Skip to content

exceptions

MissingValuesExogWarning(message)

Bases: UserWarning

Warning used to notify there are missing values in the exogenous data. This warning occurs when the input data passed to the exog arguments contains missing values. Most machine learning models do not accept missing values, therefore the forecaster fit and predict may fail.

Source code in skforecast\exceptions\exceptions.py
20
21
def __init__(self, message):
    self.message = message

DataTypeWarning(message)

Bases: UserWarning

Warning used to notify there are dtypes in the exogenous data that are not 'int', 'float', 'bool' or 'category'. Most machine learning models do not accept other data types, therefore the forecaster fit and predict may fail.

Source code in skforecast\exceptions\exceptions.py
37
38
def __init__(self, message):
    self.message = message

LongTrainingWarning(message)

Bases: UserWarning

Warning used to notify that a large number of models will be trained and the the process may take a while to run.

Source code in skforecast\exceptions\exceptions.py
53
54
def __init__(self, message):
    self.message = message

IgnoredArgumentWarning(message)

Bases: UserWarning

Warning used to notify that an argument is ignored when using a method or a function.

Source code in skforecast\exceptions\exceptions.py
69
70
def __init__(self, message):
    self.message = message

SkforecastVersionWarning(message)

Bases: UserWarning

Warning used to notify that the skforecast version installed in the environment differs from the version used to initialize the forecaster.

Source code in skforecast\exceptions\exceptions.py
85
86
def __init__(self, message):
    self.message = message