Skip to content

ForecasterSarimax

ForecasterSarimax(regressor, transformer_y=None, transformer_exog=None, fit_kwargs=None, forecaster_id=None)

This class turns ARIMA model from either the skforecast or pmdarima library into a Forecaster compatible with the skforecast API. New in version 0.10.0

Parameters:

Name Type Description Default
regressor (Sarimax, ARIMA)

An ARIMA model instance from either the skforecast or pmdarima library.

required
transformer_y object transformer (preprocessor)

An instance of a transformer (preprocessor) compatible with the scikit-learn preprocessing API with methods: fit, transform, fit_transform and inverse_transform. ColumnTransformers are not allowed since they do not have inverse_transform method. The transformation is applied to y before training the forecaster.

`None`
transformer_exog object transformer (preprocessor)

An instance of a transformer (preprocessor) compatible with the scikit-learn preprocessing API. The transformation is applied to exog before training the forecaster. inverse_transform is not available when using ColumnTransformers.

`None`
fit_kwargs dict

Additional arguments to be passed to the fit method of the regressor. When using the skforecast Sarimax model, the fit kwargs should be passed using the model parameter sm_fit_kwargs and not this one.

`None`
forecaster_id str, int default `None`

Name used as an identifier of the forecaster.

None

Attributes:

Name Type Description
regressor (Sarimax, ARIMA)

An ARIMA model instance from either the skforecast or pmdarima library.

params dict

Parameters of the sarimax model.

transformer_y object transformer (preprocessor)

An instance of a transformer (preprocessor) compatible with the scikit-learn preprocessing API with methods: fit, transform, fit_transform and inverse_transform. ColumnTransformers are not allowed since they do not have inverse_transform method. The transformation is applied to y before training the forecaster.

transformer_exog object transformer (preprocessor)

An instance of a transformer (preprocessor) compatible with the scikit-learn preprocessing API. The transformation is applied to exog before training the forecaster. inverse_transform is not available when using ColumnTransformers.

window_size int

Not used, present here for API consistency by convention.

last_window pandas Series

Last window the forecaster has seen during training. It stores the values needed to predict the next step immediately after the training data.

extended_index pandas Index

When predicting using last_window and last_window_exog, the internal statsmodels SARIMAX will be updated using its append method. To do this, last_window data must start at the end of the index seen by the forecaster, this is stored in forecaster.extended_index. Check https://www.statsmodels.org/dev/generated/statsmodels.tsa.arima.model.ARIMAResults.append.html to know more about statsmodels append method.

fitted bool

Tag to identify if the regressor has been fitted (trained).

index_type type

Type of index of the input used in training.

index_freq str

Frequency of Index of the input used in training.

training_range pandas Index

First and last values of index of the data used during training.

included_exog bool

If the forecaster has been trained using exogenous variable/s.

exog_type type

Type of exogenous variable/s used in training.

exog_col_names list

Names of columns of exog if exog used in training was a pandas DataFrame.

fit_kwargs dict

Additional arguments to be passed to the fit method of the regressor.

creation_date str

Date of creation.

fit_date str

Date of last fit.

skforecast_version str

Version of skforecast library used to create the forecaster.

python_version str

Version of python used to create the forecaster.

forecaster_id (str, int)

Name used as an identifier of the forecaster.

Source code in skforecast\ForecasterSarimax\ForecasterSarimax.py
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
def __init__(
    self,
    regressor: ARIMA,
    transformer_y: Optional[object]=None,
    transformer_exog: Optional[object]=None,
    fit_kwargs: Optional[dict]=None,
    forecaster_id: Optional[Union[str, int]]=None
) -> None:

    self.regressor         = regressor
    self.transformer_y     = transformer_y
    self.transformer_exog  = transformer_exog
    self.window_size       = 1
    self.last_window       = None
    self.extended_index    = None
    self.fitted            = False
    self.index_type        = None
    self.index_freq        = None
    self.training_range    = None
    self.included_exog     = False
    self.exog_type         = None
    self.exog_col_names    = None
    self.creation_date     = pd.Timestamp.today().strftime('%Y-%m-%d %H:%M:%S')
    self.fit_date          = None
    self.skforecast_version= skforecast.__version__
    self.python_version    = sys.version.split(" ")[0]
    self.forecaster_id     = forecaster_id

