Skip to content

ForecasterAutoregCustom

ForecasterAutoregCustom(regressor, fun_predictors, window_size, name_predictors=None, transformer_y=None, transformer_exog=None, weight_func=None, differentiation=None, fit_kwargs=None, forecaster_id=None)

Bases: ForecasterBase

This class turns any regressor compatible with the scikit-learn API into a recursive (multi-step) forecaster with a custom function to create predictors.

Parameters:

Name Type Description Default
regressor regressor or pipeline compatible with the scikit-learn API

An instance of a regressor or pipeline compatible with the scikit-learn API.

required
fun_predictors Callable

Function that receives a time series as input (numpy ndarray) and returns another numpy ndarray with the predictors.

required
window_size int

Size of the window needed by fun_predictors to create the predictors.

required
name_predictors list

Name of the predictors returned by fun_predictors. If None, predictors are named using the prefix 'custom_predictor_' where i is the index of the position the predictor has in the returned array of fun_predictors.

`None`
transformer_y object transformer (preprocessor)

An instance of a transformer (preprocessor) compatible with the scikit-learn preprocessing API with methods: fit, transform, fit_transform and inverse_transform. ColumnTransformers are not allowed since they do not have inverse_transform method. The transformation is applied to y before training the forecaster.

`None`
transformer_exog object transformer (preprocessor)

An instance of a transformer (preprocessor) compatible with the scikit-learn preprocessing API. The transformation is applied to exog before training the forecaster. inverse_transform is not available when using ColumnTransformers.

`None`
weight_func Callable

Function that defines the individual weights for each sample based on the index. For example, a function that assigns a lower weight to certain dates. Ignored if regressor does not have the argument sample_weight in its fit method. The resulting sample_weight cannot have negative values.

`None`
differentiation int

Order of differencing applied to the time series before training the forecaster. If None, no differencing is applied. The order of differentiation is the number of times the differencing operation is applied to a time series. Differencing involves computing the differences between consecutive data points in the series. Diferentiarion is reversed in the output of predict() and predict_interval(). WARNING: This argument is newly introduced and requires special attention. It is still experimental and may undergo changes. New in version 0.10.0

`None`
fit_kwargs dict

Additional arguments to be passed to the fit method of the regressor.

`None`
forecaster_id (str, int)

Name used as an identifier of the forecaster.

`None`

Attributes:

Name Type Description
regressor regressor compatible with the scikit-learn API

An instance of a regressor compatible with the scikit-learn API.

fun_predictors Callable

Function that receives a time series as input (numpy ndarray) and returns another numpy ndarray with the predictors. New in version 0.7.0

source_code_fun_predictors str

Source code of the custom function used to create the predictors. New in version 0.7.0

window_size int

Size of the window needed by fun_predictors to create the predictors. If differentiation is not None, window_size is increased by the order of differentiation.

name_predictors list

Name of the predictors returned by fun_predictors. If None, predictors are named using the prefix 'custom_predictor_' where i is the index of the position the predictor has in the returned array of fun_predictors.

transformer_y object transformer (preprocessor)

An instance of a transformer (preprocessor) compatible with the scikit-learn preprocessing API with methods: fit, transform, fit_transform and inverse_transform. ColumnTransformers are not allowed since they do not have inverse_transform method. The transformation is applied to y before training the forecaster.

transformer_exog object transformer (preprocessor)

An instance of a transformer (preprocessor) compatible with the scikit-learn preprocessing API. The transformation is applied to exog before training the forecaster. inverse_transform is not available when using ColumnTransformers.

weight_func Callable

Function that defines the individual weights for each sample based on the index. For example, a function that assigns a lower weight to certain dates. Ignored if regressor does not have the argument sample_weight in its fit method. The resulting sample_weight cannot have negative values.

differentiation int, default `None`

Order of differencing applied to the time series before training the forecaster. If None, no differencing is applied. The order of differentiation is the number of times the differencing operation is applied to a time series. Differencing involves computing the differences between consecutive data points in the series. Differentiation is reversed in the output of predict() and predict_interval(). WARNING: This argument is newly introduced and requires special attention. It is still experimental and may undergo changes. New in version 0.10.0

source_code_weight_func str

Source code of the custom function used to create weights.

last_window pandas Series

This window represents the most recent data observed by the predictor during its training phase. It contains the values needed to predict the next step immediately after the training data. These values are stored in the original scale of the time series before undergoing any transformations or differentiation. When differentiation parameter is specified, the dimensions of the last_window are expanded as many values as the order of differentiation. For example, if fun_predictors() requires 7 lagged values and differentiation=1, last_window will contain 8 values.

index_type type

Type of index of the input used in training.

index_freq str

Frequency of Index of the input used in training.

training_range pandas Index

First and last values of index of the data used during training.

included_exog bool

If the forecaster has been trained using exogenous variable/s.

exog_type type

Type of exogenous data (pandas Series or DataFrame) used in training.

exog_dtypes dict

Type of each exogenous variable/s used in training. If transformer_exog is used, the dtypes are calculated after the transformation.

exog_col_names list

Names of columns of exog if exog used in training was a pandas DataFrame.

X_train_col_names list

Names of columns of the matrix created internally for training.

fit_kwargs dict

Additional arguments to be passed to the fit method of the regressor.

in_sample_residuals numpy ndarray

Residuals of the model when predicting training data. Only stored up to 1000 values. If transformer_y is not None, residuals are stored in the transformed scale.

out_sample_residuals numpy ndarray

Residuals of the model when predicting non training data. Only stored up to 1000 values. If transformer_y is not None, residuals are assumed to be in the transformed scale. Use set_out_sample_residuals method to set values.

fitted bool

Tag to identify if the regressor has been fitted (trained).

creation_date str

Date of creation.

fit_date str

Date of last fit.

skforecast_version str

Version of skforecast library used to create the forecaster.

python_version str

Version of python used to create the forecaster.

forecaster_id (str, int)

Name used as an identifier of the forecaster.

