstrapping iterations used to estimate quantiles.

250
random_state int

Sets a seed to the random generator, so that boot quantiles are always deterministic.

123
use_in_sample_residuals bool

If True, residuals from the training data are used as proxy of prediction error to create quantiles. If False, out of sample residuals are used. In the latter case, the user should have calculated and stored the residuals within the forecaster (see set_out_sample_residuals()).

True
suppress_warnings bool

If True, skforecast warnings will be suppressed during the prediction process. See skforecast.exceptions.warn_skforecast_categories for more information.

False

Returns:

Name Type Description
predictions pandas DataFrame

Long-format DataFrame with the quantiles predicted by the forecaster. For example, if quantiles = [0.05, 0.5, 0.95], the columns are level, q_0.05, q_0.5, q_0.95.

Notes

More information about prediction intervals in forecasting: https://otexts.com/fpp3/prediction-intervals.html Forecasting: Principles and Practice (3rd ed) Rob J Hyndman and George Athanasopoulos.

Source code in skforecast\deep_learning\_forecaster_rnn.py
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
def predict_quantiles(
        self,
        steps: int,
        levels: str | list[str] | None = None,
        last_window: pd.DataFrame | None = None,
        exog: pd.Series | pd.DataFrame | dict[str, pd.Series | pd.DataFrame] | None = None,
        quantiles: list[float] | tuple[float] = [0.05, 0.5, 0.95],
        n_boot: int = 250,
        random_state: int = 123,
        use_in_sample_residuals: bool = True,
        suppress_warnings: bool = False
) -> pd.DataFrame:
    """
    Calculate the specified quantiles for each step. After generating
    multiple forecasting predictions through a bootstrapping process, each
    quantile is calculated for each step.

    Parameters
    ----------
    steps : int
        Number of steps to predict. 
    levels : str, list, default None
        Time series to be predicted. If `None` all levels whose last window
        ends at the same datetime index will be predicted together.
    last_window : pandas DataFrame, default None
        Series values used to create the predictors (lags) needed in the
        first iteration of the prediction (t + 1).
        If `last_window = None`, the values stored in `self.last_window_` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : pandas Series, pandas DataFrame, dict, default None
        Exogenous variable/s included as predictor/s.
    quantiles : list, tuple, default [0.05, 0.5, 0.95]
        Sequence of quantiles to compute, which must be between 0 and 1
        inclusive. For example, quantiles of 0.05, 0.5 and 0.95 should be as
        `quantiles = [0.05, 0.5, 0.95]`.
    n_boot : int, default 250
        Number of bootstrapping iterations used to estimate quantiles.
    random_state : int, default 123
        Sets a seed to the random generator, so that boot quantiles are always
        deterministic.
    use_in_sample_residuals : bool, default True
        If `True`, residuals from the training data are used as proxy of
        prediction error to create quantiles. If `False`, out of sample
        residuals are used. In the latter case, the user should have
        calculated and stored the residuals within the forecaster (see
        `set_out_sample_residuals()`).
    suppress_warnings : bool, default False
        If `True`, skforecast warnings will be suppressed during the prediction
        process. See skforecast.exceptions.warn_skforecast_categories for more
        information.

    Returns
    -------
    predictions : pandas DataFrame
        Long-format DataFrame with the quantiles predicted by the forecaster.
        For example, if `quantiles = [0.05, 0.5, 0.95]`, the columns are
        `level`, `q_0.05`, `q_0.5`, `q_0.95`.

    Notes
    -----
    More information about prediction intervals in forecasting:
    https://otexts.com/fpp3/prediction-intervals.html
    Forecasting: Principles and Practice (3rd ed) Rob J Hyndman and
    George Athanasopoulos.

