Independent multi-series forecasting¶
In univariate time series forecasting, a single time series is modeled as a linear or nonlinear combination of its lags, where past values of the series are used to forecast its future. In multi-series forecasting, two or more time series are modeled together using a single model.
In independent multi-series forecasting a single model is trained for all time series, but each time series remains independent of the others, meaning that past values of one series are not used as predictors of other series. However, modeling them together is useful because the series may follow the same intrinsic pattern regarding their past and future values. For instance, the sales of products A and B in the same store may not be related, but they follow the same dynamics, that of the store.
Internal Forecaster transformation of two time series and an exogenous variable into the matrices needed to train a machine learning model in a multi-series context.
To predict the next n steps, the strategy of recursive multi-step forecasting is applied, with the only difference being that the series name for which to estimate the predictions needs to be indicated.
Diagram of recursive forecasting with multiple independent time series.
Using the ForecasterAutoregMultiSeries
and ForecasterAutoregMultiSeriesCustom
classes, it is possible to easily build machine learning models for independent multi-series forecasting.
Tip
To learn more about independent multi-series forecasting visit our example: Multi-series forecasting with Python and Skforecast.
Note
See ForecasterAutoregMultiVariate for dependent multi-series forecasting (multivariate time series).
Libraries¶
# Libraries
# ==============================================================================
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import Ridge
from sklearn.metrics import mean_absolute_error
from skforecast.ForecasterAutoregMultiSeries import ForecasterAutoregMultiSeries
from skforecast.model_selection_multiseries import backtesting_forecaster_multiseries
from skforecast.model_selection_multiseries import grid_search_forecaster_multiseries
Data¶
# Data download
# ==============================================================================
url = (
'https://raw.githubusercontent.com/JoaquinAmatRodrigo/skforecast/master/'
'data/simulated_items_sales.csv'
)
data = pd.read_csv(url, sep=',')
# Data preparation
# ==============================================================================
data['date'] = pd.to_datetime(data['date'], format='%Y-%m-%d')
data = data.set_index('date')
data = data.asfreq('D')
data = data.sort_index()
data.head()
item_1 | item_2 | item_3 | |
---|---|---|---|
date | |||
2012-01-01 | 8.253175 | 21.047727 | 19.429739 |
2012-01-02 | 22.777826 | 26.578125 | 28.009863 |
2012-01-03 | 27.549099 | 31.751042 | 32.078922 |
2012-01-04 | 25.895533 | 24.567708 | 27.252276 |
2012-01-05 | 21.379238 | 18.191667 | 20.357737 |
# Split data into train-val-test
# ==============================================================================
end_train = '2014-07-15 23:59:00'
data_train = data.loc[:end_train, :].copy()
data_test = data.loc[end_train:, :].copy()
print(
f"Train dates : {data_train.index.min()} --- {data_train.index.max()} "
f"(n={len(data_train)})"
)
print(
f"Test dates : {data_test.index.min()} --- {data_test.index.max()} "
f"(n={len(data_test)})"
)
Train dates : 2012-01-01 00:00:00 --- 2014-07-15 00:00:00 (n=927) Test dates : 2014-07-16 00:00:00 --- 2015-01-01 00:00:00 (n=170)
# Plot time series
# ==============================================================================
fig, axes = plt.subplots(nrows=3, ncols=1, figsize=(9, 5), sharex=True)
data_train['item_1'].plot(label='train', ax=axes[0])
data_test['item_1'].plot(label='test', ax=axes[0])
axes[0].set_xlabel('')
axes[0].set_ylabel('sales')
axes[0].set_title('Item 1')
axes[0].legend()
data_train['item_2'].plot(label='train', ax=axes[1])
data_test['item_2'].plot(label='test', ax=axes[1])
axes[1].set_xlabel('')
axes[1].set_ylabel('sales')
axes[1].set_title('Item 2')
data_train['item_3'].plot(label='train', ax=axes[2])
data_test['item_3'].plot(label='test', ax=axes[2])
axes[2].set_xlabel('')
axes[2].set_ylabel('sales')
axes[2].set_title('Item 3')
fig.tight_layout()
plt.show();
Train and predict ForecasterAutoregMultiSeries¶
# Create and fit forecaster multi series
# ==============================================================================
forecaster = ForecasterAutoregMultiSeries(