    if isinstance(self.regressor, pmdarima.arima.ARIMA):
        self.engine = 'pmdarima'
    elif isinstance(self.regressor, skforecast.Sarimax.Sarimax):
        self.engine = 'skforecast'
    else:
        raise TypeError(
            (f"`regressor` must be an instance of type pmdarima.arima.ARIMA "
             f"or skforecast.Sarimax.Sarimax. Got {type(regressor)}.")
        )

    self.params = self.regressor.get_params(deep=True)

    if self.engine == 'pmdarima':
        self.fit_kwargs = check_select_fit_kwargs(
                              regressor  = regressor,
                              fit_kwargs = fit_kwargs
                          )
    else:
        if fit_kwargs:
            warnings.warn(
                ("When using the skforecast Sarimax model, the fit kwargs should "
                 "be passed using the model parameter `sm_fit_kwargs`."),
                 IgnoredArgumentWarning
            )
        self.fit_kwargs = {}

fit(y, exog=None, suppress_warnings=False)

Training Forecaster.

Additional arguments to be passed to the fit method of the regressor can be added with the fit_kwargs argument when initializing the forecaster.

Parameters:

Name Type Description Default
y pandas Series

Training time series.

required
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s. Must have the same number of observations as y and their indexes must be aligned so that y[i] is regressed on exog[i].

`None`
suppress_warnings bool

If True, warnings generated during fitting will be ignored.

`False`

Returns:

Type Description
None
Source code in skforecast\ForecasterSarimax\ForecasterSarimax.py
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
def fit(
    self,
    y: pd.Series,
    exog: Optional[Union[pd.Series, pd.DataFrame]]=None,
    suppress_warnings: bool=False
) -> None:
    """
    Training Forecaster.

    Additional arguments to be passed to the `fit` method of the regressor 
    can be added with the `fit_kwargs` argument when initializing the forecaster.

    Parameters
    ----------
    y : pandas Series
        Training time series.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s. Must have the same
        number of observations as `y` and their indexes must be aligned so
        that y[i] is regressed on exog[i].
    suppress_warnings : bool, default `False`
        If `True`, warnings generated during fitting will be ignored.

    Returns
    -------
    None

    """

    check_y(y=y)
    if exog is not None:
        if len(exog) != len(y):
            raise ValueError(
                (f"`exog` must have same number of samples as `y`. "
                 f"length `exog`: ({len(exog)}), length `y`: ({len(y)})")
            )
        check_exog(exog=exog)

    # Reset values in case the forecaster has already been fitted.
    self.index_type          = None
    self.index_freq          = None
    self.last_window         = None
    self.extended_index      = None
    self.included_exog       = False
    self.exog_type           = None
    self.exog_col_names      = None
    self.X_train_col_names   = None
    self.in_sample_residuals = None
    self.fitted              = False
    self.training_range      = None

    if exog is not None:
        self.included_exog = True
        self.exog_type = type(exog)
        self.exog_col_names = \
             exog.columns.to_list() if isinstance(exog, pd.DataFrame) else exog.name

    y = transform_series(
            series            = y,
            transformer       = self.transformer_y,
            fit               = True,
            inverse_transform = False
        )

    if exog is not None:
        if isinstance(exog, pd.Series):
            # pmdarima.arima.ARIMA only accepts DataFrames or 2d-arrays as exog   
            exog = exog.to_frame()

        exog = transform_dataframe(
                   df                = exog,
                   transformer       = self.transformer_exog,
                   fit               = True,
                   inverse_transform = False
               )

    if suppress_warnings:
        warnings.filterwarnings("ignore")

    if self.engine == 'pmdarima':
        self.regressor.fit(y=y, X=exog, **self.fit_kwargs)
    else:
        self.regressor.fit(y=y, exog=exog)

    if suppress_warnings:
        warnings.filterwarnings("default")

    self.fitted = True
    self.fit_date = pd.Timestamp.today().strftime('%Y-%m-%d %H:%M:%S')
    self.training_range = y.index[[0, -1]]
    self.index_type = type(y.index)
    if isinstance(y.index, pd.DatetimeIndex):
        self.index_freq = y.index.freqstr
    else: 
        self.index_freq = y.index.step

    self.last_window = y.copy()

    if self.engine == 'pmdarima':
        self.extended_index = self.regressor.arima_res_.fittedvalues.index.copy()
    else:
        self.extended_index = self.regressor.sarimax_res.fittedvalues.index.copy()

    self.params = self.regressor.get_params(deep=True)

predict(steps, last_window=None, last_window_exog=None, exog=None)

Forecast future values.

