Skip to content

Datasets

fetch_dataset(name, version='latest', raw=False, kwargs_read_csv={}, verbose=True)

Fetch a dataset from the skforecast-datasets repository. Available datasets are: 'h2o', 'items_sales', 'air_pollution', 'fuel_consumption', 'web_visits', 'bike_sharing', 'store_item_demand'.

Parameters:

Name Type Description Default
name str

Name of the dataset to fetch.

required
version str

Version of the dataset to fetch. If 'latest', the lastest version will be fetched (the one in the main branch). For a list of available versions, see the repository branches.

'latest'
raw bool

If True, the raw dataset is fetched. If False, the preprocessed dataset is fetched. The preprocessing consists of setting the column with the date/time as index and converting the index to datetime. A frequency is also set to the index.

False
kwargs_read_csv dict

Kwargs to pass to pandas read_csv function.

{}
verbose bool

If True, print information about the dataset.

True

Returns:

Name Type Description
df pandas DataFrame

Dataset.

Source code in skforecast\datasets\datasets.py
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
def fetch_dataset(
    name : str,
    version: str = 'latest',
    raw: bool = False,
    kwargs_read_csv: dict = {},
    verbose: bool = True
) -> pd.DataFrame:
    """
    Fetch a dataset from the skforecast-datasets repository. Available datasets
    are: 'h2o', 'items_sales', 'air_pollution', 'fuel_consumption', 'web_visits',
    'bike_sharing', 'store_item_demand'.

    Parameters
    ----------
    name: str
        Name of the dataset to fetch.
    version: str, int, default `'latest'`
        Version of the dataset to fetch. If 'latest', the lastest version will be 
        fetched (the one in the main branch). For a list of available versions, 
        see the repository branches.
    raw: bool, default `False`
        If True, the raw dataset is fetched. If False, the preprocessed dataset 
        is fetched. The preprocessing consists of setting the column with the 
        date/time as index and converting the index to datetime. A frequency is 
        also set to the index.
    kwargs_read_csv: dict, default `{}`
        Kwargs to pass to pandas `read_csv` function.
    verbose: bool, default `True`
        If True, print information about the dataset.

    Returns
    -------
    df: pandas DataFrame
        Dataset.

    """

    version = 'main' if version == 'latest' else f'{version}'

