ForecasterSarimax
¶
ForecasterSarimax(regressor, transformer_y=None, transformer_exog=None, fit_kwargs=None, forecaster_id=None)
¶
This class turns ARIMA model from either the skforecast or pmdarima library into a Forecaster compatible with the skforecast API. New in version 0.10.0
Parameters:
Name | Type | Description | Default |
---|---|---|---|
regressor |
(Sarimax, ARIMA)
|
An ARIMA model instance from either the skforecast or pmdarima library. |
required |
transformer_y |
object transformer (preprocessor)
|
An instance of a transformer (preprocessor) compatible with the scikit-learn
preprocessing API with methods: fit, transform, fit_transform and inverse_transform.
ColumnTransformers are not allowed since they do not have inverse_transform method.
The transformation is applied to |
`None`
|
transformer_exog |
object transformer (preprocessor)
|
An instance of a transformer (preprocessor) compatible with the scikit-learn
preprocessing API. The transformation is applied to |
`None`
|
fit_kwargs |
dict
|
Additional arguments to be passed to the |
`None`
|
forecaster_id |
str, int default `None`
|
Name used as an identifier of the forecaster. |
None
|
Attributes:
Name | Type | Description |
---|---|---|
regressor |
(Sarimax, ARIMA)
|
An ARIMA model instance from either the skforecast or pmdarima library. |
params |
dict
|
Parameters of the sarimax model. |
transformer_y |
object transformer (preprocessor)
|
An instance of a transformer (preprocessor) compatible with the scikit-learn
preprocessing API with methods: fit, transform, fit_transform and inverse_transform.
ColumnTransformers are not allowed since they do not have inverse_transform method.
The transformation is applied to |
transformer_exog |
object transformer (preprocessor)
|
An instance of a transformer (preprocessor) compatible with the scikit-learn
preprocessing API. The transformation is applied to |
window_size |
int
|
Not used, present here for API consistency by convention. |
last_window |
pandas Series
|
Last window the forecaster has seen during training. It stores the
values needed to predict the next |
extended_index |
pandas Index
|
When predicting using |
fitted |
bool
|
Tag to identify if the regressor has been fitted (trained). |
index_type |
type
|
Type of index of the input used in training. |
index_freq |
str
|
Frequency of Index of the input used in training. |
training_range |
pandas Index
|
First and last values of index of the data used during training. |
included_exog |
bool
|
If the forecaster has been trained using exogenous variable/s. |
exog_type |
type
|
Type of exogenous variable/s used in training. |
exog_col_names |
list
|
Names of columns of |
fit_kwargs |
dict
|
Additional arguments to be passed to the |
creation_date |
str
|
Date of creation. |
fit_date |
str
|
Date of last fit. |
skforecast_version |
str
|
Version of skforecast library used to create the forecaster. |
python_version |
str
|
Version of python used to create the forecaster. |
forecaster_id |
(str, int)
|
Name used as an identifier of the forecaster. |
Source code in skforecast\ForecasterSarimax\ForecasterSarimax.py
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
|
fit(y, exog=None, suppress_warnings=False)
¶
Training Forecaster.
Additional arguments to be passed to the fit
method of the regressor
can be added with the fit_kwargs
argument when initializing the forecaster.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y |
pandas Series
|
Training time series. |
required |
exog |
pandas Series, pandas DataFrame
|
Exogenous variable/s included as predictor/s. Must have the same
number of observations as |
`None`
|
suppress_warnings |
bool
|
If |
`False`
|
Returns:
Type | Description |
---|---|
None
|
|
Source code in skforecast\ForecasterSarimax\ForecasterSarimax.py
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
|
predict(steps, last_window=None, last_window_exog=None, exog=None)
¶
Forecast future values.
Generate predictions (forecasts) n steps in the future. Note that if exogenous variables were used in the model fit, they will be expected for the predict procedure and will fail otherwise.
When predicting using last_window
and last_window_exog
, the internal
statsmodels SARIMAX will be updated using its append method. To do this,
last_window
data must start at the end of the index seen by the
forecaster, this is stored in forecaster.extended_index.
