ForecasterRnn
¶
skforecast.deep_learning._forecaster_rnn.ForecasterRnn ¶
ForecasterRnn(
regressor,
levels,
lags="auto",
steps="auto",
transformer_series=MinMaxScaler(feature_range=(0, 1)),
weight_func=None,
fit_kwargs={},
forecaster_id=None,
n_jobs=None,
transformer_exog=None,
)
Bases: ForecasterBase
This class turns any regressor compatible with the Keras API into a Keras RNN multi-serie multi-step forecaster. A unique model is created to forecast all time steps and series. Keras enables workflows on top of either JAX, TensorFlow, or PyTorch. See documentation for more details.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
regressor |
regressor or pipeline compatible with the Keras API
|
An instance of a regressor or pipeline compatible with the Keras API. |
required |
levels |
(str, list)
|
Name of one or more time series to be predicted. This determine the series
the forecaster will be handling. If |
required |
lags |
(int, list, str)
|
Lags used as predictors. If 'auto', lags used are from 1 to N, where N is
extracted from the input layer |
`'auto'`
|
transformer_series |
(object, dict)
|
An instance of a transformer (preprocessor) compatible with the scikit-learn
preprocessing API with methods: fit, transform, fit_transform and
inverse_transform. Transformation is applied to each
|
`sklearn.preprocessing.MinMaxScaler(feature_range=(0, 1))`
|
fit_kwargs |
dict
|
Additional arguments to be passed to the |
`None`
|
forecaster_id |
(str, int)
|
Name used as an identifier of the forecaster. |
`None`
|
steps |
(int, list, str)
|
Steps to be predicted. If 'auto', steps used are from 1 to N, where N is
extracted from the output layer |
`'auto'`
|
lags |
Optional[Union[int, list, str]]
|
Not used, present here for API consistency by convention. |
'auto'
|
transformer_exog |
Ignored
|
Not used, present here for API consistency by convention. |
None
|
weight_func |
Ignored
|
Not used, present here for API consistency by convention. |
None
|
n_jobs |
Ignored
|
Not used, present here for API consistency by convention. |
None
|
Attributes:
Name | Type | Description |
---|---|---|
regressor |
regressor or pipeline compatible with the Keras API
|
An instance of a regressor or pipeline compatible with the Keras API.
An instance of this regressor is trained for each step. All of them
are stored in |
levels |
(str, list)
|
Name of one or more time series to be predicted. This determine the series
the forecaster will be handling. If |
steps |
numpy ndarray
|
Number of future steps the forecaster will predict when using method
|
lags |
numpy ndarray
|
Lags used as predictors. |
transformer_series |
(object, dict)
|
An instance of a transformer (preprocessor) compatible with the scikit-learn
preprocessing API with methods: fit, transform, fit_transform and
inverse_transform. Transformation is applied to each |
transformer_series_ |
dict
|
Dictionary with the transformer for each series. It is created cloning the
objects in |
transformer_exog |
Ignored
|
Not used, present here for API consistency by convention. |
max_lag |
int
|
Maximum lag included in |
window_size |
int
|
Size of the window needed to create the predictors. |
last_window_ |
pandas Series
|
Last window seen by the forecaster during training. It stores the values
needed to predict the next |
index_type_ |
type
|
Type of index of the input used in training. |
index_freq_ |
str
|
Frequency of Index of the input used in training. |
training_range_ |
pandas Index
|
First and last values of index of the data used during training. |
series_names_in_ |
list
|
Names of the series used during training. |
exog_in_ |
bool
|
If the forecaster has been trained using exogenous variable/s. |
exog_names_in_ |
list
|
Names of the exogenous variables used during training. |
exog_type_in_ |
type
|
Type of exogenous variable/s used in training. |
exog_dtypes_in_ |
dict
|
Type of each exogenous variable/s used in training. If |
X_train_dim_names_ |
dict
|
Labels for the multi-dimensional arrays created internally for training. |
y_train_dim_names_ |
dict
|
Labels for the multi-dimensional arrays created internally for training. |
fit_kwargs |
dict
|
Additional arguments to be passed to the |
in_sample_residuals_ |
dict
|
Residuals of the models when predicting training data. Only stored up to
1000 values per model in the form |
out_sample_residuals |
dict
|
Residuals of the models when predicting non training data. Only stored
up to 1000 values per model in the form |
creation_date |
str
|
Date of creation. |
is_fitted |
bool
|
Tag to identify if the regressor has been fitted (trained). |
fit_date |
str
|
Date of last fit. |
skforcast_version |
str
|
Version of skforecast library used to create the forecaster. |
python_version |
str
|
Version of python used to create the forecaster. |
forecaster_id |
(str, int)
|
Name used as an identifier of the forecaster. |
history |
dict
|
Dictionary with the history of the training of each step. It is created internally to avoid overwriting. |
_probabilistic_mode |
(str, bool)
|
Private attribute used to indicate whether the forecaster should perform some calculations during backtesting. |
dropna_from_series |
Ignored
|
Not used, present here for API consistency by convention. |
encoding |
Ignored
|
Not used, present here for API consistency by convention. |
differentiation |
Ignored
|
Not used, present here for API consistency by convention. |
differentiation_max |
Ignored
|
Not used, present here for API consistency by convention. |
differentiator |
Ignored
|
Not used, present here for API consistency by convention. |
differentiator_ |
Ignored
|
Not used, present here for API consistency by convention. |
Source code in skforecast\deep_learning\_forecaster_rnn.py
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
|
_create_lags ¶
_create_lags(y)
Transforms a 1d array into a 3d array (X) and a 3d array (y). Each row in X is associated with a value of y and it represents the lags that precede it.