Source code in skforecast\ForecasterAutoregCustom\ForecasterAutoregCustom.py
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
def __init__(
    self, 
    regressor: object, 
    fun_predictors: Callable, 
    window_size: int,
    name_predictors: Optional[list]=None,
    transformer_y: Optional[object]=None,
    transformer_exog: Optional[object]=None,
    weight_func: Optional[Callable]=None,
    differentiation: Optional[int]=None,
    fit_kwargs: Optional[dict]=None,
    forecaster_id: Optional[Union[str, int]]=None
) -> None:

    self.regressor                  = regressor
    self.fun_predictors             = fun_predictors
    self.source_code_fun_predictors = None
    self.window_size                = window_size
    self.name_predictors            = name_predictors
    self.transformer_y              = transformer_y
    self.transformer_exog           = transformer_exog
    self.weight_func                = weight_func
    self.differentiation            = differentiation
    self.differentiator             = None
    self.source_code_weight_func    = None
    self.last_window                = None
    self.index_type                 = None
    self.index_freq                 = None
    self.training_range             = None
    self.included_exog              = False
    self.exog_type                  = None
    self.exog_dtypes                = None
    self.exog_col_names             = None
    self.X_train_col_names          = None
    self.in_sample_residuals        = None
    self.out_sample_residuals       = None
    self.fitted                     = False
    self.creation_date              = pd.Timestamp.today().strftime('%Y-%m-%d %H:%M:%S')
    self.fit_date                   = None
    self.skforecast_version         = skforecast.__version__
    self.python_version             = sys.version.split(" ")[0]
    self.forecaster_id              = forecaster_id

    if not isinstance(window_size, int) or window_size < 1:
        raise ValueError(
            (f"Argument `window_size` must be an integer equal to or "
             f"greater than 1. Got {window_size}.")
        )

    if self.differentiation is not None:
        if not isinstance(differentiation, int) or differentiation < 1:
            raise ValueError(
                (f"Argument `differentiation` must be an integer equal to or "
                 f"greater than 1. Got {differentiation}.")
            )
        self.window_size += self.differentiation
        self.differentiator = TimeSeriesDifferentiator(order=self.differentiation)

    if not isinstance(fun_predictors, Callable):
        raise TypeError(
            f"Argument `fun_predictors` must be a Callable. Got {type(fun_predictors)}."
        )

    self.source_code_fun_predictors = inspect.getsource(fun_predictors)

    self.weight_func, self.source_code_weight_func, _ = initialize_weights(
        forecaster_name = type(self).__name__, 
        regressor       = regressor, 
        weight_func     = weight_func, 
        series_weights  = None
    )

    self.fit_kwargs = check_select_fit_kwargs(
                          regressor  = regressor,
                          fit_kwargs = fit_kwargs
                      )

create_train_X_y(y, exog=None)

Create training matrices from univariate time series and exogenous variables.

Parameters:

Name Type Description Default
y pandas Series

Training time series.

required
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s. Must have the same number of observations as y and their indexes must be aligned.

`None`

Returns:

Name Type Description
X_train pandas DataFrame

Pandas DataFrame with the training values (predictors).

y_train pandas Series

Values (target) of the time series related to each row of X_train.

Source code in skforecast\ForecasterAutoregCustom\ForecasterAutoregCustom.py
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
def create_train_X_y(
    self,
    y: pd.Series,
    exog: Optional[Union[pd.Series, pd.DataFrame]]=None
) -> Tuple[pd.DataFrame, pd.Series]:
    """
    Create training matrices from univariate time series and exogenous
    variables.

    Parameters
    ----------
    y : pandas Series
        Training time series.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s. Must have the same
        number of observations as `y` and their indexes must be aligned.


    Returns
    -------
    X_train : pandas DataFrame
        Pandas DataFrame with the training values (predictors).
    y_train : pandas Series
        Values (target) of the time series related to each row of `X_train`.

    """

    if len(y) < self.window_size + 1:
        raise ValueError(
            (f"`y` must have as many values as the windows_size needed by "
             f"{self.fun_predictors.__name__}. For this Forecaster the "
             f"minimum length is {self.window_size + 1}")
        )

    check_y(y=y)
    y = transform_series(
            series            = y,
            transformer       = self.transformer_y,
            fit               = True,
            inverse_transform = False
        )
    y_values, y_index = preprocess_y(y=y)

    if self.differentiation is not None:
        y_values = self.differentiator.fit_transform(y_values)

    if exog is not None:
        if len(exog) != len(y):
            raise ValueError(
                f'`exog` must have same number of samples as `y`. '
                f'length `exog`: ({len(exog)}), length `y`: ({len(y)})'
            )
        check_exog(exog=exog, allow_nan=True)
        if isinstance(exog, pd.Series):
            exog = transform_series(
                       series            = exog,
                       transformer       = self.transformer_exog,
                       fit               = True,
                       inverse_transform = False
                   )
        else:
            exog = transform_dataframe(
                       df                = exog,
                       transformer       = self.transformer_exog,
                       fit               = True,
                       inverse_transform = False
                   )

        check_exog(exog=exog, allow_nan=False)
        check_exog_dtypes(exog)
        self.exog_dtypes = get_exog_dtypes(exog=exog)

        _, exog_index = preprocess_exog(exog=exog, return_values=False)
        if not (exog_index[:len(y_index)] == y_index).all():
            raise ValueError(
                ("Different index for `y` and `exog`. They must be equal "
                 "to ensure the correct alignment of values.")
            )

    X_train  = []
    y_train  = []

    for i in range(len(y) - self.window_size):

        train_index = np.arange(i, self.window_size + i)
        test_index  = self.window_size + i

        X_train.append(self.fun_predictors(y=y_values[train_index]))
        y_train.append(y_values[test_index])

