utils
¶
save_forecaster(forecaster, file_name, verbose=True)
¶
Save forecaster model using joblib.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
forecaster |
Forecaster created with skforecast library. |
required | |
file_name |
str
|
File name given to the object. |
required |
verbose |
bool
|
Print summary about the forecaster saved. |
True
|
Returns:
Type | Description |
---|---|
None
|
|
Source code in skforecast\utils\utils.py
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 |
|
load_forecaster(file_name, verbose=True)
¶
Load forecaster model using joblib.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
file_name |
str
|
Object file name. |
required |
verbose |
bool
|
Print summary about the forecaster loaded. |
True
|
Returns:
Name | Type | Description |
---|---|---|
forecaster |
forecaster
|
Forecaster created with skforecast library. |
Source code in skforecast\utils\utils.py
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 |
|
initialize_lags(forecaster_name, lags)
¶
Check lags argument input and generate the corresponding numpy ndarray.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
forecaster_name |
str
|
Forecaster name. ForecasterAutoreg, ForecasterAutoregCustom, ForecasterAutoregDirect, ForecasterAutoregMultiSeries, ForecasterAutoregMultiSeriesCustom, ForecasterAutoregMultiVariate. |
required |
lags |
Any
|
Lags used as predictors. |
required |
Returns:
Name | Type | Description |
---|---|---|
lags |
numpy ndarray
|
Lags used as predictors. |
Source code in skforecast\utils\utils.py
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
|
initialize_weights(forecaster_name, regressor, weight_func, series_weights)
¶
Check weights arguments, weight_func
and series_weights
for the different
forecasters. Create source_code_weight_func
, source code of the custom
function(s) used to create weights.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
forecaster_name |
str
|
Forecaster name. ForecasterAutoreg, ForecasterAutoregCustom, ForecasterAutoregDirect, ForecasterAutoregMultiSeries, ForecasterAutoregMultiSeriesCustom, ForecasterAutoregMultiVariate. |
required |
regressor |
regressor or pipeline compatible with the scikit-learn API
|
Regressor of the forecaster. |
required |
weight_func |
(Callable, dict)
|
Argument |
required |
series_weights |
dict
|
Argument |
required |
Returns:
Name | Type | Description |
---|---|---|
weight_func |
(Callable, dict)
|
Argument |
source_code_weight_func |
(str, dict)
|
Argument |
series_weights |
dict
|
Argument |
Source code in skforecast\utils\utils.py
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
|
check_select_fit_kwargs(regressor, fit_kwargs=None)
¶
Check if fit_kwargs
is a dict and select only the keys that are used by
the fit
method of the regressor.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
regressor |
object
|
Regressor object. |
required |
fit_kwargs |
dict
|
Dictionary with the arguments to pass to the `fit' method of the forecaster. |
`None`
|
Returns:
Name | Type | Description |
---|---|---|
fit_kwargs |
dict
|
Dictionary with the arguments to be passed to the |
Source code in skforecast\utils\utils.py
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
|
check_y(y)
¶
Raise Exception if y
is not pandas Series or if it has missing values.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y |
Any
|
Time series values. |
required |
Returns:
Type | Description |
---|---|
None
|
|
Source code in skforecast\utils\utils.py
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
|
check_exog(exog, allow_nan=True)
¶
Raise Exception if exog
is not pandas Series or pandas DataFrame.
If allow_nan = True
, issue a warning if exog
contains NaN values.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
exog |
Any
|
Exogenous variable/s included as predictor/s. |
required |
allow_nan |
bool
|
If True, allows the presence of NaN values in |
`True`
|
Returns:
Type | Description |
---|---|
None
|
|
Source code in skforecast\utils\utils.py
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
|
get_exog_dtypes(exog)
¶
Store dtypes of exog
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
exog |
pandas DataFrame, pandas Series
|
Exogenous variable/s included as predictor/s. |
required |
Returns:
Name | Type | Description |
---|---|---|
exog_dtypes |
dict
|
Dictionary with the dtypes in |
Source code in skforecast\utils\utils.py
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
|
check_exog_dtypes(exog)
¶
Raise Exception if exog
has categorical columns with non integer values.