regressor = Ridge(random_state=123),
lags = 24,
transformer_series = None,
transformer_exog = None,
weight_func = None,
series_weights = None,
forecaster_id = None
)
forecaster.fit(series=data_train)
forecaster
============================ ForecasterAutoregMultiSeries ============================ Regressor: Ridge(random_state=123) Lags: [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24] Transformer for series: None Transformer for exog: None Window size: 24 Series levels (names): ['item_1', 'item_2', 'item_3'] Series weights: None Weight function included: False Exogenous included: False Type of exogenous variable: None Exogenous variables names: None Training range: [Timestamp('2012-01-01 00:00:00'), Timestamp('2014-07-15 00:00:00')] Training index type: DatetimeIndex Training index frequency: D Regressor parameters: {'alpha': 1.0, 'copy_X': True, 'fit_intercept': True, 'max_iter': None, 'positive': False, 'random_state': 123, 'solver': 'auto', 'tol': 0.0001} fit_kwargs: {} Creation date: 2023-09-09 17:01:38 Last fit date: 2023-09-09 17:01:38 Skforecast version: 0.10.0 Python version: 3.10.11 Forecaster id: None
Two methods can be use to predict the next n steps: predict()
or predict_interval()
. The argument levels
is used to indicate for which series estimate predictions. If None
all series will be predicted.
# Predict and predict_interval
# ==============================================================================
steps = 24
# Predictions for item_1
predictions_item_1 = forecaster.predict(steps=steps, levels='item_1')
display(predictions_item_1.head(3))
# Interval predictions for item_1 and item_2
predictions_intervals = forecaster.predict_interval(steps=steps, levels=['item_1', 'item_2'])
display(predictions_intervals.head(3))
item_1 | |
---|---|
2014-07-16 | 25.497376 |
2014-07-17 | 24.866972 |
2014-07-18 | 24.281173 |
item_1 | item_1_lower_bound | item_1_upper_bound | item_2 | item_2_lower_bound | item_2_upper_bound | |
---|---|---|---|---|---|---|
2014-07-16 | 25.497376 | 23.220087 | 28.226068 | 10.694506 | 7.093046 | 15.518896 |
2014-07-17 | 24.866972 | 22.141168 | 27.389805 | 11.080091 | 6.467676 | 16.534679 |
2014-07-18 | 24.281173 | 21.688393 | 26.981395 | 11.490882 | 7.077863 | 16.762530 |
Backtesting Multi Series¶
As in the predict
method, the levels
at which backtesting is performed must be indicated. The argument can also be set to None
to perform backtesting at all levels.
# Backtesting Multi Series
# ==============================================================================
metrics_levels, backtest_predictions = backtesting_forecaster_multiseries(
forecaster = forecaster,
series = data,
exog = None,
levels = None,
steps = 24,
metric = 'mean_absolute_error',
initial_train_size = len(data_train),
fixed_train_size = True,
gap = 0,
allow_incomplete_fold = True,
refit = True,
n_jobs = 'auto',
verbose = False,
show_progress = True
)
print("Backtest metrics")
display(metrics_levels)
print("")
print("Backtest predictions")
backtest_predictions.head(4)
0%| | 0/8 [00:00<?, ?it/s]
Backtest metrics
levels | mean_absolute_error | |
---|---|---|
0 | item_1 | 1.360675 |
1 | item_2 | 2.332392 |
2 | item_3 | 3.155592 |
Backtest predictions
item_1 | item_2 | item_3 | |
---|---|---|---|
2014-07-16 | 25.497376 | 10.694506 | 11.275026 |
2014-07-17 | 24.866972 | 11.080091 | 11.313510 |
2014-07-18 | 24.281173 | 11.490882 | 13.030112 |
2014-07-19 | 23.515499 | 11.548922 | 13.378282 |
Hyperparameter tuning and lags selection Multi Series¶
The grid_search_forecaster_multiseries
and random_search_forecaster_multiseries
functions in the model_selection_multiseries
module allow for lag and hyperparameter optimization. The optimization is performed using the same strategy as in other Forecasters, see the user guide here, except for the levels
argument:
levels
: level(s) at which the forecaster is optimized, for example:If
levels = ['item_1', 'item_2', 'item_3']
(Same aslevels = None
), the function will search for the lags and hyperparameters that minimize the average error of the predictions of all the time series. The resulting metric will be the average of all levels.If
levels = 'item_1'
(Same aslevels = ['item_1']
), the function will search for the lags and hyperparameters that minimize the error of theitem_1
predictions. The resulting metric will be the one calculated foritem_1
.