Generate predictions (forecasts) n steps in the future. Note that if exogenous variables were used in the model fit, they will be expected for the predict procedure and will fail otherwise.

When predicting using last_window and last_window_exog, the internal statsmodels SARIMAX will be updated using its append method. To do this, last_window data must start at the end of the index seen by the forecaster, this is stored in forecaster.extended_index.

Check https://www.statsmodels.org/dev/generated/statsmodels.tsa.arima.model.ARIMAResults.append.html to know more about statsmodels append method.

Parameters:

Name Type Description Default
steps int

Number of future steps predicted.

required
last_window pandas Series

Series values used to create the predictors needed in the predictions. Used to make predictions unrelated to the original data. Values have to start at the end of the training data.

`None`
last_window_exog pandas Series, pandas DataFrame

Values of the exogenous variables aligned with last_window. Only needed when last_window is not None and the forecaster has been trained including exogenous variables. Used to make predictions unrelated to the original data. Values have to start at the end of the training data.

`None`
exog pandas Series, pandas DataFrame

Value of the exogenous variable/s for the next steps.

`None`

Returns:

Name Type Description
predictions pandas Series

Predicted values.

Source code in skforecast\ForecasterSarimax\ForecasterSarimax.py
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
def predict(
    self,
    steps: int,
    last_window: Optional[pd.Series]=None,
    last_window_exog: Optional[Union[pd.Series, pd.DataFrame]]=None,
    exog: Optional[Union[pd.Series, pd.DataFrame]]=None
) -> pd.Series:
    """
    Forecast future values.

    Generate predictions (forecasts) n steps in the future. Note that if 
    exogenous variables were used in the model fit, they will be expected 
    for the predict procedure and will fail otherwise.

    When predicting using `last_window` and `last_window_exog`, the internal
    statsmodels SARIMAX will be updated using its append method. To do this,
    `last_window` data must start at the end of the index seen by the 
    forecaster, this is stored in forecaster.extended_index.

    Check https://www.statsmodels.org/dev/generated/statsmodels.tsa.arima.model.ARIMAResults.append.html
    to know more about statsmodels append method.

    Parameters
    ----------
    steps : int
        Number of future steps predicted.
    last_window : pandas Series, default `None`
        Series values used to create the predictors needed in the 
        predictions. Used to make predictions unrelated to the original data. 
        Values have to start at the end of the training data.
    last_window_exog : pandas Series, pandas DataFrame, default `None`
        Values of the exogenous variables aligned with `last_window`. Only
        needed when `last_window` is not None and the forecaster has been
        trained including exogenous variables. Used to make predictions 
        unrelated to the original data. Values have to start at the end 
        of the training data.
    exog : pandas Series, pandas DataFrame, default `None`
        Value of the exogenous variable/s for the next steps.

    Returns
    -------
    predictions : pandas Series
        Predicted values.

    """

    # Needs to be a new variable to avoid arima_res_.append when using 
    # self.last_window. It already has it stored.
    last_window_check = last_window if last_window is not None else self.last_window

    check_predict_input(
        forecaster_name  = type(self).__name__,
        steps            = steps,
        fitted           = self.fitted,
        included_exog    = self.included_exog,
        index_type       = self.index_type,
        index_freq       = self.index_freq,
        window_size      = self.window_size,
        last_window      = last_window_check,
        last_window_exog = last_window_exog,
        exog             = exog,
        exog_type        = self.exog_type,
        exog_col_names   = self.exog_col_names,
        interval         = None,
        alpha            = None,
        max_steps        = None,
        levels           = None,
        series_col_names = None
    )

    # If not last_window is provided, last_window needs to be None
    if last_window is not None:
        last_window = last_window.copy()

    # When last_window_exog is provided but no last_window
    if last_window is None and last_window_exog is not None:
        raise ValueError(
            ("To make predictions unrelated to the original data, both "
             "`last_window` and `last_window_exog` must be provided.")
        )

    # Check if forecaster needs exog
    if last_window is not None and last_window_exog is None and self.included_exog:
        raise ValueError(
            ("Forecaster trained with exogenous variable/s. To make predictions "
             "unrelated to the original data, same variable/s must be provided "
             "using `last_window_exog`.")
        )

    if last_window is not None:
        # If predictions do not follow directly from the end of the training 
        # data. The internal statsmodels SARIMAX model needs to be updated 
        # using its append method. The data needs to start at the end of the 
        # training series.