    """

    set_skforecast_warnings(suppress_warnings, action='ignore')

    check_interval(quantiles=quantiles)

    predictions = self.predict_bootstrapping(
        steps=steps,
        levels=levels,
        last_window=last_window,
        exog=exog,
        n_boot=n_boot,
        random_state=random_state,
        use_in_sample_residuals=use_in_sample_residuals,
        suppress_warnings=suppress_warnings
    )

    quantiles_cols = [f'q_{q}' for q in quantiles]
    predictions[quantiles_cols] = (
        predictions.iloc[:, 1:].quantile(q=quantiles, axis=1).transpose()
    )
    predictions = predictions[['level'] + quantiles_cols]

    set_skforecast_warnings(suppress_warnings, action='default')

    return predictions

predict_dist

predict_dist(
    steps,
    distribution,
    levels=None,
    last_window=None,
    exog=None,
    n_boot=250,
    random_state=123,
    use_in_sample_residuals=True,
    suppress_warnings=False,
)

Fit a given probability distribution for each step. After generating multiple forecasting predictions through a bootstrapping process, each step is fitted to the given distribution.

Parameters:

Name Type Description Default
steps int

Number of steps to predict.

required
distribution object

A distribution object from scipy.stats with methods _pdf and fit. For example scipy.stats.norm.

required
levels (str, list)

Time series to be predicted. If None all levels whose last window ends at the same datetime index will be predicted together.

None
last_window pandas DataFrame

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1). If last_window = None, the values stored in self.last_window_ are used to calculate the initial predictors, and the predictions start right after training data.

None
exog pandas Series, pandas DataFrame, dict

Exogenous variable/s included as predictor/s.

None
n_boot int

Number of bootstrapping iterations used to estimate predictions.

250
random_state int

Sets a seed to the random generator, so that boot predictions are always deterministic.

123
use_in_sample_residuals bool

If True, residuals from the training data are used as proxy of prediction error to create predictions. If False, out of sample residuals are used. In the latter case, the user should have calculated and stored the residuals within the forecaster (see set_out_sample_residuals()).

True
suppress_warnings bool

If True, skforecast warnings will be suppressed during the prediction process. See skforecast.exceptions.warn_skforecast_categories for more information.

False

Returns:

Name Type Description
predictions pandas DataFrame

Long-format DataFrame with the parameters of the fitted distribution for each step. The columns are level, param_0, param_1, ..., param_n, where param_i are the parameters of the distribution.

Source code in skforecast\deep_learning\_forecaster_rnn.py
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
def predict_dist(
        self,
        steps: int,
        distribution: object,
        levels: str | list[str] | None = None,
        last_window: pd.DataFrame | None = None,
        exog: pd.Series | pd.DataFrame | dict[str, pd.Series | pd.DataFrame] | None = None,
        n_boot: int = 250,
        random_state: int = 123,
        use_in_sample_residuals: bool = True,
        suppress_warnings: bool = False
) -> pd.DataFrame:
    """
    Fit a given probability distribution for each step. After generating
    multiple forecasting predictions through a bootstrapping process, each
    step is fitted to the given distribution.

    Parameters
    ----------
    steps : int
        Number of steps to predict. 
    distribution : object
        A distribution object from scipy.stats with methods `_pdf` and `fit`.
        For example scipy.stats.norm.
    levels : str, list, default None
        Time series to be predicted. If `None` all levels whose last window
        ends at the same datetime index will be predicted together.
    last_window : pandas DataFrame, default None
        Series values used to create the predictors (lags) needed in the
        first iteration of the prediction (t + 1).
        If `last_window = None`, the values stored in `self.last_window_` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : pandas Series, pandas DataFrame, dict, default None
        Exogenous variable/s included as predictor/s.
    n_boot : int, default 250
        Number of bootstrapping iterations used to estimate predictions.
    random_state : int, default 123
        Sets a seed to the random generator, so that boot predictions are always
        deterministic.
    use_in_sample_residuals : bool, default True
        If `True`, residuals from the training data are used as proxy of
        prediction error to create predictions. If `False`, out of sample
        residuals are used. In the latter case, the user should have
        calculated and stored the residuals within the forecaster (see
        `set_out_sample_residuals()`).
    suppress_warnings : bool, default False
        If `True`, skforecast warnings will be suppressed during the prediction
        process. See skforecast.exceptions.warn_skforecast_categories for more
        information.