The following example shows how to use grid_search_forecaster_multiseries
to find the best lags and model hyperparameters for all time series (all levels
):
# Create Forecaster multi series
# ==============================================================================
forecaster = ForecasterAutoregMultiSeries(
regressor = Ridge(random_state=123),
lags = 24,
transformer_series = StandardScaler(),
transformer_exog = None,
weight_func = None,
series_weights = None
)
# Grid search Multi Series
# ==============================================================================
lags_grid = [24, 48]
param_grid = {'alpha': [0.01, 0.1, 1]}
levels = ['item_1', 'item_2', 'item_3']
results = grid_search_forecaster_multiseries(
forecaster = forecaster,
series = data,
exog = None,
levels = levels, # Same as levels=None
lags_grid = lags_grid,
param_grid = param_grid,
steps = 24,
metric = 'mean_absolute_error',
initial_train_size = len(data_train),
refit = True,
fixed_train_size = True,
return_best = False,
n_jobs = 'auto',
verbose = False,
show_progress = True
)
results
6 models compared for 3 level(s). Number of iterations: 6.
lags grid: 0%| | 0/2 [00:00<?, ?it/s]
params grid: 0%| | 0/3 [00:00<?, ?it/s]
levels | lags | params | mean_absolute_error | alpha | |
---|---|---|---|---|---|
5 | [item_1, item_2, item_3] | [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14... | {'alpha': 1} | 2.207648 | 1.00 |
4 | [item_1, item_2, item_3] | [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14... | {'alpha': 0.1} | 2.207700 | 0.10 |
3 | [item_1, item_2, item_3] | [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14... | {'alpha': 0.01} | 2.207706 | 0.01 |
2 | [item_1, item_2, item_3] | [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14... | {'alpha': 1} | 2.335039 | 1.00 |
1 | [item_1, item_2, item_3] | [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14... | {'alpha': 0.1} | 2.335149 | 0.10 |
0 | [item_1, item_2, item_3] | [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14... | {'alpha': 0.01} | 2.335161 | 0.01 |
Exogenous variables in multi-series¶
Exogenous variables are predictors that are independent of the model being used for forecasting, and their future values must be known in order to include them in the prediction process.
In the ForecasterAutoregMultiSeries
, the same exogenous variables are replicated for each of the series. Here is an example of adding the month of the series as an exogenous variable.
Tip
To learn more about exogenous variables in skforecast visit the exogenous variables user guide.
# Generate exogenous variable month
# ==============================================================================
data_exog = data.copy()
data_exog['month'] = data_exog.index.month
# Split data into train-val-test
# ==============================================================================
end_train = '2014-07-15 23:59:00'
data_exog_train = data_exog.loc[:end_train, :].copy()
data_exog_test = data_exog.loc[end_train:, :].copy()
data_exog_train.head(3)
item_1 | item_2 | item_3 | month | |
---|---|---|---|---|
date | ||||
2012-01-01 | 8.253175 | 21.047727 | 19.429739 | 1 |
2012-01-02 | 22.777826 | 26.578125 | 28.009863 | 1 |
2012-01-03 | 27.549099 | 31.751042 | 32.078922 | 1 |
# Create and fit forecaster multi series
# ==============================================================================
forecaster = ForecasterAutoregMultiSeries(
regressor = Ridge(random_state=123),
lags = 24,
)
forecaster.fit(
series = data_exog_train[['item_1', 'item_2', 'item_3']],
exog = data_exog_train[['month']]
)
forecaster
============================ ForecasterAutoregMultiSeries ============================ Regressor: Ridge(random_state=123) Lags: [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24] Transformer for series: None Transformer for exog: None Window size: 24 Series levels (names): ['item_1', 'item_2', 'item_3'] Series weights: None Weight function included: False Exogenous included: True Type of exogenous variable: <class 'pandas.core.frame.DataFrame'> Exogenous variables names: ['month'] Training range: [Timestamp('2012-01-01 00:00:00'), Timestamp('2014-07-15 00:00:00')] Training index type: DatetimeIndex Training index frequency: D Regressor parameters: {'alpha': 1.0, 'copy_X': True, 'fit_intercept': True, 'max_iter': None, 'positive': False, 'random_state': 123, 'solver': 'auto', 'tol': 0.0001} fit_kwargs: {} Creation date: 2023-09-09 17:01:42 Last fit date: 2023-09-09 17:01:42 Skforecast version: 0.10.0 Python version: 3.10.11 Forecaster id: None
If the Forecaster
has been trained using exogenous variables, they should be provided during the prediction phase.