        # check index append values
        expected_index = expand_index(index=self.extended_index, steps=1)[0]
        if expected_index != last_window.index[0]:
            raise ValueError(
                (f"To make predictions unrelated to the original data, `last_window` "
                 f"has to start at the end of the index seen by the forecaster.\n"
                 f"    Series last index         : {self.extended_index[-1]}.\n"
                 f"    Expected index            : {expected_index}.\n"
                 f"    `last_window` index start : {last_window.index[0]}.")
            )

        last_window = transform_series(
                          series            = last_window,
                          transformer       = self.transformer_y,
                          fit               = False,
                          inverse_transform = False
                      )

        # TODO -----------------------------------------------------------------------------------------------------
        # This is done because pmdarima deletes the series name
        # Check issue: https://github.com/alkaline-ml/pmdarima/issues/535
        if self.engine == 'pmdarima':
            last_window.name = None
        # ----------------------------------------------------------------------------------------------------------

        # last_window_exog
        if last_window_exog is not None:
            # check index last_window_exog
            if expected_index != last_window_exog.index[0]:
                raise ValueError(
                    (f"To make predictions unrelated to the original data, `last_window_exog` "
                     f"has to start at the end of the index seen by the forecaster.\n"
                     f"    Series last index              : {self.extended_index[-1]}.\n"
                     f"    Expected index                 : {expected_index}.\n"
                     f"    `last_window_exog` index start : {last_window_exog.index[0]}.")
                )

            if isinstance(last_window_exog, pd.Series):
                # pmdarima.arima.ARIMA only accepts DataFrames or 2d-arrays as exog 
                last_window_exog = last_window_exog.to_frame()

            last_window_exog = transform_dataframe(
                                   df                = last_window_exog,
                                   transformer       = self.transformer_exog,
                                   fit               = False,
                                   inverse_transform = False
                               )

        if self.engine == 'pmdarima':
            self.regressor.arima_res_ = self.regressor.arima_res_.append(
                                            endog = last_window,
                                            exog  = last_window_exog,
                                            refit = False
                                        )
            self.extended_index = self.regressor.arima_res_.fittedvalues.index
        else:
            self.regressor.append(
                y     = last_window,
                exog  = last_window_exog,
                refit = False
            )
            self.extended_index = self.regressor.sarimax_res.fittedvalues.index

    # Exog
    if exog is not None:
        if isinstance(exog, pd.Series):
            # pmdarima.arima.ARIMA only accepts DataFrames or 2d-arrays as exog
            exog = exog.to_frame()

        exog = transform_dataframe(
                   df                = exog,
                   transformer       = self.transformer_exog,
                   fit               = False,
                   inverse_transform = False
               )  
        exog = exog.iloc[:steps, ]

    # Get following n steps predictions
    if self.engine == 'pmdarima':
        predictions = self.regressor.predict(
                          n_periods = steps,
                          X         = exog
                      )
    else:
        predictions = self.regressor.predict(
                          steps = steps,
                          exog  = exog
                      )
        predictions = predictions.iloc[:, 0]

    # Reverse the transformation if needed
    predictions = transform_series(
                      series            = predictions,
                      transformer       = self.transformer_y,
                      fit               = False,
                      inverse_transform = True
                  )
    predictions.name = 'pred'

    return predictions

predict_interval(steps, last_window=None, last_window_exog=None, exog=None, alpha=0.05, interval=None)

Forecast future values and their confidence intervals.

Generate predictions (forecasts) n steps in the future with confidence intervals. Note that if exogenous variables were used in the model fit, they will be expected for the predict procedure and will fail otherwise.

When predicting using last_window and last_window_exog, the internal statsmodels SARIMAX will be updated using its append method. To do this, last_window data must start at the end of the index seen by the forecaster, this is stored in forecaster.extended_index.

Check https://www.statsmodels.org/dev/generated/statsmodels.tsa.arima.model.ARIMAResults.append.html to know more about statsmodels append method.

Parameters:

Name Type Description Default
steps int

Number of future steps predicted.

required
last_window pandas Series

Series values used to create the predictors needed in the predictions. Used to make predictions unrelated to the original data. Values have to start at the end of the training data.

`None`
last_window_exog pandas Series, pandas DataFrame

Values of the exogenous variables aligned with last_window. Only need when last_window is not None and the forecaster has been trained including exogenous variables.