    X_train = np.vstack(X_train)
    y_train = np.array(y_train)

    if self.name_predictors is None:
        X_train_col_names = [f"custom_predictor_{i}" for i in range(X_train.shape[1])]
    else:
        if len(self.name_predictors) != X_train.shape[1]:
            raise ValueError(
                ("The length of provided predictors names (`name_predictors`) do not "
                 "match the number of columns created by `fun_predictors()`.")
            )
        X_train_col_names = self.name_predictors.copy()

    if np.isnan(X_train).any():
        raise ValueError(
            "`fun_predictors()` is returning `NaN` values."
        )

    expected = self.fun_predictors(y_values[:-1])
    observed = X_train[-1, :]

    if expected.shape != observed.shape or not (expected == observed).all():
        raise ValueError(
            (f"The `window_size` argument ({self.window_size}), declared when "
             f"initializing the forecaster, does not correspond to the window "
             f"used by `fun_predictors()`.")
        )

    X_train = pd.DataFrame(
                  data    = X_train,
                  columns = X_train_col_names,
                  index   = y_index[self.window_size: ]
              )

    if exog is not None:
        # The first `self.window_size` positions have to be removed from exog
        # since they are not in X_train.
        exog_to_train = exog.iloc[self.window_size:, ]
        exog_to_train.index = exog_index[self.window_size:]
        check_exog_dtypes(exog_to_train)
        X_train = pd.concat((X_train, exog_to_train), axis=1)

    self.X_train_col_names = X_train.columns.to_list()
    y_train = pd.Series(
                  data  = y_train,
                  index = y_index[self.window_size: ],
                  name  = 'y'
              )

    return X_train, y_train

create_sample_weights(X_train)

Crate weights for each observation according to the forecaster's attribute weight_func.

Parameters:

Name Type Description Default
X_train pandas DataFrame

Dataframe created with the create_train_X_y method, first return.

required

Returns:

Name Type Description
sample_weight numpy ndarray

Weights to use in fit method.

Source code in skforecast\ForecasterAutoregCustom\ForecasterAutoregCustom.py
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
def create_sample_weights(
    self,
    X_train: pd.DataFrame,
)-> np.ndarray:
    """
    Crate weights for each observation according to the forecaster's attribute
    `weight_func`.

    Parameters
    ----------
    X_train : pandas DataFrame
        Dataframe created with the `create_train_X_y` method, first return.

    Returns
    -------
    sample_weight : numpy ndarray
        Weights to use in `fit` method.

    """

    sample_weight = None

    if self.weight_func is not None:
        sample_weight = self.weight_func(X_train.index)

    if sample_weight is not None:
        if np.isnan(sample_weight).any():
            raise ValueError(
                "The resulting `sample_weight` cannot have NaN values."
            )
        if np.any(sample_weight < 0):
            raise ValueError(
                "The resulting `sample_weight` cannot have negative values."
            )
        if np.sum(sample_weight) == 0:
            raise ValueError(
                ("The resulting `sample_weight` cannot be normalized because "
                 "the sum of the weights is zero.")
            )

    return sample_weight

fit(y, exog=None, store_in_sample_residuals=True)

Training Forecaster.

Additional arguments to be passed to the fit method of the regressor can be added with the fit_kwargs argument when initializing the forecaster.

Parameters:

Name Type Description Default
y pandas Series

Training time series.

required
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s. Must have the same number of observations as y and their indexes must be aligned so that y[i] is regressed on exog[i].

`None`
store_in_sample_residuals bool

If True, in-sample residuals will be stored in the forecaster object after fitting.

`True`

Returns:

Type Description
None
Source code in skforecast\ForecasterAutoregCustom\ForecasterAutoregCustom.py
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
def fit(
    self,
    y: pd.Series,
    exog: Optional[Union[pd.Series, pd.DataFrame]]=None,
    store_in_sample_residuals: bool=True
) -> None:
    """
    Training Forecaster.

    Additional arguments to be passed to the `fit` method of the regressor 
    can be added with the `fit_kwargs` argument when initializing the forecaster.

    Parameters
    ----------
    y : pandas Series
        Training time series.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s. Must have the same
        number of observations as `y` and their indexes must be aligned so
        that y[i] is regressed on exog[i].
    store_in_sample_residuals : bool, default `True`
        If `True`, in-sample residuals will be stored in the forecaster object
        after fitting.

    Returns
    -------
    None

    """

    # Reset values in case the forecaster has already been fitted.
    self.index_type          = None
    self.index_freq          = None
    self.last_window         = None
    self.included_exog       = False
    self.exog_type           = None
    self.exog_dtypes         = None
    self.exog_col_names      = None
    self.X_train_col_names   = None
    self.in_sample_residuals = None
    self.fitted              = False
    self.training_range      = None

    if exog is not None:
        self.included_exog = True
        self.exog_type = type(exog)
        self.exog_col_names = \
             exog.columns.to_list() if isinstance(exog, pd.DataFrame) else exog.name

    X_train, y_train = self.create_train_X_y(y=y, exog=exog)
    sample_weight = self.create_sample_weights(X_train=X_train)

    if sample_weight is not None:
        self.regressor.fit(X=X_train, y=y_train, sample_weight=sample_weight,
                           **self.fit_kwargs)
    else:
        self.regressor.fit(X=X_train, y=y_train, **self.fit_kwargs)

    self.fitted = True
    self.fit_date = pd.Timestamp.today().strftime('%Y-%m-%d %H:%M:%S')
    self.training_range = preprocess_y(y=y, return_values=False)[1][[0, -1]]
    self.index_type = type(X_train.index)
    if isinstance(X_train.index, pd.DatetimeIndex):
        self.index_freq = X_train.index.freqstr
    else: 
        self.index_freq = X_train.index.step

    # This is done to save time during fit in functions such as backtesting()
    if store_in_sample_residuals:

        residuals = (y_train - self.regressor.predict(X_train)).to_numpy()

        if len(residuals) > 1000:
            # Only up to 1000 residuals are stored
            rng = np.random.default_rng(seed=123)
            residuals = rng.choice(
                            a       = residuals, 
                            size    = 1000, 
                            replace = False
                        )

        self.in_sample_residuals = residuals

    # The last time window of training data is stored so that predictors in
    # the first iteration of `predict()` can be calculated. It also includes
    # the values need to calculate the diferenctiation.
    self.last_window = y.iloc[-self.window_size:].copy()

_recursive_predict(steps, last_window, exog=None)

Predict n steps ahead. It is an iterative process in which, each prediction, is used as a predictor for the next step.