    Returns
    -------
    predictions : pandas DataFrame
        Long-format DataFrame with the parameters of the fitted distribution
        for each step. The columns are `level`, `param_0`, `param_1`, ...,
        `param_n`, where `param_i` are the parameters of the distribution.

    """

    if not hasattr(distribution, "_pdf") or not callable(getattr(distribution, "fit", None)):
        raise TypeError(
            "`distribution` must be a valid probability distribution object "
            "from scipy.stats, with methods `_pdf` and `fit`."
        )

    set_skforecast_warnings(suppress_warnings, action='ignore')

    predictions = self.predict_bootstrapping(
        steps=steps,
        levels=levels,
        last_window=last_window,
        exog=exog,
        n_boot=n_boot,
        random_state=random_state,
        use_in_sample_residuals=use_in_sample_residuals,
        suppress_warnings=suppress_warnings
    )

    param_names = [
                      p for p in inspect.signature(distribution._pdf).parameters if not p == "x"
                  ] + ["loc", "scale"]

    predictions[param_names] = (
        predictions.iloc[:, 1:].apply(
            lambda x: distribution.fit(x), axis=1, result_type='expand'
        )
    )
    predictions = predictions[['level'] + param_names]

    set_skforecast_warnings(suppress_warnings, action='default')

    return predictions

plot_history

plot_history(ax=None, **fig_kw)

Plots the training and validation loss curves from the given history object stores in the ForecasterRnn.

Parameters:

Name Type Description Default
ax Axes

Pre-existing ax for the plot. Otherwise, call matplotlib.pyplot.subplots() internally.

`None`
fig_kw dict

Other keyword arguments are passed to matplotlib.pyplot.subplots().

{}

Returns:

Name Type Description
fig Figure

Matplotlib Figure.

Source code in skforecast\deep_learning\_forecaster_rnn.py
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
def plot_history(
    self, ax: matplotlib.axes.Axes = None, **fig_kw
) -> matplotlib.figure.Figure:
    """
    Plots the training and validation loss curves from the given history object stores
    in the ForecasterRnn.

    Parameters
    ----------
    ax : matplotlib.axes.Axes, default `None`
        Pre-existing ax for the plot. Otherwise, call matplotlib.pyplot.subplots()
        internally.
    fig_kw : dict
        Other keyword arguments are passed to matplotlib.pyplot.subplots().

    Returns
    -------
    fig: matplotlib.figure.Figure
        Matplotlib Figure.

    """

    if ax is None:
        fig, ax = plt.subplots(1, 1, **fig_kw)
    else:
        fig = ax.get_figure()

    # Setting up the plot style

    if self.history is None:
        raise ValueError("ForecasterRnn has not been fitted yet.")

    # Plotting training loss
    ax.plot(
        range(1, len(self.history["loss"]) + 1),
        self.history["loss"],
        color="b",
        label="Training Loss",
    )

    # Plotting validation loss
    if "val_loss" in self.history:
        ax.plot(
            range(1, len(self.history["val_loss"]) + 1),
            self.history["val_loss"],
            color="r",
            label="Validation Loss",
        )

    # Labeling the axes and adding a title
    ax.set_xlabel("Epochs")
    ax.set_ylabel("Loss")
    ax.set_title("Training and Validation Loss")

    # Adding a legend
    ax.legend()

    # Displaying grid for better readability
    ax.grid(True, linestyle="--", alpha=0.7)

    # Setting x-axis ticks to integers only
    ax.set_xticks(range(1, len(self.history["loss"]) + 1))

set_params

set_params(params)

Set new values to the parameters of the scikit-learn model stored in the forecaster. It is important to note that all models share the same configuration of parameters and hyperparameters.