Notice that, the returned matrix X_data, contains the lag 1 in the first column, the lag 2 in the second column and so on.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y |
numpy ndarray
|
1d numpy ndarray Training time series. |
required |
Returns:
Name | Type | Description |
---|---|---|
X_data |
numpy ndarray
|
3d numpy ndarray with the lagged values (predictors). Shape: (samples - max(lags), len(lags)) |
y_data |
numpy ndarray
|
3d numpy ndarray with the values of the time series related to each
row of |
Source code in skforecast\deep_learning\_forecaster_rnn.py
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 |
|
create_train_X_y ¶
create_train_X_y(series, exog=None)
Create training matrices. The resulting multi-dimensional matrices contain the target variable and predictors needed to train the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
series |
pandas DataFrame
|
Training time series. |
required |
exog |
Ignored
|
Not used, present here for API consistency by convention. This type of forecaster does not allow exogenous variables. |
None
|
Returns:
Name | Type | Description |
---|---|---|
X_train |
ndarray
|
Training values (predictors) for each step. The resulting array has 3 dimensions: (time_points, n_lags, n_series) |
y_train |
ndarray
|
Values (target) of the time series related to each row of |
dimension_names |
dict
|
Labels for the multi-dimensional arrays created internally for training. |
Source code in skforecast\deep_learning\_forecaster_rnn.py
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 |
|
fit ¶
fit(
series,
store_in_sample_residuals=True,
exog=None,
suppress_warnings=False,
store_last_window="Ignored",
)
Training Forecaster.
Additional arguments to be passed to the fit
method of the regressor
can be added with the fit_kwargs
argument when initializing the forecaster.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
series |
pandas DataFrame
|
Training time series. |
required |
store_in_sample_residuals |
bool
|
If |
`True`
|
exog |
Ignored
|
Not used, present here for API consistency by convention. |
None
|
suppress_warnings |
bool
|
If |
`False`
|
store_last_window |
Ignored
|
Not used, present here for API consistency by convention. |
'Ignored'
|
Returns:
Type | Description |
---|---|
None
|
|
Source code in skforecast\deep_learning\_forecaster_rnn.py
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 |
|
predict ¶
predict(
steps=None,
levels=None,
last_window=None,
exog=None,
suppress_warnings=False,
check_inputs=None,
)
Predict n steps ahead
Parameters:
Name | Type | Description | Default |
---|---|---|---|
steps |
(int, list, None)
|
Predict n steps. The value of
|
`None`
|
levels |
(str, list)
|
Name of one or more time series to be predicted. It must be included
in |
`None`
|
last_window |
pandas DataFrame
|
Series values used to create the predictors (lags) needed in the
first iteration of the prediction (t + 1).
If |
`None`
|
exog |
Ignored
|
Not used, present here for API consistency by convention. |
None
|
suppress_warnings |
bool
|
If |
`False`
|
check_inputs |
Ignored
|
Not used, present here for API consistency by convention. |
None
|
Returns:
Name | Type | Description |
---|---|---|
predictions |
pandas DataFrame
|
Predicted values. |
Source code in skforecast\deep_learning\_forecaster_rnn.py
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 |
|
predict_bootstrapping ¶
predict_bootstrapping(
steps=None,
last_window=None,
exog=None,
n_boot=250,
random_state=123,
use_in_sample_residuals=True,
suppress_warnings=False,
levels=None,
)
Generate multiple forecasting predictions using a bootstrapping process. By sampling from a collection of past observed errors (the residuals), each iteration of bootstrapping generates a different set of predictions. Only levels whose last window ends at the same datetime index can be predicted together. See the Notes section for more information.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
steps |
int
|
Number of steps to predict. |
None
|
levels |
(str, list)
|
Time series to be predicted. If |
None
|
last_window |
pandas DataFrame
|
Series values used to create the predictors (lags) needed in the
first iteration of the prediction (t + 1).