Check https://www.statsmodels.org/dev/generated/statsmodels.tsa.arima.model.ARIMAResults.append.html to know more about statsmodels append method.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
steps |
int
|
Number of future steps predicted. |
required |
last_window |
pandas Series
|
Series values used to create the predictors needed in the predictions. Used to make predictions unrelated to the original data. Values have to start at the end of the training data. |
`None`
|
last_window_exog |
pandas Series, pandas DataFrame
|
Values of the exogenous variables aligned with |
`None`
|
exog |
pandas Series, pandas DataFrame
|
Value of the exogenous variable/s for the next steps. |
`None`
|
Returns:
Name | Type | Description |
---|---|---|
predictions |
pandas Series
|
Predicted values. |
Source code in skforecast\ForecasterSarimax\ForecasterSarimax.py
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 |
|
predict_interval(steps, last_window=None, last_window_exog=None, exog=None, alpha=0.05, interval=None)
¶
Forecast future values and their confidence intervals.
Generate predictions (forecasts) n steps in the future with confidence intervals. Note that if exogenous variables were used in the model fit, they will be expected for the predict procedure and will fail otherwise.
When predicting using last_window
and last_window_exog
, the internal
statsmodels SARIMAX will be updated using its append method. To do this,
last_window
data must start at the end of the index seen by the
forecaster, this is stored in forecaster.extended_index.
Check https://www.statsmodels.org/dev/generated/statsmodels.tsa.arima.model.ARIMAResults.append.html to know more about statsmodels append method.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
steps |
int
|
Number of future steps predicted. |
required |
last_window |
pandas Series
|
Series values used to create the predictors needed in the predictions. Used to make predictions unrelated to the original data. Values have to start at the end of the training data. |
`None`
|
last_window_exog |
pandas Series, pandas DataFrame
|
Values of the exogenous variables aligned with |
`None`
|
exog |
pandas Series, pandas DataFrame
|
Exogenous variable/s included as predictor/s. |
`None`
|
alpha |
float
|
The confidence intervals for the forecasts are (1 - alpha) %.
If both, |
`0.05`
|
interval |
list
|
Confidence of the prediction interval estimated. The values must be
symmetric. Sequence of percentiles to compute, which must be between
0 and 100 inclusive. For example, interval of 95% should be as
|
`None`
|
Returns:
Name | Type | Description |
---|---|---|
predictions |
pandas DataFrame
|
Values predicted by the forecaster and their estimated interval.
|
Source code in skforecast\ForecasterSarimax\ForecasterSarimax.py
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 |
|
set_params(params)
¶
Set new values to the parameters of the model stored in the forecaster.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
params |
dict
|
Parameters values. |
required |
Returns:
Type | Description |
---|---|
None
|
|
Source code in skforecast\ForecasterSarimax\ForecasterSarimax.py
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 |
|
set_fit_kwargs(fit_kwargs)
¶
Set new values for the additional keyword arguments passed to the fit
method of the regressor.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
fit_kwargs |
dict
|
Dict of the form {"argument": new_value}. |
required |
Returns:
Type | Description |
---|---|
None
|
|
Source code in skforecast\ForecasterSarimax\ForecasterSarimax.py
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 |
|
get_feature_importances()
¶
Return feature importances of the regressor stored in the forecaster.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
self |
|
required |
Returns:
Name | Type | Description |
---|---|---|
feature_importances |
pandas DataFrame
|
Feature importances associated with each predictor. |
Source code in skforecast\ForecasterSarimax\ForecasterSarimax.py
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 |
|
get_info_criteria(criteria='aic', method='standard')
¶
Get the selected information criteria.
Check https://www.statsmodels.org/dev/generated/statsmodels.tsa.statespace.sarimax.SARIMAXResults.info_criteria.html to know more about statsmodels info_criteria method.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
criteria |
str
|
The information criteria to compute. Valid options are {'aic', 'bic', 'hqic'}. |
`'aic'`
|
method |
str
|
The method for information criteria computation. Default is 'standard' method; 'lutkepohl' computes the information criteria as in Lütkepohl (2007). |
`'standard'`
|
Returns:
Name | Type | Description |
---|---|---|
metric |
float
|
The value of the selected information criteria. |
Source code in skforecast\ForecasterSarimax\ForecasterSarimax.py
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 |
|