This is needed when using machine learning regressors that allow categorical
features.
Issue a Warning if exog
has columns that are not init
, float
, or category
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
exog |
pandas DataFrame, pandas Series
|
Exogenous variable/s included as predictor/s. |
required |
Returns:
Type | Description |
---|---|
None
|
|
Source code in skforecast\utils\utils.py
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
|
check_interval(interval=None, quantiles=None, alpha=None)
¶
Check provided confidence interval sequence is valid.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
interval |
list
|
Confidence of the prediction interval estimated. Sequence of percentiles
to compute, which must be between 0 and 100 inclusive. For example,
interval of 95% should be as |
`None`
|
quantiles |
list
|
Sequence of quantiles to compute, which must be between 0 and 1
inclusive. For example, quantiles of 0.05, 0.5 and 0.95 should be as
|
`None`
|
alpha |
float
|
The confidence intervals used in ForecasterSarimax are (1 - alpha) %. |
`None`
|
Returns:
Type | Description |
---|---|
None
|
|
Source code in skforecast\utils\utils.py
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
|
check_predict_input(forecaster_name, steps, fitted, included_exog, index_type, index_freq, window_size, last_window=None, last_window_exog=None, exog=None, exog_type=None, exog_col_names=None, interval=None, alpha=None, max_steps=None, levels=None, series_col_names=None)
¶
Check all inputs of predict method. This is a helper function to validate that inputs used in predict method match attributes of a forecaster already trained.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
forecaster_name |
str
|
Forecaster name. ForecasterAutoreg, ForecasterAutoregCustom, ForecasterAutoregDirect, ForecasterAutoregMultiSeries, ForecasterAutoregMultiSeriesCustom, ForecasterAutoregMultiVariate. |
required |
steps |
(int, list)
|
Number of future steps predicted. |
required |
fitted |
bool
|
Tag to identify if the regressor has been fitted (trained). |
required |
included_exog |
bool
|
If the forecaster has been trained using exogenous variable/s. |
required |
index_type |
type
|
Type of index of the input used in training. |
required |
index_freq |
str
|
Frequency of Index of the input used in training. |
required |
window_size |
int
|
Size of the window needed to create the predictors. It is equal to
|
required |
last_window |
pandas Series, pandas DataFrame
|
Values of the series used to create the predictors (lags) need in the first iteration of prediction (t + 1). |
`None`
|
last_window_exog |
pandas Series, pandas DataFrame
|
Values of the exogenous variables aligned with |
`None`
|
exog |
pandas Series, pandas DataFrame
|
Exogenous variable/s included as predictor/s. |
`None`
|
exog_type |
type
|
Type of exogenous variable/s used in training. |
`None`
|
exog_col_names |
list
|
Names of columns of |
`None`
|
interval |
list
|
Confidence of the prediction interval estimated. Sequence of percentiles
to compute, which must be between 0 and 100 inclusive. For example,
interval of 95% should be as |
`None`
|
alpha |
float
|
The confidence intervals used in ForecasterSarimax are (1 - alpha) %. |
`None`
|
max_steps |
Optional[int]
|
Maximum number of steps allowed ( |
None
|
levels |
(str, list)
|
Time series to be predicted ( |
`None`
|
series_col_names |
list
|
Names of the columns used during fit ( |
`None`
|
Returns:
Type | Description |
---|---|
None
|
|
Source code in skforecast\utils\utils.py
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 |
|
preprocess_y(y, return_values=True)
¶
Return values and index of series separately. Index is overwritten according to the next rules:
- If index is of type
DatetimeIndex
and has frequency, nothing is changed. - If index is of type
RangeIndex
, nothing is changed. - If index is of type
DatetimeIndex
but has no frequency, aRangeIndex