`None`
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s.

`None`
alpha float

The confidence intervals for the forecasts are (1 - alpha) %. If both, alpha and interval are provided, alpha will be used.

`0.05`
interval list

Confidence of the prediction interval estimated. The values must be symmetric. Sequence of percentiles to compute, which must be between 0 and 100 inclusive. For example, interval of 95% should be as interval = [2.5, 97.5]. If both, alpha and interval are provided, alpha will be used.

`None`

Returns:

Name Type Description
predictions pandas DataFrame

Values predicted by the forecaster and their estimated interval.

  • pred: predictions.
  • lower_bound: lower bound of the interval.
  • upper_bound: upper bound of the interval.
Source code in skforecast\ForecasterSarimax\ForecasterSarimax.py
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
def predict_interval(
    self,
    steps: int,
    last_window: Optional[pd.Series]=None,
    last_window_exog: Optional[Union[pd.Series, pd.DataFrame]]=None,
    exog: Optional[Union[pd.Series, pd.DataFrame]]=None,
    alpha: float=0.05,
    interval: list=None,
) -> pd.DataFrame:
    """
    Forecast future values and their confidence intervals.

    Generate predictions (forecasts) n steps in the future with confidence
    intervals. Note that if exogenous variables were used in the model fit, 
    they will be expected for the predict procedure and will fail otherwise.

    When predicting using `last_window` and `last_window_exog`, the internal
    statsmodels SARIMAX will be updated using its append method. To do this,
    `last_window` data must start at the end of the index seen by the 
    forecaster, this is stored in forecaster.extended_index.

    Check https://www.statsmodels.org/dev/generated/statsmodels.tsa.arima.model.ARIMAResults.append.html
    to know more about statsmodels append method.

    Parameters
    ----------
    steps : int
        Number of future steps predicted.
    last_window : pandas Series, default `None`
        Series values used to create the predictors needed in the 
        predictions. Used to make predictions unrelated to the original data. 
        Values have to start at the end of the training data.
    last_window_exog : pandas Series, pandas DataFrame, default `None`
        Values of the exogenous variables aligned with `last_window`. Only
        need when `last_window` is not None and the forecaster has been
        trained including exogenous variables.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s.
    alpha : float, default `0.05`
        The confidence intervals for the forecasts are (1 - alpha) %.
        If both, `alpha` and `interval` are provided, `alpha` will be used.
    interval : list, default `None`
        Confidence of the prediction interval estimated. The values must be
        symmetric. Sequence of percentiles to compute, which must be between 
        0 and 100 inclusive. For example, interval of 95% should be as 
        `interval = [2.5, 97.5]`. If both, `alpha` and `interval` are 
        provided, `alpha` will be used.

    Returns
    -------
    predictions : pandas DataFrame
        Values predicted by the forecaster and their estimated interval.

        - pred: predictions.
        - lower_bound: lower bound of the interval.
        - upper_bound: upper bound of the interval.

    """

    # Needs to be a new variable to avoid arima_res_.append when using 
    # self.last_window. It already has it stored.
    last_window_check = last_window if last_window is not None else self.last_window

    check_predict_input(
        forecaster_name  = type(self).__name__,
        steps            = steps,
        fitted           = self.fitted,
        included_exog    = self.included_exog,
        index_type       = self.index_type,
        index_freq       = self.index_freq,
        window_size      = self.window_size,
        last_window      = last_window_check,
        last_window_exog = last_window_exog,
        exog             = exog,
        exog_type        = self.exog_type,
        exog_col_names   = self.exog_col_names,
        interval         = interval,
        alpha            = alpha,
        max_steps        = None,
        levels           = None,
        series_col_names = None
    )

    # If not last_window is provided, last_window needs to be None
    if last_window is not None:
        last_window = last_window.copy()

    # If last_window_exog is provided but no last_window
    if last_window is None and last_window_exog is not None:
        raise ValueError(
            ("To make predictions unrelated to the original data, both "
             "`last_window` and `last_window_exog` must be provided.")
        )

    # Check if forecaster needs exog
    if last_window is not None and last_window_exog is None and self.included_exog:
        raise ValueError(
            ("Forecaster trained with exogenous variable/s. To make predictions "
             "unrelated to the original data, same variable/s must be provided "
             "using `last_window_exog`.")
        )  

    # If interval and alpha take alpha, if interval transform to alpha
    if alpha is None:
        if 100 - interval[1] != interval[0]:
            raise ValueError(
                (f"When using `interval` in ForecasterSarimax, it must be symmetrical. "
                 f"For example, interval of 95% should be as `interval = [2.5, 97.5]`. "
                 f"Got {interval}.")
            )
        alpha = 2*(100 - interval[1])/100

    if last_window is not None:
        # If predictions do not follow directly from the end of the training 
        # data. The internal statsmodels SARIMAX model needs to be updated 
        # using its append method. The data needs to start at the end of the 
        # training series.