If |
None
|
exog |
pandas Series, pandas DataFrame, dict
|
Exogenous variable/s included as predictor/s. |
None
|
n_boot |
int
|
Number of bootstrapping iterations used to estimate predictions. |
250
|
random_state |
int
|
Sets a seed to the random generator, so that boot predictions are always deterministic. |
123
|
use_in_sample_residuals |
bool
|
If |
True
|
suppress_warnings |
bool
|
If |
False
|
Returns:
Name | Type | Description |
---|---|---|
boot_predictions |
dict
|
Predictions generated by bootstrapping for each level. |
Notes
More information about prediction intervals in forecasting: https://otexts.com/fpp3/prediction-intervals.html#prediction-intervals-from-bootstrapped-residuals Forecasting: Principles and Practice (3rd ed) Rob J Hyndman and George Athanasopoulos.
Source code in skforecast\deep_learning\_forecaster_rnn.py
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 |
|
predict_interval ¶
predict_interval(
steps,
levels=None,
last_window=None,
exog=None,
interval=[5, 95],
n_boot=250,
random_state=123,
use_in_sample_residuals=True,
suppress_warnings=False,
)
Iterative process in which, each prediction, is used as a predictor for the next step and bootstrapping is used to estimate prediction intervals. Both predictions and intervals are returned.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
steps |
int
|
Number of steps to predict. |
required |
levels |
(str, list)
|
Time series to be predicted. If |
None
|
last_window |
pandas DataFrame
|
Series values used to create the predictors (lags) needed in the
first iteration of the prediction (t + 1).
If |
None
|
exog |
pandas Series, pandas DataFrame, dict
|
Exogenous variable/s included as predictor/s. |
None
|
interval |
(list, tuple)
|
Confidence of the prediction interval estimated. Sequence of
percentiles to compute, which must be between 0 and 100 inclusive.
For example, interval of 95% should be as |
`[5, 95]`
|
n_boot |
int
|
Number of bootstrapping iterations used to estimate prediction intervals. |
250
|
random_state |
int
|
Sets a seed to the random generator, so that boot predictions are always deterministic. |
123
|
use_in_sample_residuals |
bool
|
If |
True
|
suppress_warnings |
bool
|
If |
False
|
Returns:
Name | Type | Description |
---|---|---|
predictions |
pandas DataFrame
|
Long-format DataFrame with the predictions and the lower and upper
bounds of the estimated interval. The columns are |
Notes
More information about prediction intervals in forecasting: https://otexts.com/fpp3/prediction-intervals.html Forecasting: Principles and Practice (3rd ed) Rob J Hyndman and George Athanasopoulos.
Source code in skforecast\deep_learning\_forecaster_rnn.py
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 |
|
predict_quantiles ¶
predict_quantiles(
steps,
levels=None,
last_window=None,
exog=None,
quantiles=[0.05, 0.5, 0.95],
n_boot=250,
random_state=123,
use_in_sample_residuals=True,
suppress_warnings=False,
)
Calculate the specified quantiles for each step. After generating multiple forecasting predictions through a bootstrapping process, each quantile is calculated for each step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
steps |
int
|
Number of steps to predict. |
required |
levels |
(str, list)
|
Time series to be predicted. If |
None
|
last_window |
pandas DataFrame
|
Series values used to create the predictors (lags) needed in the
first iteration of the prediction (t + 1).
If |
None
|
exog |
pandas Series, pandas DataFrame, dict
|
Exogenous variable/s included as predictor/s. |
None
|
quantiles |
(list, tuple)
|
Sequence of quantiles to compute, which must be between 0 and 1
inclusive. For example, quantiles of 0.05, 0.5 and 0.95 should be as
|
[0.05, 0.5, 0.95]
|
n_boot |
int
|
Number of bootstrapping iterations used to estimate quantiles. |
250
|
random_state |
int
|
Sets a seed to the random generator, so that boot quantiles are always deterministic. |
123
|
use_in_sample_residuals |
bool
|
If |
True
|
suppress_warnings |
bool
|
If |
False
|
Returns:
Name | Type | Description |
---|---|---|
predictions |
pandas DataFrame
|
Long-format DataFrame with the quantiles predicted by the forecaster.
For example, if |
Notes
More information about prediction intervals in forecasting: https://otexts.com/fpp3/prediction-intervals.html Forecasting: Principles and Practice (3rd ed) Rob J Hyndman and George Athanasopoulos.