    datasets = {
        'h2o': {
            'url': (
                f'https://raw.githubusercontent.com/JoaquinAmatRodrigo/'
                f'skforecast-datasets/{version}/data/h2o.csv'
            ),
            'sep': ',',
            'index_col': 'fecha',
            'date_format': '%Y-%m-%d',
            'freq': 'MS',
            'description': (
                'Monthly expenditure ($AUD) on corticosteroid drugs that the '
                'Australian health system had between 1991 and 2008. '
            ),
            'source': (
                'Hyndman R (2023). fpp3: Data for Forecasting: Principles and Practice'
                '(3rd Edition). http://pkg.robjhyndman.com/fpp3package/,'
                'https://github.com/robjhyndman/fpp3package, http://OTexts.com/fpp3.'
            )
        },
        'h2o_exog': {
            'url': (
                f"https://raw.githubusercontent.com/JoaquinAmatRodrigo/"
                f"skforecast-datasets/{version}/data/h2o_exog.csv"
            ),
            'sep': ',',
            'index_col': 'fecha',
            'date_format': '%Y-%m-%d',
            'freq': 'MS',
            'description': (
                'Monthly expenditure ($AUD) on corticosteroid drugs that the '
                'Australian health system had between 1991 and 2008. Two additional '
                'variables (exog_1, exog_2) are simulated.'
            ),
            'source': (
                "Hyndman R (2023). fpp3: Data for Forecasting: Principles and Practice "
                "(3rd Edition). http://pkg.robjhyndman.com/fpp3package/, "
                "https://github.com/robjhyndman/fpp3package, http://OTexts.com/fpp3."
            )
        },
        'fuel_consumption': {
            'url' : (
                f'https://raw.githubusercontent.com/JoaquinAmatRodrigo/'
                f'skforecast-datasets/{version}/data/consumos-combustibles-mensual.csv'
            ),
            'sep': ',',
            'index_col': 'Fecha',
            'date_format': '%Y-%m-%d',
            'freq': 'MS',
            'description': (
                'Monthly fuel consumption in Spain from 1969-01-01 to 2022-08-01.'
            ),
            'source': (
                'Obtained from Corporación de Reservas Estratégicas de Productos '
                'Petrolíferos and Corporación de Derecho Público tutelada por el '
                'Ministerio para la Transición Ecológica y el Reto Demográfico. '
                'https://www.cores.es/es/estadisticas'
            )
        },
        'items_sales': {
            'url': (
                f'https://raw.githubusercontent.com/JoaquinAmatRodrigo/'
                f'skforecast-datasets/{version}/data/simulated_items_sales.csv'
            ),
            'sep': ',',
            'index_col': 'date',
            'date_format': '%Y-%m-%d',
            'freq': 'D',
            'description': 'Simulated time series for the sales of 3 different items.',
            'source': 'Simulated data.'
        },
        'air_quality_valencia': {
            'url': (
                f"https://raw.githubusercontent.com/JoaquinAmatRodrigo/"
                f"skforecast-datasets/{version}/data/air_quality_valencia.csv"
            ),
            'sep': ',',
            'index_col': 'datetime',
            'date_format': '%Y-%m-%d %H:%M:%S',
            'freq': 'H',
            'description': (
                'Hourly measures of several air quimical pollutant (pm2.5, co, no, '
                'no2, pm10, nox, o3, so2) at Valencia city.'
            ),
            'source': (
                " Red de Vigilancia y Control de la Contaminación Atmosférica, "
                "46250054-València - Centre, "
                "https://mediambient.gva.es/es/web/calidad-ambiental/datos-historicos."
            )
        },
        'website_visits': {
            'url' : (
                f'https://raw.githubusercontent.com/JoaquinAmatRodrigo/'
                f'skforecast-datasets/{version}/data/visitas_por_dia_web_cienciadedatos.csv'
            ),
            'sep': ',',
            'index_col': 'date',
            'date_format': '%Y-%m-%d',
            'freq': '1D',
            'description': (
                'Daily visits to the cienciadedatos.net website registered with the '
                'google analytics service.'
            ),
            'source': (
                "Amat Rodrigo, J. (2021). cienciadedatos.net (1.0.0). Zenodo. "
                "https://doi.org/10.5281/zenodo.10006330"
            )
        },
        'bike_sharing': {
            'url' : (
                f'https://raw.githubusercontent.com/JoaquinAmatRodrigo/'
                f'skforecast-datasets/{version}/data/bike_sharing_dataset_clean.csv'
            ),
            'sep': ',',
            'index_col': 'date_time',
            'date_format': '%Y-%m-%d %H:%M:%S',
            'freq': 'H',
            'description': (
                'Hourly usage of the bike share system in the city of Washington D.C. '
                'during the years 2011 and 2012. In addition to the number of users per '
                'hour, information about weather conditions and holidays is available.'
            ),
            'source': (
                "Fanaee-T,Hadi. (2013). Bike Sharing Dataset. UCI Machine Learning "
                "Repository. https://doi.org/10.24432/C5W894."
            )
        },
        'australia_tourism': {
            'url' : (
                f'https://raw.githubusercontent.com/JoaquinAmatRodrigo/'
                f'skforecast-datasets/{version}/data/australia_tourism.csv'
            ),
            'sep': ',',
            'index_col': 'date_time',
            'date_format': '%Y-%m-%d',
            'freq': 'Q',
            'description': (
                "Quarterly overnight trips (in thousands) from 1998 Q1 to 2016 Q4 "
                "across Australia. The tourism regions are formed through the "
                "aggregation of Statistical Local Areas (SLAs) which are defined by "
                "the various State and Territory tourism authorities according to "
                "their research and marketing needs."
            ),
            'source': (
                "Wang, E, D Cook, and RJ Hyndman (2020). A new tidy data structure to "
                "support exploration and modeling of temporal data, Journal of "
                "Computational and Graphical Statistics, 29:3, 466-478, "
                "doi:10.1080/10618600.2019.1695624."
            )
        },
        'uk_daily_flights': {
            'url': (
                f'https://raw.githubusercontent.com/JoaquinAmatRodrigo/'
                f'skforecast-datasets/{version}/data/uk_daily_flights.csv'
            ),
            'sep': ',',
            'index_col': 'Date',
            'date_format': '%d/%m/%Y',
            'freq': 'D',
            'description': 'Daily number of flights in UK from 02/01/2019 to 23/01/2022.',
            'source': (
                'Experimental statistics published as part of the Economic activity and '
                'social change in the UK, real-time indicators release, Published 27 '
                'January 2022. Daily flight numbers are available in the dashboard '
                'provided by the European Organisation for the Safety of Air Navigation '
                '(EUROCONTROL). '
                'https://www.ons.gov.uk/economy/economicoutputandproductivity/output/'
                'bulletins/economicactivityandsocialchangeintheukrealtimeindicators/latest'
            )
        },
        'wikipedia_visits': {
            'url': (
                f'https://raw.githubusercontent.com/JoaquinAmatRodrigo/'
                f'skforecast-datasets/{version}/data/wikipedia_visits.csv'
            ),
            'sep': ',',
            'index_col': 'date',
            'date_format': '%Y-%m-%d',
            'freq': 'D',
            'description': (
                'Log daily page views for the Wikipedia page for Peyton Manning. '
                'Scraped data using the Wikipediatrend package in R.'
            ),
            'source': (
                'https://github.com/facebook/prophet/blob/main/examples/'
                'example_wp_log_peyton_manning.csv'
            )
        },
        'vic_electricity': {
            'url': (
                f'https://raw.githubusercontent.com/JoaquinAmatRodrigo/'
                f'skforecast-datasets/{version}/data/vic_electricity.csv'
            ),
            'sep': ',',
            'index_col': 'Time',
            'date_format': '%Y-%m-%dT%H:%M:%SZ',
            'freq': '30min',
            'description': 'Half-hourly electricity demand for Victoria, Australia',
            'source': (
                "O'Hara-Wild M, Hyndman R, Wang E, Godahewa R (2022).tsibbledata: Diverse "
                "Datasets for 'tsibble'. https://tsibbledata.tidyverts.org/, "
                "https://github.com/tidyverts/tsibbledata/. "
                "https://tsibbledata.tidyverts.org/reference/vic_elec.html"
            )
        },
        'store_sales': {
            'url': (
                f'https://raw.githubusercontent.com/JoaquinAmatRodrigo/'
                f'skforecast-datasets/{version}/data/store_sales.csv'
            ),
            'sep': ',',
            'index_col': 'date',
            'date_format': '%Y-%m-%d',
            'freq': '1D',
            'description': (
                'This dataset contains 913,000 sales transactions from 2013-01-01 to '
                '2017-12-31 for 50 products (SKU) in 10 stores.'
            ),
            'source': (
                'The original data was obtained from: inversion. (2018). Store Item '
                'Demand Forecasting Challenge. Kaggle. '
                'https://kaggle.com/competitions/demand-forecasting-kernels-only'
            )
        }
    }