Parameters:

Name Type Description Default
steps int

Number of future steps predicted.

required
last_window numpy ndarray

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1).

required
exog numpy ndarray

Exogenous variable/s included as predictor/s.

`None`

Returns:

Name Type Description
predictions numpy ndarray

Predicted values.

Source code in skforecast\ForecasterAutoregCustom\ForecasterAutoregCustom.py
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
def _recursive_predict(
    self,
    steps: int,
    last_window: np.ndarray,
    exog: Optional[np.ndarray]=None
) -> np.ndarray:
    """
    Predict n steps ahead. It is an iterative process in which, each prediction,
    is used as a predictor for the next step.

    Parameters
    ----------
    steps : int
        Number of future steps predicted.
    last_window : numpy ndarray
        Series values used to create the predictors (lags) needed in the 
        first iteration of the prediction (t + 1).
    exog : numpy ndarray, default `None`
        Exogenous variable/s included as predictor/s.

    Returns
    -------
    predictions : numpy ndarray
        Predicted values.

    """

    predictions = np.full(shape=steps, fill_value=np.nan)

    for i in range(steps):
        X = self.fun_predictors(y=last_window).reshape(1, -1)
        if np.isnan(X).any():
            raise ValueError(
                "`fun_predictors()` is returning `NaN` values."
            )
        if exog is not None:
            X = np.column_stack((X, exog[i, ].reshape(1, -1)))

        with warnings.catch_warnings():
            # Suppress scikit-learn warning: "X does not have valid feature names,
            # but NoOpTransformer was fitted with feature names".
            warnings.simplefilter("ignore")
            prediction = self.regressor.predict(X)
            predictions[i] = prediction.ravel()[0]

        # Update `last_window` values. The first position is discarded and 
        # the new prediction is added at the end.
        last_window = np.append(last_window[1:], prediction)

    return predictions

predict(steps, last_window=None, exog=None)

Predict n steps ahead. It is an recursive process in which, each prediction, is used as a predictor for the next step.

Parameters:

Name Type Description Default
steps int

Number of future steps predicted.

required
last_window pandas Series

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1). If last_window = None, the values stored in self.last_window are used to calculate the initial predictors, and the predictions start right after training data.

`None`
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s.

`None`

Returns:

Name Type Description
predictions pandas Series

Predicted values.

Source code in skforecast\ForecasterAutoregCustom\ForecasterAutoregCustom.py
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
def predict(
    self,
    steps: int,
    last_window: Optional[pd.Series]=None,
    exog: Optional[Union[pd.Series, pd.DataFrame]]=None
) -> pd.Series:
    """
    Predict n steps ahead. It is an recursive process in which, each prediction,
    is used as a predictor for the next step.

    Parameters
    ----------
    steps : int
        Number of future steps predicted.
    last_window : pandas Series, default `None`
        Series values used to create the predictors (lags) needed in the 
        first iteration of the prediction (t + 1).
        If `last_window = None`, the values stored in `self.last_window` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s.

    Returns
    -------
    predictions : pandas Series
        Predicted values.

    """

    if last_window is None:
        last_window = self.last_window

    check_predict_input(
        forecaster_name  = type(self).__name__,
        steps            = steps,
        fitted           = self.fitted,
        included_exog    = self.included_exog,
        index_type       = self.index_type,
        index_freq       = self.index_freq,
        window_size      = self.window_size,
        last_window      = last_window,
        last_window_exog = None,
        exog             = exog,
        exog_type        = self.exog_type,
        exog_col_names   = self.exog_col_names,
        interval         = None,
        alpha            = None,
        max_steps        = None,
        levels           = None,
        series_col_names = None
    )

    last_window = last_window.iloc[-self.window_size:].copy()

    if exog is not None:
        if isinstance(exog, pd.DataFrame):
            exog = transform_dataframe(
                       df                = exog,
                       transformer       = self.transformer_exog,
                       fit               = False,
                       inverse_transform = False
                   )
        else:
            exog = transform_series(
                       series            = exog,
                       transformer       = self.transformer_exog,
                       fit               = False,
                       inverse_transform = False
                   )
        check_exog_dtypes(exog=exog)
        exog_values = exog.to_numpy()[:steps]
    else:
        exog_values = None

    last_window = transform_series(
                      series            = last_window,
                      transformer       = self.transformer_y,
                      fit               = False,
                      inverse_transform = False
                  )
    last_window_values, last_window_index = preprocess_last_window(
                                                last_window = last_window
                                            )
    if self.differentiation is not None:
        last_window_values = self.differentiator.fit_transform(last_window_values)

    predictions = self._recursive_predict(
                      steps       = steps,
                      last_window = last_window_values,
                      exog        = exog_values
                  )

    if self.differentiation is not None:
        predictions = self.differentiator.inverse_transform_next_window(predictions)

    predictions = pd.Series(
                      data  = predictions,
                      index = expand_index(
                                  index = last_window_index,
                                  steps = steps
                              ),
                      name = 'pred'
                  )

    predictions = transform_series(
                      series            = predictions,
                      transformer       = self.transformer_y,
                      fit               = False,
                      inverse_transform = True
                  )

    return predictions

predict_bootstrapping(steps, last_window=None, exog=None, n_boot=500, random_state=123, in_sample_residuals=True)

Generate multiple forecasting predictions using a bootstrapping process. By sampling from a collection of past observed errors (the residuals), each iteration of bootstrapping generates a different set of predictions. See the Notes section for more information.

Parameters:

Name Type Description Default
steps int

Number of future steps predicted.

required
last_window pandas Series

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1). If last_window = None, the values stored in self.last_window are used to calculate the initial predictors, and the predictions start right after training data.

`None`
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s.

`None`
n_boot int

Number of bootstrapping iterations used to estimate predictions.

`500`
random_state int

Sets a seed to the random generator, so that boot predictions are always deterministic.