is created. - If index is not of type
DatetimeIndex
, aRangeIndex
is created.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y |
pandas Series, pandas DataFrame
|
Time series. |
required |
return_values |
bool
|
If |
`True`
|
Returns:
Name | Type | Description |
---|---|---|
y_values |
None, numpy ndarray
|
Numpy array with values of |
y_index |
pandas Index
|
Index of |
Source code in skforecast\utils\utils.py
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 |
|
preprocess_last_window(last_window, return_values=True)
¶
Return values and index of series separately. Index is overwritten according to the next rules:
- If index is of type
DatetimeIndex
and has frequency, nothing is changed. - If index is of type
RangeIndex
, nothing is changed. - If index is of type
DatetimeIndex
but has no frequency, aRangeIndex
is created. - If index is not of type
DatetimeIndex
, aRangeIndex
is created.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
last_window |
pandas Series, pandas DataFrame
|
Time series values. |
required |
return_values |
bool
|
If |
`True`
|
Returns:
Name | Type | Description |
---|---|---|
last_window_values |
numpy ndarray
|
Numpy array with values of |
last_window_index |
pandas Index
|
Index of |
Source code in skforecast\utils\utils.py
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 |
|
preprocess_exog(exog, return_values=True)
¶
Return values and index of series or data frame separately. Index is overwritten according to the next rules:
- If index is of type
DatetimeIndex
and has frequency, nothing is changed. - If index is of type
RangeIndex
, nothing is changed. - If index is of type
DatetimeIndex
but has no frequency, aRangeIndex
is created. - If index is not of type
DatetimeIndex
, aRangeIndex
is created.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
exog |
pandas Series, pandas DataFrame
|
Exogenous variables. |
required |
return_values |
bool
|
If |
`True`
|
Returns:
Name | Type | Description |
---|---|---|
exog_values |
None, numpy ndarray
|
Numpy array with values of |
exog_index |
pandas Index
|
Index of |
Source code in skforecast\utils\utils.py
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 |
|
cast_exog_dtypes(exog, exog_dtypes)
¶
Cast exog
to a specified types. This is done because, for a forecaster to
accept a categorical exog, it must contain only integer values. Due to the
internal modifications of numpy, the values may be casted to float
, so
they have to be re-converted to int
.
- If
exog
is a pandas Series,exog_dtypes
must be a dict with a single value. - If
exog_dtypes
iscategory
but the current type ofexog
isfloat
, then the type is cast toint
and then tocategory
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
exog |
pandas Series, pandas DataFrame
|
Exogenous variables. |
required |
exog_dtypes |
dict
|
Dictionary with name and type of the series or data frame columns. |
required |
Returns:
Name | Type | Description |
---|---|---|
exog |
pandas Series, pandas DataFrame
|
Exogenous variables casted to the indicated dtypes. |
Source code in skforecast\utils\utils.py
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 |
|
exog_to_direct(exog, steps)
¶
Transforms exog
to a pandas DataFrame with the shape needed for Direct
forecasting.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
exog |
pandas Series, pandas DataFrame
|
Exogenous variables. |
required |
steps |
int.
|
Number of steps that will be predicted using exog. |
required |
Returns:
Name | Type | Description |
---|---|---|
exog_transformed |
pandas DataFrame
|
Exogenous variables transformed. |
Source code in skforecast\utils\utils.py
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 |
|
exog_to_direct_numpy(exog, steps)
¶
Transforms exog
to numpy ndarray with the shape needed for Direct
forecasting.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
exog |
numpy ndarray, shape(samples,)
|
Exogenous variables. |
required |
steps |
int.