    if name not in datasets.keys():
        raise ValueError(
            f"Dataset {name} not found. Available datasets are: {list(datasets.keys())}"
        )

    url = datasets[name]['url']

    try:
        sep = datasets[name]['sep']
        df = pd.read_csv(url, sep=sep, **kwargs_read_csv)
    except:
        raise ValueError(
            f"Error reading dataset {name} from {url}. Try to version = 'latest'"
        )

    if not raw:
        try:
            index_col = datasets[name]['index_col']
            freq = datasets[name]['freq']
            date_format = datasets[name]['date_format']
            df = df.set_index(index_col)
            df.index = pd.to_datetime(df.index, format=date_format)
            df = df.asfreq(freq)
            df = df.sort_index()
        except:
            pass

    if verbose:
        print(name)
        print('-'*len(name))
        description = textwrap.fill(datasets[name]['description'], width=80)
        source = textwrap.fill(datasets[name]['source'], width=80)
        print(description)
        print(source)
        print(f"Shape of the dataset: {df.shape}")

    return df

load_demo_dataset(version='latest')

Load demo data set with monthly expenditure ($AUD) on corticosteroid drugs that the Australian health system had between 1991 and 2008. Obtained from the book: Forecasting: Principles and Practice by Rob J Hyndman and George Athanasopoulos. Index is set to datetime with monthly frequency and sorted.

Parameters:

Name Type Description Default
version str

Version of the dataset to fetch. If 'latest', the lastest version will be fetched (the one in the main branch). For a list of available versions, see the repository branches.

'latest'

Returns:

Name Type Description
df pandas Series

Dataset.

Source code in skforecast\datasets\datasets.py
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
def load_demo_dataset(version: str = 'latest') -> pd.Series:
    """
    Load demo data set with monthly expenditure ($AUD) on corticosteroid drugs that
    the Australian health system had between 1991 and 2008. Obtained from the book:
    Forecasting: Principles and Practice by Rob J Hyndman and George Athanasopoulos.
    Index is set to datetime with monthly frequency and sorted.

    Parameters
    ----------
    version: str, default `'latest'`
        Version of the dataset to fetch. If 'latest', the lastest version will be
        fetched (the one in the main branch). For a list of available versions,
        see the repository branches.

    Returns
    -------
    df: pandas Series
        Dataset.

    """

    version = 'main' if version == 'latest' else f'{version}'

    url = (
        f'https://raw.githubusercontent.com/JoaquinAmatRodrigo/skforecast-datasets/{version}/'
        'data/h2o.csv'
    )

    df = pd.read_csv(url, sep=',', header=0, names=['y', 'datetime'])
    df['datetime'] = pd.to_datetime(df['datetime'], format='%Y-%m-%d')
    df = df.set_index('datetime')
    df = df.asfreq('MS')
    df = df['y']
    df = df.sort_index()

    return df