`123`
in_sample_residuals bool

If True, residuals from the training data are used as proxy of prediction error to create predictions. If False, out of sample residuals are used. In the latter case, the user should have calculated and stored the residuals within the forecaster (see set_out_sample_residuals()).

`True`

Returns:

Name Type Description
boot_predictions pandas DataFrame

Predictions generated by bootstrapping. Shape: (steps, n_boot)

Notes

More information about prediction intervals in forecasting: https://otexts.com/fpp3/prediction-intervals.html#prediction-intervals-from-bootstrapped-residuals Forecasting: Principles and Practice (3nd ed) Rob J Hyndman and George Athanasopoulos.

Source code in skforecast\ForecasterAutoregCustom\ForecasterAutoregCustom.py
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
def predict_bootstrapping(
    self,
    steps: int,
    last_window: Optional[pd.Series]=None,
    exog: Optional[Union[pd.Series, pd.DataFrame]]=None,
    n_boot: int=500,
    random_state: int=123,
    in_sample_residuals: bool=True
) -> pd.DataFrame:
    """
    Generate multiple forecasting predictions using a bootstrapping process. 
    By sampling from a collection of past observed errors (the residuals),
    each iteration of bootstrapping generates a different set of predictions. 
    See the Notes section for more information. 

    Parameters
    ----------
    steps : int
        Number of future steps predicted.
    last_window : pandas Series, default `None`
        Series values used to create the predictors (lags) needed in the 
        first iteration of the prediction (t + 1).
        If `last_window = None`, the values stored in `self.last_window` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s.
    n_boot : int, default `500`
        Number of bootstrapping iterations used to estimate predictions.
    random_state : int, default `123`
        Sets a seed to the random generator, so that boot predictions are always 
        deterministic.
    in_sample_residuals : bool, default `True`
        If `True`, residuals from the training data are used as proxy of
        prediction error to create predictions. If `False`, out of sample 
        residuals are used. In the latter case, the user should have
        calculated and stored the residuals within the forecaster (see
        `set_out_sample_residuals()`).

    Returns
    -------
    boot_predictions : pandas DataFrame
        Predictions generated by bootstrapping.
        Shape: (steps, n_boot)

    Notes
    -----
    More information about prediction intervals in forecasting:
    https://otexts.com/fpp3/prediction-intervals.html#prediction-intervals-from-bootstrapped-residuals
    Forecasting: Principles and Practice (3nd ed) Rob J Hyndman and George Athanasopoulos.

    """

    if not in_sample_residuals and self.out_sample_residuals is None:
        raise ValueError(
            ("`forecaster.out_sample_residuals` is `None`. Use "
             "`in_sample_residuals=True` or method `set_out_sample_residuals()` "
             "before `predict_interval()`, `predict_bootstrapping()`, "
             "`predict_quantiles()` or `predict_dist()`.")
        )

    if last_window is None:
        last_window = self.last_window

    check_predict_input(
        forecaster_name  = type(self).__name__,
        steps            = steps,
        fitted           = self.fitted,
        included_exog    = self.included_exog,
        index_type       = self.index_type,
        index_freq       = self.index_freq,
        window_size      = self.window_size,
        last_window      = last_window,
        last_window_exog = None,
        exog             = exog,
        exog_type        = self.exog_type,
        exog_col_names   = self.exog_col_names,
        interval         = None,
        alpha            = None,
        max_steps        = None,
        levels           = None,
        series_col_names = None
    )

    last_window = last_window.iloc[-self.window_size:].copy()

    if exog is not None:
        if isinstance(exog, pd.DataFrame):
            exog = transform_dataframe(
                       df                = exog,
                       transformer       = self.transformer_exog,
                       fit               = False,
                       inverse_transform = False
                   )
        else:
            exog = transform_series(
                       series            = exog,
                       transformer       = self.transformer_exog,
                       fit               = False,
                       inverse_transform = False
                   )
        exog_values = exog.to_numpy()[:steps]
    else:
        exog_values = None

    last_window = transform_series(
                      series            = last_window,
                      transformer       = self.transformer_y,
                      fit               = False,
                      inverse_transform = False
                  )
    last_window_values, last_window_index = preprocess_last_window(
                                                last_window = last_window
                                            )
    if self.differentiation is not None:
        last_window_values = self.differentiator.fit_transform(last_window_values)

    boot_predictions = np.full(
                           shape      = (steps, n_boot),
                           fill_value = np.nan,
                           dtype      = float
                       )
    rng = np.random.default_rng(seed=random_state)
    seeds = rng.integers(low=0, high=10000, size=n_boot)

    if in_sample_residuals:
        residuals = self.in_sample_residuals
    else:
        residuals = self.out_sample_residuals

    for i in range(n_boot):
        # In each bootstraping iteration the initial last_window and exog 
        # need to be restored.
        last_window_boot = last_window_values.copy()
        exog_boot = exog_values.copy() if exog is not None else None

        rng = np.random.default_rng(seed=seeds[i])
        sample_residuals = rng.choice(
                               a       = residuals,
                               size    = steps,
                               replace = True
                           )

        for step in range(steps):

            prediction = self._recursive_predict(
                             steps       = 1,
                             last_window = last_window_boot,
                             exog        = exog_boot 
                         )

            prediction_with_residual  = prediction + sample_residuals[step]
            boot_predictions[step, i] = prediction_with_residual[0]

            last_window_boot = np.append(
                                   last_window_boot[1:],
                                   prediction_with_residual
                               )

            if exog is not None:
                exog_boot = exog_boot[1:]

        if self.differentiation is not None:
            boot_predictions[:, i] = (
                self.differentiator.inverse_transform_next_window(boot_predictions[:, i])
            )

    boot_predictions = pd.DataFrame(
                           data    = boot_predictions,
                           index   = expand_index(last_window_index, steps=steps),
                           columns = [f"pred_boot_{i}" for i in range(n_boot)]
                       )

    if self.transformer_y:
        for col in boot_predictions.columns:
            boot_predictions[col] = transform_series(
                                        series            = boot_predictions[col],
                                        transformer       = self.transformer_y,
                                        fit               = False,
                                        inverse_transform = True
                                    )

    return boot_predictions

predict_interval(steps, last_window=None, exog=None, interval=[5, 95], n_boot=500, random_state=123, in_sample_residuals=True)

Iterative process in which each prediction is used as a predictor for the next step, and bootstrapping is used to estimate prediction intervals. Both predictions and intervals are returned.

