plot
¶
plot_residuals(residuals=None, y_true=None, y_pred=None, fig=None, **fig_kw)
¶
Parameters:
Name | Type | Description | Default |
---|---|---|---|
residuals |
pandas Series, numpy ndarray
|
Values of residuals. If |
`None`.
|
y_true |
pandas Series, numpy ndarray
|
Ground truth (correct) values. Ignored if residuals is not |
`None`.
|
y_pred |
pandas Series, numpy ndarray
|
Values of predictions. Ignored if residuals is not |
`None`.
|
fig |
Figure
|
Pre-existing fig for the plot. Otherwise, call matplotlib.pyplot.figure() internally. |
`None`.
|
fig_kw |
dict
|
Other keyword arguments are passed to matplotlib.pyplot.figure() |
{}
|
Returns:
Name | Type | Description |
---|---|---|
fig |
Figure
|
Matplotlib Figure. |
Source code in skforecast\plot\plot.py
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
|
plot_multivariate_time_series_corr(corr, ax=None, **fig_kw)
¶
Heatmap plot of a correlation matrix.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
corr |
pandas DataFrame
|
correlation matrix |
required |
ax |
Axes
|
Pre-existing ax for the plot. Otherwise, call matplotlib.pyplot.subplots() internally. |
`None`.
|
fig_kw |
dict
|
Other keyword arguments are passed to matplotlib.pyplot.subplots() |
{}
|
Returns:
Name | Type | Description |
---|---|---|
fig |
Figure
|
Matplotlib Figure. |
Source code in skforecast\plot\plot.py
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
|
plot_prediction_distribution(bootstrapping_predictions, bw_method=None, **fig_kw)
¶
Ridge plot of bootstrapping predictions. This plot is very useful to understand the uncertainty of forecasting predictions.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
bootstrapping_predictions |
pandas DataFrame
|
Bootstrapping predictions created with |
required |
bw_method |
(str, scalar, Callable)
|
The method used to calculate the estimator bandwidth. This can be 'scott', 'silverman', a scalar constant or a Callable. If None (default), 'scott' is used. See scipy.stats.gaussian_kde for more information. |
`None`
|
fig_kw |
dict
|
All additional keyword arguments are passed to the |
{}
|
Returns:
Name | Type | Description |
---|---|---|
fig |
Figure
|
Matplotlib Figure. |
Source code in skforecast\plot\plot.py
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
|