# Predict with exogenous variables
# ==============================================================================
predictions = forecaster.predict(steps=24, exog=data_exog_test[['month']])
predictions.head(3)
item_1 | item_2 | item_3 | |
---|---|---|---|
2014-07-16 | 25.493029 | 10.698000 | 11.278556 |
2014-07-17 | 24.860186 | 11.085074 | 11.318098 |
2014-07-18 | 24.273013 | 11.497196 | 13.035015 |
As mentioned earlier, the month
exogenous variable is replicated for each of the series. This can be easily demonstrated using the create_train_X_y
method, which returns the matrix used in the fit
method.
# X_train matrix
# ==============================================================================
X_train = forecaster.create_train_X_y(
series = data_exog_train[['item_1', 'item_2', 'item_3']],
exog = data_exog_train[['month']]
)[0]
# X_train slice for item_1
# ==============================================================================
X_train.loc[X_train['item_1'] == 1.].head(3)
lag_1 | lag_2 | lag_3 | lag_4 | lag_5 | lag_6 | lag_7 | lag_8 | lag_9 | lag_10 | ... | lag_19 | lag_20 | lag_21 | lag_22 | lag_23 | lag_24 | month | item_1 | item_2 | item_3 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 28.018830 | 23.981037 | 20.794986 | 22.503533 | 24.018768 | 24.772249 | 29.245869 | 26.636444 | 20.228468 | 18.976196 | ... | 21.106643 | 21.379238 | 25.895533 | 27.549099 | 22.777826 | 8.253175 | 1 | 1.0 | 0.0 | 0.0 |
1 | 28.747482 | 28.018830 | 23.981037 | 20.794986 | 22.503533 | 24.018768 | 24.772249 | 29.245869 | 26.636444 | 20.228468 | ... | 20.533871 | 21.106643 | 21.379238 | 25.895533 | 27.549099 | 22.777826 | 1 | 1.0 | 0.0 | 0.0 |
2 | 23.908368 | 28.747482 | 28.018830 | 23.981037 | 20.794986 | 22.503533 | 24.018768 | 24.772249 | 29.245869 | 26.636444 | ... | 20.069327 | 20.533871 | 21.106643 | 21.379238 | 25.895533 | 27.549099 | 1 | 1.0 | 0.0 | 0.0 |
3 rows × 28 columns
# X_train slice for item_2
# ==============================================================================
X_train.loc[X_train['item_2'] == 1.].head(3)
lag_1 | lag_2 | lag_3 | lag_4 | lag_5 | lag_6 | lag_7 | lag_8 | lag_9 | lag_10 | ... | lag_19 | lag_20 | lag_21 | lag_22 | lag_23 | lag_24 | month | item_1 | item_2 | item_3 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
903 | 26.675000 | 25.332292 | 21.690625 | 19.688542 | 19.178125 | 19.265625 | 28.779167 | 28.060417 | 19.255208 | 17.096875 | ... | 17.812500 | 18.191667 | 24.567708 | 31.751042 | 26.578125 | 21.047727 | 1 | 0.0 | 1.0 | 0.0 |
904 | 26.611458 | 26.675000 | 25.332292 | 21.690625 | 19.688542 | 19.178125 | 19.265625 | 28.779167 | 28.060417 | 19.255208 | ... | 19.510417 | 17.812500 | 18.191667 | 24.567708 | 31.751042 | 26.578125 | 1 | 0.0 | 1.0 | 0.0 |
905 | 19.759375 | 26.611458 | 26.675000 | 25.332292 | 21.690625 | 19.688542 | 19.178125 | 19.265625 | 28.779167 | 28.060417 | ... | 24.098958 | 19.510417 | 17.812500 | 18.191667 | 24.567708 | 31.751042 | 1 | 0.0 | 1.0 | 0.0 |
3 rows × 28 columns
To use exogenous variables in backtesting or hyperparameter tuning, they must be specified with the exog
argument.