        # check index append values
        expected_index = expand_index(index=self.extended_index, steps=1)[0]
        if expected_index != last_window.index[0]:
            raise ValueError(
                (f"To make predictions unrelated to the original data, `last_window` "
                 f"has to start at the end of the index seen by the forecaster.\n"
                 f"    Series last index         : {self.extended_index[-1]}.\n"
                 f"    Expected index            : {expected_index}.\n"
                 f"    `last_window` index start : {last_window.index[0]}.")
            )

        last_window = transform_series(
                          series            = last_window,
                          transformer       = self.transformer_y,
                          fit               = False,
                          inverse_transform = False
                      )

        # TODO -----------------------------------------------------------------------------------------------------
        # This is done because pmdarima deletes the series name
        # Check issue: https://github.com/alkaline-ml/pmdarima/issues/535
        if self.engine == 'pmdarima':
            last_window.name = None
        # ----------------------------------------------------------------------------------------------------------

        # Transform last_window_exog    
        if last_window_exog is not None:
            # check index last_window_exog
            if expected_index != last_window_exog.index[0]:
                raise ValueError(
                    (f"To make predictions unrelated to the original data, `last_window_exog` "
                     f"has to start at the end of the index seen by the forecaster.\n"
                     f"    Series last index              : {self.extended_index[-1]}.\n"
                     f"    Expected index                 : {expected_index}.\n"
                     f"    `last_window_exog` index start : {last_window_exog.index[0]}.")
                )

            if isinstance(last_window_exog, pd.Series):
                # pmdarima.arima.ARIMA only accepts DataFrames or 2d-arrays as exog 
                last_window_exog = last_window_exog.to_frame()

            last_window_exog = transform_dataframe(
                                   df                = last_window_exog,
                                   transformer       = self.transformer_exog,
                                   fit               = False,
                                   inverse_transform = False
                               )

        if self.engine == 'pmdarima':
            self.regressor.arima_res_ = self.regressor.arima_res_.append(
                                            endog = last_window,
                                            exog  = last_window_exog,
                                            refit = False
                                        )
            self.extended_index = self.regressor.arima_res_.fittedvalues.index
        else:
            self.regressor.append(
                y     = last_window,
                exog  = last_window_exog,
                refit = False
            )
            self.extended_index = self.regressor.sarimax_res.fittedvalues.index

    # Exog
    if exog is not None:
        if isinstance(exog, pd.Series):
            # pmdarima.arima.ARIMA only accepts DataFrames or 2d-arrays as exog
            exog = exog.to_frame()

        exog = transform_dataframe(
                   df                = exog,
                   transformer       = self.transformer_exog,
                   fit               = False,
                   inverse_transform = False
               )  
        exog = exog.iloc[:steps, ]

    # Get following n steps predictions with intervals
    if self.engine == 'pmdarima':
        predicted_mean, conf_int = self.regressor.predict(
                                       n_periods       = steps,
                                       X               = exog,
                                       return_conf_int = True,
                                       alpha           = alpha
                                   )

        predictions = predicted_mean.to_frame(name="pred")
        predictions['lower_bound'] = conf_int[:, 0]
        predictions['upper_bound'] = conf_int[:, 1]
    else:
        predictions = self.regressor.predict(
                          steps = steps,
                          exog  = exog,
                          return_conf_int = True,
                          alpha = alpha
                      )


    # Reverse the transformation if needed
    if self.transformer_y:
        for col in predictions.columns:
            predictions[col] = transform_series(
                                series            = predictions[col],
                                transformer       = self.transformer_y,
                                fit               = False,
                                inverse_transform = True
                           )

    return predictions

set_params(params)

Set new values to the parameters of the model stored in the forecaster.

Parameters:

Name Type Description Default
params dict

Parameters values.

required

Returns:

Type Description
None
Source code in skforecast\ForecasterSarimax\ForecasterSarimax.py
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
def set_params(
    self, 
    params: dict
) -> None:
    """
    Set new values to the parameters of the model stored in the forecaster.