|
Number of steps that will be predicted using exog. |
required |
Returns:
Name | Type | Description |
---|---|---|
exog_transformed |
numpy ndarray
|
Exogenous variables transformed. |
Source code in skforecast\utils\utils.py
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 |
|
expand_index(index, steps)
¶
Create a new index of length steps
starting at the end of the index.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
index |
pandas Index, None
|
Original index. |
required |
steps |
int
|
Number of steps to expand. |
required |
Returns:
Name | Type | Description |
---|---|---|
new_index |
pandas Index
|
New index. |
Source code in skforecast\utils\utils.py
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 |
|
transform_series(series, transformer, fit=False, inverse_transform=False)
¶
Transform raw values of pandas Series with a scikit-learn alike transformer (preprocessor). The transformer used must have the following methods: fit, transform, fit_transform and inverse_transform. ColumnTransformers are not allowed since they do not have inverse_transform method.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
series |
pandas Series
|
Series to be transformed. |
required |
transformer |
scikit-learn alike transformer (preprocessor).
|
scikit-learn alike transformer (preprocessor) with methods: fit, transform, fit_transform and inverse_transform. ColumnTransformers are not allowed since they do not have inverse_transform method. |
required |
fit |
bool
|
Train the transformer before applying it. |
`False`
|
inverse_transform |
bool
|
Transform back the data to the original representation. |
`False`
|
Returns:
Name | Type | Description |
---|---|---|
series_transformed |
pandas Series, pandas DataFrame
|
Transformed Series. Depending on the transformer used, the output may be a Series or a DataFrame. |
Source code in skforecast\utils\utils.py
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 |
|
transform_dataframe(df, transformer, fit=False, inverse_transform=False)
¶
Transform raw values of pandas DataFrame with a scikit-learn alike
transformer, preprocessor or ColumnTransformer. inverse_transform
is not
available when using ColumnTransformers.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df |
pandas DataFrame
|
DataFrame to be transformed. |
required |
transformer |
scikit-learn alike transformer, preprocessor or ColumnTransformer.
|
scikit-learn alike transformer, preprocessor or ColumnTransformer. |
required |
fit |
bool
|
Train the transformer before applying it. |
`False`
|
inverse_transform |
bool
|
Transform back the data to the original representation. This is not available when using transformers of class scikit-learn ColumnTransformers. |
`False`
|
Returns:
Name | Type | Description |
---|---|---|
df_transformed |
pandas DataFrame
|
Transformed DataFrame. |
Source code in skforecast\utils\utils.py
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 |
|
check_optional_dependency(package_name)
¶
Check if an optional dependency is installed, if not raise an ImportError
with installation instructions.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
package_name |
str
|
Name of the package to check. |
required |
Returns:
Type | Description |
---|---|
None
|
|
Source code in skforecast\utils\utils.py
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 |
|
multivariate_time_series_corr(time_series, other, lags, method='pearson')
¶
Compute correlation between a time_series and the lagged values of other time series.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
time_series |
pandas Series
|
Target time series. |
required |
other |
pandas DataFrame
|
Time series whose lagged values are correlated to |
required |
lags |
int, list, numpy ndarray
|
Lags to be included in the correlation analysis. |
required |
method |
str
|
|
'pearson'
|
Returns:
Name | Type | Description |
---|---|---|
corr |
pandas DataFrame
|
Correlation values. |
Source code in skforecast\utils\utils.py
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 |
|
check_backtesting_input(forecaster, steps, metric, y=None, series=None, initial_train_size=None, fixed_train_size=True, gap=0, allow_incomplete_fold=True, refit=False, interval=None, alpha=None, n_boot=500, random_state=123, in_sample_residuals=True, n_jobs='auto', verbose=False, show_progress=True)
¶
This is a helper function to check most inputs of backtesting functions in
modules model_selection