# Backtesting Multi Series with exog
# ==============================================================================
metrics_levels, backtest_predictions = backtesting_forecaster_multiseries(
forecaster = forecaster,
series = data_exog[['item_1', 'item_2', 'item_3']],
exog = data_exog[['month']],
levels = None,
steps = 24,
metric = 'mean_absolute_error',
initial_train_size = len(data_exog_train),
fixed_train_size = True,
gap = 0,
allow_incomplete_fold = True,
refit = True,
n_jobs = 'auto',
verbose = False,
show_progress = True
)
print("Backtest metrics")
display(metrics_levels)
print("")
print("Backtest predictions with exogenous variables")
backtest_predictions.head(4)
0%| | 0/8 [00:00<?, ?it/s]
Backtest metrics
levels | mean_absolute_error | |
---|---|---|
0 | item_1 | 1.368685 |
1 | item_2 | 2.335076 |
2 | item_3 | 3.152820 |
Backtest predictions with exogenous variables
item_1 | item_2 | item_3 | |
---|---|---|---|
2014-07-16 | 25.493029 | 10.698000 | 11.278556 |
2014-07-17 | 24.860186 | 11.085074 | 11.318098 |
2014-07-18 | 24.273013 | 11.497196 | 13.035015 |
2014-07-19 | 23.506739 | 11.555868 | 13.383641 |
Scikit-learn transformers in multi-series¶
Learn more about using scikit-learn transformers with skforecast.
- If
transformer_series
is atransformer
the same transformation will be applied to all series. - If
transformer_series
is adict
a different transformation can be set for each series. Series not present in the dict will not have any transformation applied to them.
forecaster = ForecasterAutoregMultiSeries(
regressor = Ridge(random_state=123),
lags = 24,
transformer_series = {'item_1': StandardScaler(), 'item_2': StandardScaler()},
transformer_exog = None,
weight_func = None,
series_weights = None
)
forecaster.fit(series=data_train)
forecaster
c:\Users\jaesc2\Miniconda3\envs\skforecast\lib\site-packages\skforecast\ForecasterAutoregMultiSeries\ForecasterAutoregMultiSeries.py:420: IgnoredArgumentWarning: {'item_3'} not present in `transformer_series`. No transformation is applied to these series. You can suppress this warning using: warnings.simplefilter('ignore', category=IgnoredArgumentWarning) warnings.warn(
============================ ForecasterAutoregMultiSeries ============================ Regressor: Ridge(random_state=123) Lags: [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24] Transformer for series: {'item_1': StandardScaler(), 'item_2': StandardScaler()} Transformer for exog: None Window size: 24 Series levels (names): ['item_1', 'item_2', 'item_3'] Series weights: None Weight function included: False Exogenous included: False Type of exogenous variable: None Exogenous variables names: None Training range: [Timestamp('2012-01-01 00:00:00'), Timestamp('2014-07-15 00:00:00')] Training index type: DatetimeIndex Training index frequency: D Regressor parameters: {'alpha': 1.0, 'copy_X': True, 'fit_intercept': True, 'max_iter': None, 'positive': False, 'random_state': 123, 'solver': 'auto', 'tol': 0.0001} fit_kwargs: {} Creation date: 2023-09-09 17:01:43 Last fit date: 2023-09-09 17:01:43 Skforecast version: 0.10.0 Python version: 3.10.11 Forecaster id: None
Series with different lengths¶
When faced with a multi-series forecasting problem, it is common for the series to have varying lengths due to differences in the starting times of data recording. To address this scenario, the ForecasterAutoregMultiSeries
provides a solution taking into account the following points:
- The input for the
series
parameter must be a pandas DataFrame containing all series where missing values must be represented asNaNs
. - Missing values are only expected to occur at the beginning of each series.