    Parameters
    ----------
    params : dict
        Parameters values.

    Returns
    -------
    None

    """

    self.regressor = clone(self.regressor)
    self.regressor.set_params(**params)
    self.params = self.regressor.get_params(deep=True)

set_fit_kwargs(fit_kwargs)

Set new values for the additional keyword arguments passed to the fit method of the regressor.

Parameters:

Name Type Description Default
fit_kwargs dict

Dict of the form {"argument": new_value}.

required

Returns:

Type Description
None
Source code in skforecast\ForecasterSarimax\ForecasterSarimax.py
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
def set_fit_kwargs(
    self, 
    fit_kwargs: dict
) -> None:
    """
    Set new values for the additional keyword arguments passed to the `fit` 
    method of the regressor.

    Parameters
    ----------
    fit_kwargs : dict
        Dict of the form {"argument": new_value}.

    Returns
    -------
    None

    """

    if self.engine == 'pmdarima':
        self.fit_kwargs = check_select_fit_kwargs(self.regressor, fit_kwargs=fit_kwargs)
    else:
        warnings.warn(
            ("When using the skforecast Sarimax model, the fit kwargs should "
             "be passed using the model parameter `sm_fit_kwargs`."),
             IgnoredArgumentWarning
        )
        self.fit_kwargs = {}

get_feature_importances()

Return feature importances of the regressor stored in the forecaster.

Parameters:

Name Type Description Default
self
required

Returns:

Name Type Description
feature_importances pandas DataFrame

Feature importances associated with each predictor.

Source code in skforecast\ForecasterSarimax\ForecasterSarimax.py
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
def get_feature_importances(
    self
) -> pd.DataFrame:
    """
    Return feature importances of the regressor stored in the forecaster.

    Parameters
    ----------
    self

    Returns
    -------
    feature_importances : pandas DataFrame
        Feature importances associated with each predictor.

    """

    if not self.fitted:
        raise NotFittedError(
            ("This forecaster is not fitted yet. Call `fit` with appropriate "
             "arguments before using `get_feature_importances()`.")
        )

    feature_importances = self.regressor.params().to_frame().reset_index()
    feature_importances.columns = ['feature', 'importance']

    return feature_importances

get_info_criteria(criteria='aic', method='standard')

Get the selected information criteria.

Check https://www.statsmodels.org/dev/generated/statsmodels.tsa.statespace.sarimax.SARIMAXResults.info_criteria.html to know more about statsmodels info_criteria method.

Parameters:

Name Type Description Default
criteria str

The information criteria to compute. Valid options are {'aic', 'bic', 'hqic'}.

`'aic'`
method str

The method for information criteria computation. Default is 'standard' method; 'lutkepohl' computes the information criteria as in Lütkepohl (2007).

`'standard'`

Returns:

Name Type Description
metric float

The value of the selected information criteria.

Source code in skforecast\ForecasterSarimax\ForecasterSarimax.py
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
def get_info_criteria(
    self, 
    criteria: str='aic', 
    method: str='standard'
) -> float:
    """
    Get the selected information criteria.

    Check https://www.statsmodels.org/dev/generated/statsmodels.tsa.statespace.sarimax.SARIMAXResults.info_criteria.html
    to know more about statsmodels info_criteria method.

    Parameters
    ----------
    criteria : str, default `'aic'`
        The information criteria to compute. Valid options are {'aic', 'bic',
        'hqic'}.
    method : str, default `'standard'`
        The method for information criteria computation. Default is 'standard'
        method; 'lutkepohl' computes the information criteria as in Lütkepohl
        (2007).

    Returns
    -------
    metric : float
        The value of the selected information criteria.

    """

    if criteria not in ['aic', 'bic', 'hqic']:
        raise ValueError(
            (f"Invalid value for `criteria`. Valid options are 'aic', 'bic', "
             f"and 'hqic'.")
        )

    if method not in ['standard', 'lutkepohl']:
        raise ValueError(
            (f"Invalid value for `method`. Valid options are 'standard' and "
             f"'lutkepohl'.")
        )

    if self.engine == 'pmdarima':
        metric = self.regressor.arima_res_.info_criteria(criteria=criteria, method=method)
    else:
        metric = self.regressor.get_info_criteria(criteria=criteria, method=method)

    return metric