Parameters:

Name Type Description Default
steps int

Number of future steps predicted.

required
last_window pandas Series

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1). If last_window = None, the values stored inself.last_window are used to calculate the initial predictors, and the predictions start right after training data.

`None`
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s.

`None`
interval list

Confidence of the prediction interval estimated. Sequence of percentiles to compute, which must be between 0 and 100 inclusive. For example, interval of 95% should be as interval = [2.5, 97.5].

`[5, 95]`
n_boot int

Number of bootstrapping iterations used to estimate predictions.

`500`
random_state int

Sets a seed to the random generator, so that boot predictions are always deterministic.

`123`
in_sample_residuals bool

If True, residuals from the training data are used as proxy of prediction error to create predictions. If False, out of sample residuals are used. In the latter case, the user should have calculated and stored the residuals within the forecaster (see set_out_sample_residuals()).

`True`

Returns:

Name Type Description
predictions pandas DataFrame

Values predicted by the forecaster and their estimated interval.

  • pred: predictions.
  • lower_bound: lower bound of the interval.
  • upper_bound: upper bound of the interval.
Notes

More information about prediction intervals in forecasting: https://otexts.com/fpp2/prediction-intervals.html Forecasting: Principles and Practice (2nd ed) Rob J Hyndman and George Athanasopoulos.

Source code in skforecast\ForecasterAutoregCustom\ForecasterAutoregCustom.py
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
def predict_interval(
    self,
    steps: int,
    last_window: Optional[pd.Series]=None,
    exog: Optional[Union[pd.Series, pd.DataFrame]]=None,
    interval: list=[5, 95],
    n_boot: int=500,
    random_state: int=123,
    in_sample_residuals: bool=True
) -> pd.DataFrame:
    """
    Iterative process in which each prediction is used as a predictor
    for the next step, and bootstrapping is used to estimate prediction
    intervals. Both predictions and intervals are returned.

    Parameters
    ----------
    steps : int
        Number of future steps predicted.
    last_window : pandas Series, default `None`
        Series values used to create the predictors (lags) needed in the 
        first iteration of the prediction (t + 1).
        If `last_window = None`, the values stored in` self.last_window` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s.
    interval : list, default `[5, 95]`
        Confidence of the prediction interval estimated. Sequence of 
        percentiles to compute, which must be between 0 and 100 inclusive. 
        For example, interval of 95% should be as `interval = [2.5, 97.5]`.
    n_boot : int, default `500`
        Number of bootstrapping iterations used to estimate predictions.
    random_state : int, default `123`
        Sets a seed to the random generator, so that boot predictions are always 
        deterministic.
    in_sample_residuals : bool, default `True`
        If `True`, residuals from the training data are used as proxy of
        prediction error to create predictions. If `False`, out of sample 
        residuals are used. In the latter case, the user should have
        calculated and stored the residuals within the forecaster (see
        `set_out_sample_residuals()`).

    Returns
    -------
    predictions : pandas DataFrame
        Values predicted by the forecaster and their estimated interval.

        - pred: predictions.
        - lower_bound: lower bound of the interval.
        - upper_bound: upper bound of the interval.

    Notes
    -----
    More information about prediction intervals in forecasting:
    https://otexts.com/fpp2/prediction-intervals.html
    Forecasting: Principles and Practice (2nd ed) Rob J Hyndman and
    George Athanasopoulos.

    """

    check_interval(interval=interval)

    predictions = self.predict(
                      steps       = steps,
                      last_window = last_window,
                      exog        = exog
                  )

    boot_predictions = self.predict_bootstrapping(
                           steps               = steps,
                           last_window         = last_window,
                           exog                = exog,
                           n_boot              = n_boot,
                           random_state        = random_state,
                           in_sample_residuals = in_sample_residuals
                       )

    interval = np.array(interval)/100
    predictions_interval = boot_predictions.quantile(q=interval, axis=1).transpose()
    predictions_interval.columns = ['lower_bound', 'upper_bound']
    predictions = pd.concat((predictions, predictions_interval), axis=1)

    return predictions

predict_quantiles(steps, last_window=None, exog=None, quantiles=[0.05, 0.5, 0.95], n_boot=500, random_state=123, in_sample_residuals=True)

Calculate the specified quantiles for each step. After generating multiple forecasting predictions through a bootstrapping process, each quantile is calculated for each step.

Parameters:

Name Type Description Default
steps int

Number of future steps predicted.

required
last_window pandas Series

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1). If last_window = None, the values stored inself.last_window are used to calculate the initial predictors, and the predictions start right after training data.

`None`
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s.

`None`
quantiles list

Sequence of quantiles to compute, which must be between 0 and 1 inclusive. For example, quantiles of 0.05, 0.5 and 0.95 should be as quantiles = [0.05, 0.5, 0.95].

`[0.05, 0.5, 0.95]`
n_boot int

Number of bootstrapping iterations used to estimate quantiles.

`500`
random_state int

Sets a seed to the random generator, so that boot quantiles are always deterministic.

`123`
in_sample_residuals bool

If True, residuals from the training data are used as proxy of prediction error to create prediction quantiles. If False, out of sample residuals are used. In the latter case, the user should have calculated and stored the residuals within the forecaster (see set_out_sample_residuals()).

`True`

Returns:

Name Type Description
predictions pandas DataFrame

Quantiles predicted by the forecaster.

Notes

More information about prediction intervals in forecasting: https://otexts.com/fpp2/prediction-intervals.html Forecasting: Principles and Practice (2nd ed) Rob J Hyndman and George Athanasopoulos.