, model_selection_multiseries
and
model_selection_sarimax
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
forecaster |
object
|
Forecaster model. |
required |
steps |
(int, list)
|
Number of future steps predicted. |
required |
metric |
(str, Callable, list)
|
Metric used to quantify the goodness of fit of the model. |
required |
y |
pandas Series
|
Training time series for uni-series forecasters. |
None
|
series |
pandas DataFrame
|
Training time series for multi-series forecasters. |
None
|
initial_train_size |
int
|
Number of samples in the initial train split. If |
`None`
|
fixed_train_size |
bool
|
If True, train size doesn't increase but moves by |
`True`
|
gap |
int
|
Number of samples to be excluded after the end of each training set and before the test set. |
`0`
|
allow_incomplete_fold |
bool
|
Last fold is allowed to have a smaller number of samples than the
|
`True`
|
refit |
(bool, int)
|
Whether to re-fit the forecaster in each iteration. If |
`False`
|
interval |
list
|
Confidence of the prediction interval estimated. Sequence of percentiles to compute, which must be between 0 and 100 inclusive. |
`None`
|
alpha |
float
|
The confidence intervals used in ForecasterSarimax are (1 - alpha) %. |
`None`
|
n_boot |
int
|
Number of bootstrapping iterations used to estimate prediction intervals. |
`500`
|
random_state |
int
|
Sets a seed to the random generator, so that boot intervals are always deterministic. |
`123`
|
in_sample_residuals |
bool
|
If |
`True`
|
n_jobs |
(int, auto)
|
The number of jobs to run in parallel. If |
`'auto'`
|
verbose |
bool
|
Print number of folds and index of training and validation sets used for backtesting. |
`False`
|
show_progress |
bool
|
Whether to show a progress bar. |
True
|
Returns:
Type | Description |
---|---|
None
|
|
Source code in skforecast\utils\utils.py
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 |
|
select_n_jobs_backtesting(forecaster_name, regressor_name, refit)
¶
Select the optimal number of jobs to use in the backtesting process. This selection is based on heuristics and is not guaranteed to be optimal.
The number of jobs is chosen as follows:
- If
refit
is an integer, then n_jobs=1. This is because parallelization doesn't work with intermittent refit. - If forecaster_name is 'ForecasterAutoreg' or 'ForecasterAutoregCustom' and regressor_name is a linear regressor, then n_jobs=1.
- If forecaster_name is 'ForecasterAutoreg' or 'ForecasterAutoregCustom',
regressor_name is not a linear regressor and refit=
True
, then n_jobs=cpu_count(). - If forecaster_name is 'ForecasterAutoreg' or 'ForecasterAutoregCustom',
regressor_name is not a linear regressor and refit=
False
, then n_jobs=1. - If forecaster_name is 'ForecasterAutoregDirect' or 'ForecasterAutoregMultiVariate'
and refit=
True
, then n_jobs=cpu_count(). - If forecaster_name is 'ForecasterAutoregDirect' or 'ForecasterAutoregMultiVariate'
and refit=
False
, then n_jobs=1. - If forecaster_name is 'ForecasterAutoregMultiseries' or 'ForecasterAutoregMultiseriesCustom', then n_jobs=cpu_count().
- If forecaster_name is 'ForecasterSarimax' or 'ForecasterEquivalentDate', then n_jobs=1.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
forecaster_name |
str
|
The type of Forecaster. |
required |
regressor_name |
str
|
The type of regressor. |
required |
refit |
(bool, int)
|
If the forecaster is refitted during the backtesting process. |
required |
Returns:
Name | Type | Description |
---|---|---|
n_jobs |
int
|
The number of jobs to run in parallel. |
Source code in skforecast\utils\utils.py
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 |
|
select_n_jobs_fit_forecaster(forecaster_name, regressor_name)
¶
Select the optimal number of jobs to use in the fitting process. This selection is based on heuristics and is not guaranteed to be optimal.
The number of jobs is chosen as follows:
- If forecaster_name is 'ForecasterAutoregDirect' or 'ForecasterAutoregMultiVariate' and regressor_name is a linear regressor, then n_jobs=1, otherwise n_jobs=cpu_count().
Parameters:
Name | Type | Description | Default |
---|---|---|---|
forecaster_name |
str
|
The type of Forecaster. |
required |
regressor_name |
str
|
The type of regressor. |
required |
Returns:
Name | Type | Description |
---|---|---|
n_jobs |
int
|
The number of jobs to run in parallel. |
Source code in skforecast\utils\utils.py
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 |
|