Parameters:

Name Type Description Default
params dict

Parameters values.

required

Returns:

Type Description
None
Source code in skforecast\deep_learning\_forecaster_rnn.py
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
def set_params(self, params: dict) -> None:  # TODO testear
    """
    Set new values to the parameters of the scikit-learn model stored in the
    forecaster. It is important to note that all models share the same
    configuration of parameters and hyperparameters.

    Parameters
    ----------
    params : dict
        Parameters values.

    Returns
    -------
    None

    """

    self.regressor = clone(self.regressor)
    self.regressor.reset_states()
    self.regressor.compile(**params)

set_fit_kwargs

set_fit_kwargs(fit_kwargs)

Set new values for the additional keyword arguments passed to the fit method of the regressor.

Parameters:

Name Type Description Default
fit_kwargs dict

Dict of the form {"argument": new_value}.

required

Returns:

Type Description
None
Source code in skforecast\deep_learning\_forecaster_rnn.py
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
def set_fit_kwargs(self, fit_kwargs: dict) -> None:
    """
    Set new values for the additional keyword arguments passed to the `fit`
    method of the regressor.

    Parameters
    ----------
    fit_kwargs : dict
        Dict of the form {"argument": new_value}.

    Returns
    -------
    None

    """

    self.fit_kwargs = check_select_fit_kwargs(self.regressor, fit_kwargs=fit_kwargs)

set_lags

set_lags(lags)

Not used, present here for API consistency by convention.

Returns:

Type Description
None
Source code in skforecast\deep_learning\_forecaster_rnn.py
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
def set_lags(self, lags: Any) -> None:
    """
    Not used, present here for API consistency by convention.

    Returns
    -------
    None

    """

    pass

skforecast.deep_learning.utils.create_and_compile_model

create_and_compile_model(
    series,
    lags,
    steps,
    levels=None,
    recurrent_layer="LSTM",
    recurrent_units=100,
    dense_units=64,
    activation="relu",
    optimizer=Adam(learning_rate=0.01),
    loss=MeanSquaredError(),
    compile_kwargs={},
)

Creates a neural network model for time series prediction with flexible recurrent layers.

Parameters:

Name Type Description Default
series pandas DataFrame

Input time series.

required
lags (int, list)

Number of lagged time steps to consider in the input, or a list of specific lag indices.

required
steps (int, list)

Number of steps to predict into the future, or a list of specific step indices.

required
levels (str, int, list)

Number of output levels (features) to predict, or a list of specific level indices. If None, defaults to the number of input series.

`None`
recurrent_layer str

Type of recurrent layer to be used ('LSTM' or 'RNN').

`'LSTM'`
recurrent_units (int, list)

Number of units in the recurrent layer(s). Can be an integer or a list of integers for multiple layers.

`100`
dense_units (int, list)

List of integers representing the number of units in each dense layer.

`64`
activation (str, dict)

Activation function for the recurrent and dense layers. Can be a single string for all layers or a dictionary specifying different activations for 'recurrent_units' and 'dense_units'.

`'relu'`
optimizer object

Optimization algorithm and learning rate.

`Adam(learning_rate=0.01)`
loss object

Loss function for model training.

`MeanSquaredError()`
compile_kwargs dict

Additional arguments for model compilation.

`{}`

Returns:

Name Type Description
model Model

Compiled neural network model.

Raises:

Type Description
TypeError

If any of the input arguments are of incorrect type.

ValueError

If the activation dictionary does not have the required keys or if the lengths of the lists in the activation dictionary do not match the corresponding parameters.

Source code in skforecast\deep_learning\utils.py
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
def create_and_compile_model(
    series: pd.DataFrame,
    lags: Union[int, list],
    steps: Union[int, list],
    levels: Optional[Union[str, int, list]] = None,
    recurrent_layer: str = "LSTM",
    recurrent_units: Union[int, list] = 100,
    dense_units: Union[int, list] = 64,
    activation: Union[str, dict] = "relu",
    optimizer: object = Adam(learning_rate=0.01),
    loss: object = MeanSquaredError(),
    compile_kwargs: dict = {},
) -> keras.models.Model:
    """
    Creates a neural network model for time series prediction with flexible recurrent layers.