Source code in skforecast\ForecasterAutoregCustom\ForecasterAutoregCustom.py
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
def predict_quantiles(
    self,
    steps: int,
    last_window: Optional[pd.Series]=None,
    exog: Optional[Union[pd.Series, pd.DataFrame]]=None,
    quantiles: list=[0.05, 0.5, 0.95],
    n_boot: int=500,
    random_state: int=123,
    in_sample_residuals: bool=True
) -> pd.DataFrame:
    """
    Calculate the specified quantiles for each step. After generating 
    multiple forecasting predictions through a bootstrapping process, each 
    quantile is calculated for each step.

    Parameters
    ----------
    steps : int
        Number of future steps predicted.
    last_window : pandas Series, default `None`
        Series values used to create the predictors (lags) needed in the 
        first iteration of the prediction (t + 1).
        If `last_window = None`, the values stored in` self.last_window` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s.
    quantiles : list, default `[0.05, 0.5, 0.95]`
        Sequence of quantiles to compute, which must be between 0 and 1 
        inclusive. For example, quantiles of 0.05, 0.5 and 0.95 should be as 
        `quantiles = [0.05, 0.5, 0.95]`.
    n_boot : int, default `500`
        Number of bootstrapping iterations used to estimate quantiles.
    random_state : int, default `123`
        Sets a seed to the random generator, so that boot quantiles are always 
        deterministic.
    in_sample_residuals : bool, default `True`
        If `True`, residuals from the training data are used as proxy of
        prediction error to create prediction quantiles. If `False`, out of
        sample residuals are used. In the latter case, the user should have
        calculated and stored the residuals within the forecaster (see
        `set_out_sample_residuals()`).

    Returns
    -------
    predictions : pandas DataFrame
        Quantiles predicted by the forecaster.

    Notes
    -----
    More information about prediction intervals in forecasting:
    https://otexts.com/fpp2/prediction-intervals.html
    Forecasting: Principles and Practice (2nd ed) Rob J Hyndman and
    George Athanasopoulos.

    """

    check_interval(quantiles=quantiles)

    boot_predictions = self.predict_bootstrapping(
                           steps               = steps,
                           last_window         = last_window,
                           exog                = exog,
                           n_boot              = n_boot,
                           random_state        = random_state,
                           in_sample_residuals = in_sample_residuals
                       )

    predictions = boot_predictions.quantile(q=quantiles, axis=1).transpose()
    predictions.columns = [f'q_{q}' for q in quantiles]

    return predictions

predict_dist(steps, distribution, last_window=None, exog=None, n_boot=500, random_state=123, in_sample_residuals=True)

Fit a given probability distribution for each step. After generating multiple forecasting predictions through a bootstrapping process, each step is fitted to the given distribution.

Parameters:

Name Type Description Default
steps int

Number of future steps predicted.

required
distribution Object

A distribution object from scipy.stats.

required
last_window pandas Series

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1). If last_window = None, the values stored inself.last_window are used to calculate the initial predictors, and the predictions start right after training data.

`None`
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s.

`None`
n_boot int

Number of bootstrapping iterations used to estimate predictions.

`500`
random_state int

Sets a seed to the random generator, so that boot predictions are always deterministic.

`123`
in_sample_residuals bool

If True, residuals from the training data are used as proxy of prediction error to create predictions. If False, out of sample residuals are used. In the latter case, the user should have calculated and stored the residuals within the forecaster (see set_out_sample_residuals()).

`True`

Returns:

Name Type Description
predictions pandas DataFrame

Distribution parameters estimated for each step.

Source code in skforecast\ForecasterAutoregCustom\ForecasterAutoregCustom.py
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
def predict_dist(
    self,
    steps: int,
    distribution: object,
    last_window: Optional[pd.Series]=None,
    exog: Optional[Union[pd.Series, pd.DataFrame]]=None,
    n_boot: int=500,
    random_state: int=123,
    in_sample_residuals: bool=True
) -> pd.DataFrame:
    """
    Fit a given probability distribution for each step. After generating 
    multiple forecasting predictions through a bootstrapping process, each 
    step is fitted to the given distribution.

    Parameters
    ----------
    steps : int
        Number of future steps predicted.
    distribution : Object
        A distribution object from scipy.stats.
    last_window : pandas Series, default `None`
        Series values used to create the predictors (lags) needed in the 
        first iteration of the prediction (t + 1).
        If `last_window = None`, the values stored in` self.last_window` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s.
    n_boot : int, default `500`
        Number of bootstrapping iterations used to estimate predictions.
    random_state : int, default `123`
        Sets a seed to the random generator, so that boot predictions are always 
        deterministic.
    in_sample_residuals : bool, default `True`
        If `True`, residuals from the training data are used as proxy of
        prediction error to create predictions. If `False`, out of sample 
        residuals are used. In the latter case, the user should have
        calculated and stored the residuals within the forecaster (see
        `set_out_sample_residuals()`).

    Returns
    -------
    predictions : pandas DataFrame
        Distribution parameters estimated for each step.

    """

    boot_samples = self.predict_bootstrapping(
                       steps               = steps,
                       last_window         = last_window,
                       exog                = exog,
                       n_boot              = n_boot,
                       random_state        = random_state,
                       in_sample_residuals = in_sample_residuals
                   )

    param_names = [p for p in inspect.signature(distribution._pdf).parameters
                   if not p=='x'] + ["loc","scale"]
    param_values = np.apply_along_axis(
                       lambda x: distribution.fit(x),
                       axis = 1,
                       arr  = boot_samples
                   )
    predictions = pd.DataFrame(
                      data    = param_values,
                      columns = param_names,
                      index   = boot_samples.index
                  )

    return predictions

set_params(params)

Set new values to the parameters of the scikit learn model stored in the forecaster.

Parameters:

Name Type Description Default
params dict

Parameters values.

required

Returns:

Type Description
None
Source code in skforecast\ForecasterAutoregCustom\ForecasterAutoregCustom.py
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
def set_params(
    self, 
    params: dict
) -> None:
    """
    Set new values to the parameters of the scikit learn model stored in the
    forecaster.