Source code in skforecast\deep_learning\_forecaster_rnn.py
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 |
|
predict_dist ¶
predict_dist(
steps,
distribution,
levels=None,
last_window=None,
exog=None,
n_boot=250,
random_state=123,
use_in_sample_residuals=True,
suppress_warnings=False,
)
Fit a given probability distribution for each step. After generating multiple forecasting predictions through a bootstrapping process, each step is fitted to the given distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
steps |
int
|
Number of steps to predict. |
required |
distribution |
object
|
A distribution object from scipy.stats with methods |
required |
levels |
(str, list)
|
Time series to be predicted. If |
None
|
last_window |
pandas DataFrame
|
Series values used to create the predictors (lags) needed in the
first iteration of the prediction (t + 1).
If |
None
|
exog |
pandas Series, pandas DataFrame, dict
|
Exogenous variable/s included as predictor/s. |
None
|
n_boot |
int
|
Number of bootstrapping iterations used to estimate predictions. |
250
|
random_state |
int
|
Sets a seed to the random generator, so that boot predictions are always deterministic. |
123
|
use_in_sample_residuals |
bool
|
If |
True
|
suppress_warnings |
bool
|
If |
False
|
Returns:
Name | Type | Description |
---|---|---|
predictions |
pandas DataFrame
|
Long-format DataFrame with the parameters of the fitted distribution
for each step. The columns are |
Source code in skforecast\deep_learning\_forecaster_rnn.py
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 |
|
plot_history ¶
plot_history(ax=None, **fig_kw)
Plots the training and validation loss curves from the given history object stores in the ForecasterRnn.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ax |
Axes
|
Pre-existing ax for the plot. Otherwise, call matplotlib.pyplot.subplots() internally. |
`None`
|
fig_kw |
dict
|
Other keyword arguments are passed to matplotlib.pyplot.subplots(). |
{}
|
Returns:
Name | Type | Description |
---|---|---|
fig |
Figure
|
Matplotlib Figure. |
Source code in skforecast\deep_learning\_forecaster_rnn.py
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 |
|
set_params ¶
set_params(params)
Set new values to the parameters of the scikit-learn model stored in the forecaster. It is important to note that all models share the same configuration of parameters and hyperparameters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
params |
dict
|
Parameters values. |
required |
Returns:
Type | Description |
---|---|
None
|
|
Source code in skforecast\deep_learning\_forecaster_rnn.py
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 |
|
set_fit_kwargs ¶
set_fit_kwargs(fit_kwargs)
Set new values for the additional keyword arguments passed to the fit
method of the regressor.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
fit_kwargs |
dict
|
Dict of the form {"argument": new_value}. |
required |
Returns:
Type | Description |
---|---|
None
|
|
Source code in skforecast\deep_learning\_forecaster_rnn.py
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 |
|
set_lags ¶
set_lags(lags)
Not used, present here for API consistency by convention.
Returns:
Type | Description |
---|---|
None
|
|
Source code in skforecast\deep_learning\_forecaster_rnn.py
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 |
|
skforecast.deep_learning.utils.create_and_compile_model ¶
create_and_compile_model(
series,
lags,
steps,
levels=None,
recurrent_layer="LSTM",
recurrent_units=100,
dense_units=64,
activation="relu",
optimizer=Adam(learning_rate=0.01),
loss=MeanSquaredError(),
compile_kwargs={},
)
Creates a neural network model for time series prediction with flexible recurrent layers.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
series |
pandas DataFrame
|
Input time series. |
required |
lags |
(int, list)
|
Number of lagged time steps to consider in the input, or a list of specific lag indices. |
required |
steps |
(int, list)
|
Number of steps to predict into the future, or a list of specific step indices. |
required |
levels |
(str, int, list)
|
Number of output levels (features) to predict, or a list of specific level indices. If None, defaults to the number of input series. |
`None`
|
recurrent_layer |
str
|
Type of recurrent layer to be used ('LSTM' or 'RNN'). |
`'LSTM'`
|
recurrent_units |
(int, list)
|
Number of units in the recurrent layer(s). Can be an integer or a list of integers for multiple layers. |
`100`
|
dense_units |
(int, list)
|
List of integers representing the number of units in each dense layer. |
`64`
|
activation |
(str, dict)
|
Activation function for the recurrent and dense layers. Can be a single string for all layers or a dictionary specifying different activations for 'recurrent_units' and 'dense_units'. |
`'relu'`
|
optimizer |
object
|
Optimization algorithm and learning rate. |
`Adam(learning_rate=0.01)`
|
loss |
object
|
Loss function for model training. |
`MeanSquaredError()`
|
compile_kwargs |
dict
|
Additional arguments for model compilation. |
`{}`
|
Returns:
Name | Type | Description |
---|---|---|
model |
Model
|
Compiled neural network model. |
Raises:
Type | Description |
---|---|
TypeError
|
If any of the input arguments are of incorrect type. |
ValueError
|
If the activation dictionary does not have the required keys or if the lengths of the lists in the activation dictionary do not match the corresponding parameters. |
Source code in skforecast\deep_learning\utils.py
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
|