    Parameters
    ----------
    series : pandas DataFrame
        Input time series.
    lags : int, list
        Number of lagged time steps to consider in the input, or a list of 
        specific lag indices.
    steps : int, list
        Number of steps to predict into the future, or a list of specific step 
        indices.
    levels : str, int, list, default `None`
        Number of output levels (features) to predict, or a list of specific 
        level indices. If None, defaults to the number of input series.
    recurrent_layer : str, default `'LSTM'`
        Type of recurrent layer to be used ('LSTM' or 'RNN').
    recurrent_units : int, list, default `100`
        Number of units in the recurrent layer(s). Can be an integer or a 
        list of integers for multiple layers.
    dense_units : int, list, default `64`
        List of integers representing the number of units in each dense layer.
    activation : str, dict, default `'relu'`
        Activation function for the recurrent and dense layers. Can be a single 
        string for all layers or a dictionary specifying different activations 
        for 'recurrent_units' and 'dense_units'.
    optimizer : object, default `Adam(learning_rate=0.01)`
        Optimization algorithm and learning rate.
    loss : object, default `MeanSquaredError()`
        Loss function for model training.
    compile_kwargs : dict, default `{}` 
        Additional arguments for model compilation.

    Returns
    -------
    model : keras.models.Model
        Compiled neural network model.

    Raises
    ------
    TypeError
        If any of the input arguments are of incorrect type.
    ValueError
        If the activation dictionary does not have the required keys or if the 
        lengths of the lists in the activation dictionary do not match the 
        corresponding parameters.

    """

    if keras.__version__ > "3":
        print(f"keras version: {keras.__version__}")
        print(f"Using backend: {keras.backend.backend()}")
        if keras.backend.backend() == "tensorflow":
            import tensorflow
            print(f"tensorflow version: {tensorflow.__version__}")
        elif keras.backend.backend() == "torch":
            import torch
            print(f"torch version: {torch.__version__}")
        elif keras.backend.backend() == "jax":
            import jax
            print(f"jax version: {jax.__version__}")
        else:
            print("Backend not recognized")

    err_msg = f"`series` must be a pandas DataFrame. Got {type(series)}."

    if not isinstance(series, pd.DataFrame):
        raise TypeError(err_msg)

    n_series = series.shape[1]

    # Dense units must be a list, None or int
    if not isinstance(dense_units, (list, int, type(None))):
        raise TypeError(
            f"`dense_units` argument must be a list or int. Got {type(dense_units)}."
        )
    if isinstance(dense_units, int):
        dense_units = [dense_units]

    # Recurrent units must be a list or int
    if not isinstance(recurrent_units, (list, int)):
        raise TypeError(
            f"`recurrent_units` argument must be a list or int. Got {type(recurrent_units)}."
        )
    if isinstance(recurrent_units, int):
        recurrent_units = [recurrent_units]

    # Lags, steps and levels must be int or list
    if not isinstance(lags, (int, list)):
        raise TypeError(f"`lags` argument must be a list or int. Got {type(lags)}.")
    if not isinstance(steps, (int, list)):
        raise TypeError(f"`steps` argument must be a list or int. Got {type(steps)}.")
    if not isinstance(levels, (str, int, list, type(None))):
        raise TypeError(
            f"`levels` argument must be a string, list or int. Got {type(levels)}."
        )

    if isinstance(lags, list):
        lags = len(lags)
    if isinstance(steps, list):
        steps = len(steps)
    if isinstance(levels, list):
        levels = len(levels)
    elif isinstance(levels, (str)):
        levels = 1
    elif isinstance(levels, type(None)):
        levels = series.shape[1]
    elif isinstance(levels, int):
        pass
    else:
        raise TypeError(
            f"`levels` argument must be a string, list or int. Got {type(levels)}."
        )