- All series should conclude at the same index and possess a length greater than or equal to the maximum lag used.
Examples:
Series values | Allowed |
---|---|
[NaN, NaN, NaN, NaN, 4, 5, 6, 7, 8, 9] |
✔️ |
[0, 1, 2, 3, 4, 5, 6, 7, 8, NaN] |
❌ |
[0, 1, 2, 3, 4, NaN, 6, 7, 8, 9] |
❌ |
[NaN, NaN, 2, 3, 4, NaN, 6, 7, 8, 9] |
❌ |
# Create NaNs in columns `item_2` and `item_3`
# ==============================================================================
data_train_with_nan = data_train.copy()
data_train_with_nan['item_2'].iloc[:300] = np.nan
data_train_with_nan['item_3'].iloc[:500] = np.nan
print('Data train shape:', data_train_with_nan.shape)
data_train_with_nan.isna().sum()
Data train shape: (927, 3)
item_1 0 item_2 300 item_3 500 dtype: int64
# Create and fit forecaster multi series
# ==============================================================================
forecaster = ForecasterAutoregMultiSeries(
regressor = Ridge(random_state=123),
lags = 24,
transformer_series = StandardScaler(),
transformer_exog = None,
weight_func = None,
series_weights = None
)
forecaster.fit(series=data_train)
# Predict all levels
# ==============================================================================
predictions = forecaster.predict(steps=24)
predictions.head(3)
item_1 | item_2 | item_3 | |
---|---|---|---|
2014-07-16 | 25.864018 | 10.742220 | 11.569140 |
2014-07-17 | 25.229255 | 11.151981 | 10.844131 |
2014-07-18 | 24.584602 | 11.662202 | 12.608430 |
When creating the training matrix, the forecaster will use a different number of observations depending on the length of the series. This number can be calculated as: $SeriesLength - LengthMissing - MaxLag$
# Understanding training matrix
# ==============================================================================
X_train = forecaster.create_train_X_y(data_train_with_nan)[0]
# Data train shape
print('Data train shape:', data_train_with_nan.shape)
print('Max lag used:', forecaster.max_lag)
print("")
# Determine the number of observations per series
len_1 = len(X_train.loc[X_train['item_1'] == 1.])
len_2 = len(X_train.loc[X_train['item_2'] == 1.])
len_3 = len(X_train.loc[X_train['item_3'] == 1.])
print("X_train shape:", X_train.shape)
print('item_1 length:', len_1) # 927 - 24
print('item_2 length:', len_2) # 927 - 300 - 24
print('item_3 length:', len_3) # 927 - 500 - 24
print("Total length:", len_1 + len_2 + len_3)
Data train shape: (927, 3) Max lag used: 24 X_train shape: (1909, 27) item_1 length: 903 item_2 length: 603 item_3 length: 403 Total length: 1909
Weights in multi-series¶
The weights are used to control the influence that each observation has on the training of the model. ForecasterAutoregMultiseries
accepts two types of weights:
series_weights
controls the relative importance of each series. If a series has twice as much weight as the others, the observations of that series influence the training twice as much. The higher the weight of a series relative to the others, the more the model will focus on trying to learn that series.weight_func
controls the relative importance of each observation according to its index value. For example, a function that assigns a lower weight to certain dates.
If the two types of weights are indicated, they are multiplied to create the final weights. The resulting sample_weight
cannot have negative values.
Weights in multi-series.
series_weights
is a dict of the form{'series_column_name': float}
. If a series is used duringfit
and is not present inseries_weights
, it will have a weight of 1.weight_func
is a function that defines the individual weights of each sample based on the index.If it is a
callable
, the same function will apply to all series.If it is a
dict
of the form{'series_column_name': callable}
, a different function can be used for each series. A weight of 1 is given to all series not present inweight_func
.
# Weights in Multi-Series
# ==============================================================================
def custom_weights(index):
"""
Return 0 if index is between '2013-01-01' and '2013-01-31', 1 otherwise.