    Parameters
    ----------
    params : dict
        Parameters values.

    Returns
    -------
    None

    """

    self.regressor = clone(self.regressor)
    self.regressor.set_params(**params)

set_fit_kwargs(fit_kwargs)

Set new values for the additional keyword arguments passed to the fit method of the regressor.

Parameters:

Name Type Description Default
fit_kwargs dict

Dict of the form {"argument": new_value}.

required

Returns:

Type Description
None
Source code in skforecast\ForecasterAutoregCustom\ForecasterAutoregCustom.py
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
def set_fit_kwargs(
    self, 
    fit_kwargs: dict
) -> None:
    """
    Set new values for the additional keyword arguments passed to the `fit` 
    method of the regressor.

    Parameters
    ----------
    fit_kwargs : dict
        Dict of the form {"argument": new_value}.

    Returns
    -------
    None

    """

    self.fit_kwargs = check_select_fit_kwargs(self.regressor, fit_kwargs=fit_kwargs)

set_out_sample_residuals(residuals, append=True, transform=True, random_state=123)

Set new values to the attribute out_sample_residuals. Out of sample residuals are meant to be calculated using observations that did not participate in the training process.

Parameters:

Name Type Description Default
residuals numpy ndarray

Values of residuals. If len(residuals) > 1000, only a random sample of 1000 values are stored.

required
append bool

If True, new residuals are added to the once already stored in the attribute out_sample_residuals. Once the limit of 1000 values is reached, no more values are appended. If False, out_sample_residuals is overwritten with the new residuals.

`True`
transform bool

If True, new residuals are transformed using self.transformer_y.

`True`
random_state int

Sets a seed to the random sampling for reproducible output.

`123`

Returns:

Type Description
None
Source code in skforecast\ForecasterAutoregCustom\ForecasterAutoregCustom.py
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
def set_out_sample_residuals(
    self, 
    residuals: np.ndarray, 
    append: bool=True,
    transform: bool=True,
    random_state: int=123
)-> None:
    """
    Set new values to the attribute `out_sample_residuals`. Out of sample
    residuals are meant to be calculated using observations that did not
    participate in the training process.

    Parameters
    ----------
    residuals : numpy ndarray
        Values of residuals. If len(residuals) > 1000, only a random sample
        of 1000 values are stored.
    append : bool, default `True`
        If `True`, new residuals are added to the once already stored in the
        attribute `out_sample_residuals`. Once the limit of 1000 values is
        reached, no more values are appended. If False, `out_sample_residuals`
        is overwritten with the new residuals.
    transform : bool, default `True`
        If `True`, new residuals are transformed using self.transformer_y.
    random_state : int, default `123`
        Sets a seed to the random sampling for reproducible output.

    Returns
    -------
    None

    """

    if not isinstance(residuals, np.ndarray):
        raise TypeError(
            f"`residuals` argument must be `numpy ndarray`. Got {type(residuals)}."
        )

    if not transform and self.transformer_y is not None:
        warnings.warn(
            (f"Argument `transform` is set to `False` but forecaster was trained "
             f"using a transformer {self.transformer_y}. Ensure that the new residuals "
             f"are already transformed or set `transform=True`.")
        )

    if transform and self.transformer_y is not None:
        warnings.warn(
            (f"Residuals will be transformed using the same transformer used "
             f"when training the forecaster ({self.transformer_y}). Ensure that the "
             f"new residuals are on the same scale as the original time series.")
        )

        residuals = transform_series(
                        series            = pd.Series(residuals, name='residuals'),
                        transformer       = self.transformer_y,
                        fit               = False,
                        inverse_transform = False
                    ).to_numpy()

    if len(residuals) > 1000:
        rng = np.random.default_rng(seed=random_state)
        residuals = rng.choice(a=residuals, size=1000, replace=False)

    if append and self.out_sample_residuals is not None:
        free_space = max(0, 1000 - len(self.out_sample_residuals))
        if len(residuals) < free_space:
            residuals = np.hstack((
                            self.out_sample_residuals,
                            residuals
                        ))
        else:
            residuals = np.hstack((
                            self.out_sample_residuals,
                            residuals[:free_space]
                        ))

    self.out_sample_residuals = residuals

get_feature_importances()

Return feature importances of the regressor stored in the forecaster. Only valid when regressor stores internally the feature importances in the attribute feature_importances_ or coef_. Otherwise, returns None.

Parameters:

Name Type Description Default
self
required

Returns:

Name Type Description
feature_importances pandas DataFrame

Feature importances associated with each predictor.

Source code in skforecast\ForecasterAutoregCustom\ForecasterAutoregCustom.py
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
def get_feature_importances(
    self
) -> pd.DataFrame:
    """
    Return feature importances of the regressor stored in the forecaster.
    Only valid when regressor stores internally the feature importances in the
    attribute `feature_importances_` or `coef_`. Otherwise, returns `None`.

    Parameters
    ----------
    self

    Returns
    -------
    feature_importances : pandas DataFrame
        Feature importances associated with each predictor.

    """

    if not self.fitted:
        raise sklearn.exceptions.NotFittedError(
            ("This forecaster is not fitted yet. Call `fit` with appropriate "
             "arguments before using `get_feature_importances()`.")
        )

    if isinstance(self.regressor, sklearn.pipeline.Pipeline):
        estimator = self.regressor[-1]
    else:
        estimator = self.regressor

    if hasattr(estimator, 'feature_importances_'):
        feature_importances = estimator.feature_importances_
    elif hasattr(estimator, 'coef_'):
        feature_importances = estimator.coef_
    else:
        warnings.warn(
            (f"Impossible to access feature importances for regressor of type "
             f"{type(estimator)}. This method is only valid when the "
             f"regressor stores internally the feature importances in the "
             f"attribute `feature_importances_` or `coef_`.")
        )
        feature_importances = None

    if feature_importances is not None:
        feature_importances = pd.DataFrame({
                                  'feature': self.X_train_col_names,
                                  'importance': feature_importances
                              })

    return feature_importances