    if isinstance(activation, str):
        if dense_units is not None:
            activation = {
                "recurrent_units": [activation] * len(recurrent_units),
                "dense_units": [activation] * len(dense_units),
            }
        else:
            activation = {
                "recurrent_units": [activation] * len(recurrent_units)
            }
    elif isinstance(activation, dict):
        # Check if the dictionary has the required keys
        if "recurrent_units" not in activation.keys():
            raise ValueError("The activation dictionary must have a 'recurrent_units' key.")
        if dense_units is not None and "dense_units" not in activation.keys():
            raise ValueError("The activation dictionary must have a 'dense_units' key if dense_units is not None.")
        # Check if the values are lists
        if not isinstance(activation["recurrent_units"], list):
            raise TypeError("The 'recurrent_units' value in the activation dictionary must be a list.")
        if dense_units is not None and not isinstance(activation["dense_units"], list):
            raise TypeError("The 'dense_units' value in the activation dictionary must be a list if dense_units is not None.")
        # Check if the lists have the same length as the corresponding parameters
        if len(activation["recurrent_units"]) != len(recurrent_units):
            raise ValueError("The 'recurrent_units' list in the activation dictionary must have the same length as the recurrent_units parameter.")
        if dense_units is not None and len(activation["dense_units"]) != len(dense_units):
            raise ValueError("The 'dense_units' list in the activation dictionary must have the same length as the dense_units parameter.")
    else:
        raise TypeError(f"`activation` argument must be a string or dict. Got {type(activation)}.")

    input_layer = Input(shape=(lags, n_series))
    x = input_layer

    # Dynamically create multiple recurrent layers if recurrent_units is a list
    if isinstance(recurrent_units, list):
        for i, units in enumerate(recurrent_units[:-1]):  # All layers except the last one
            if recurrent_layer == "LSTM":
                x = LSTM(units, activation=activation["recurrent_units"][i], return_sequences=True)(x)
            elif recurrent_layer == "RNN":
                x = SimpleRNN(units, activation=activation["recurrent_units"][i], return_sequences=True)(x)
            else:
                raise ValueError(f"Invalid recurrent layer: {recurrent_layer}")
        # Last layer without return_sequences
        if recurrent_layer == "LSTM":
            x = LSTM(recurrent_units[-1], activation=activation["recurrent_units"][-1])(x)
        elif recurrent_layer == "RNN":
            x = SimpleRNN(recurrent_units[-1], activation=activation["recurrent_units"][-1])(x)
        else:
            raise ValueError(f"Invalid recurrent layer: {recurrent_layer}")
    else:
        # Single recurrent layer
        if recurrent_layer == "LSTM":
            x = LSTM(recurrent_units, activation=activation["recurrent_units"][0])(x)
        elif recurrent_layer == "RNN":
            x = SimpleRNN(recurrent_units, activation=activation["recurrent_units"][0])(x)
        else:
            raise ValueError(f"Invalid recurrent layer: {recurrent_layer}")

    # Dense layers
    if dense_units is not None:
        for i, nn in enumerate(dense_units):
            x = Dense(nn, activation=activation["dense_units"][i])(x)

    # Output layer
    x = Dense(levels * steps, activation="linear")(x)
    # model = Model(inputs=input_layer, outputs=x)
    output_layer = keras.layers.Reshape((steps, levels))(x)
    model = Model(inputs=input_layer, outputs=output_layer)

    # Compile the model if optimizer, loss or compile_kwargs are passed
    if optimizer is not None or loss is not None or compile_kwargs:
        # give more priority to the parameters passed in the function check if the
        # parameters passes in compile_kwargs include optimizer and loss if so,
        # delete them from compile_kwargs and raise a warning
        if "optimizer" in compile_kwargs.keys():
            compile_kwargs.pop("optimizer")
            warnings.warn("`optimizer` passed in `compile_kwargs`. Ignoring it.")
        if "loss" in compile_kwargs.keys():
            compile_kwargs.pop("loss")
            warnings.warn("`loss` passed in `compile_kwargs`. Ignoring it.")

        model.compile(optimizer=optimizer, loss=loss, **compile_kwargs)

    return model