"""
weights = np.where(
(index >= '2013-01-01') & (index <= '2013-01-31'),
0,
1
)
return weights
forecaster = ForecasterAutoregMultiSeries(
regressor = Ridge(random_state=123),
lags = 24,
transformer_series = None,
transformer_exog = None,
weight_func = custom_weights,
series_weights = {'item_1': 1., 'item_2': 2., 'item_3': 1.} # Same as {'item_2': 2.}
)
forecaster.fit(series=data_train)
forecaster.predict(steps=24).head(3)
item_1 | item_2 | item_3 | |
---|---|---|---|
2014-07-16 | 25.547560 | 10.527454 | 11.195018 |
2014-07-17 | 24.779779 | 10.987891 | 11.424717 |
2014-07-18 | 24.182702 | 11.375158 | 13.090853 |
Warning
The weight_func
and series_weights
arguments will be ignored if the regressor does not accept sample_weight
in its fit
method.
The source code of the weight_func
added to the forecaster is stored in the argument source_code_weight_func
. If weight_func
is a dict
, it will be a dict
of the form {'series_column_name': source_code_weight_func}
.
print(forecaster.source_code_weight_func)
def custom_weights(index): """ Return 0 if index is between '2013-01-01' and '2013-01-31', 1 otherwise. """ weights = np.where( (index >= '2013-01-01') & (index <= '2013-01-31'), 0, 1 ) return weights
Compare multiple metrics¶
All three functions (backtesting_forecaster_multiseries
, grid_search_forecaster_multiseries
, and random_search_forecaster_multiseries
) allow the calculation of multiple metrics for each forecaster configuration if a list is provided. This list may include custom metrics and the best model selection is done based on the first metric of the list.
# Grid search Multi-Series with multiple metrics
# ==============================================================================
forecaster = ForecasterAutoregMultiSeries(
regressor = Ridge(random_state=123),
lags = 24
)
def custom_metric(y_true, y_pred):
"""
Calculate the mean absolute error using only the predicted values of the last
3 months of the year.
"""
mask = y_true.index.month.isin([10, 11, 12])
metric = mean_absolute_error(y_true[mask], y_pred[mask])
return metric
lags_grid = [24, 48]
param_grid = {'alpha': [0.01, 0.1, 1]}
results = grid_search_forecaster_multiseries(
forecaster = forecaster,
series = data,
lags_grid = lags_grid,
param_grid = param_grid,
steps = 24,
metric = [mean_absolute_error, custom_metric, 'mean_squared_error'],
initial_train_size = len(data_train),
fixed_train_size = True,
levels = None,
exog = None,
refit = True,
return_best = False,
n_jobs = 'auto',
verbose = False,
show_progress = True
)
results
6 models compared for 3 level(s). Number of iterations: 6.
lags grid: 0%| | 0/2 [00:00<?, ?it/s]
params grid: 0%| | 0/3 [00:00<?, ?it/s]
levels | lags | params | mean_absolute_error | custom_metric | mean_squared_error | alpha | |
---|---|---|---|---|---|---|---|
5 | [item_1, item_2, item_3] | [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14... | {'alpha': 1} | 2.190420 | 2.290771 | 9.250861 | 1.00 |
4 | [item_1, item_2, item_3] | [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14... | {'alpha': 0.1} | 2.190493 | 2.290853 | 9.251522 | 0.10 |
3 | [item_1, item_2, item_3] | [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14... | {'alpha': 0.01} | 2.190500 | 2.290861 | 9.251589 | 0.01 |
2 | [item_1, item_2, item_3] | [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14... | {'alpha': 1} | 2.282886 | 2.358415 | 9.770826 | 1.00 |
1 | [item_1, item_2, item_3] | [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14... | {'alpha': 0.1} | 2.282948 | 2.358494 | 9.771567 | 0.10 |
0 | [item_1, item_2, item_3] | [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14... | {'alpha': 0.01} | 2.282954 | 2.358502 | 9.771641 | 0.01 |
Tip
bayesian_search_forecaster_multiseries
will be released in a future version of skforecast.
Stay tuned!