ARIMA and SARIMAX¶
ARIMA (AutoRegressive Integrated Moving Average) and SARIMAX (Seasonal AutoRegressive Integrated Moving Average with eXogenous regressors) are prominent and widely used statistical forecasting models. While ARIMA models are more widely known, SARIMAX models extend the ARIMA framework by seamlessly integrating seasonal patterns and exogenous variables.
In the ARIMA-SARIMAX model notation, the parameters $p$, $d$, and $q$ represent the autoregressive, differencing, and moving-average components, respectively. $P$, $D$, and $Q$ denote the same components for the seasonal part of the model, with $m$ representing the number of periods in each season.
$p$ is the order (number of time lags) of the autoregressive part of the model.
$d$ is the degree of differencing (the number of times that past values have been subtracted from the data).
$q$ is the order of the moving average part of the model.
$P$ is the order (number of time lags) of the seasonal part of the model.
$D$ is the degree of differencing (the number of times the data have had past values subtracted) of the seasonal part of the model.
$Q$ is the order of the moving average of the seasonal part of the model.
$m$ refers to the number of periods in each season.
When the terms $P$, $D$, $Q$, and $m$ are zero and no exogenous variables are included in the model, the SARIMAX model is equivalent to an ARIMA.
When two out of the three terms are zero, the model can be referred to based on the non-zero parameter, dropping "AR", "I" or "MA" from the acronym describing the model. For example, $ARIMA(1,0,0)$ is $AR(1)$, $ARIMA(0,1,0)$ is $I(1)$, and $ARIMA(0,0,1)$ is $MA(1)$.
ARIMA implementations
Several Python libraries implement ARIMA-SARIMAX models. Three of them are:
statsmodels: this is one of the most complete libraries for statistical modeling. While the functional paradigm may be intuitive for those coming from the R environment, those accustomed to the object-oriented API of scikit-learn may need a short period of adaptation.
pmdarima: This is a wrapper for
statsmodels SARIMAX
. Its distinguishing feature is its seamless integration with the scikit-learn API, allowing users familiar with scikit-learn's conventions to seamlessly dive into time series modeling.skforecast: a novel wrapper for
statsmodels SARIMAX
that also follows the scikit-learn API. This implementation is very similar to that of pmdarima, but has been streamlined to include only the essential elements for skforecast, resulting in significant speed improvements.
ForecasterSarimax
The ForecasterSarimax
class allows training and validation of ARIMA and SARIMAX models using the skforecast API. ForecasterSarimax
is compatible with the Sarimax
from skforecast implementation, a novel wrapper for statsmodels SARIMAX that also follows the sklearn API. This implementation is very similar to pmdarima, but has been streamlined to include only the essential elements for skforecast, resulting in significant speed improvements.
💡 Tip
To learn more about modeling time series with ARIMA models, visit our example: ARIMA and SARIMAX models with Python.
⚠ Warning
The pmdarima.ARIMA
regressor is no longer supported by the ForecasterSarimax
. You can use the skforecast.Sarimax.Sarimax
model or, to continue using it, use skforecast 0.13.0 or lower.
User guide: https://skforecast.org/0.13.0/user_guides/forecasting-sarimax-arima#forecastersarimax
Libraries and data¶
# Libraries
# ==============================================================================
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.metrics import mean_absolute_error
from skforecast.datasets import fetch_dataset
from skforecast.sarimax import Sarimax
from skforecast.recursive import ForecasterSarimax
from skforecast.model_selection import TimeSeriesFold
from skforecast.model_selection import backtesting_sarimax
from skforecast.model_selection import grid_search_sarimax
from statsmodels.tsa.statespace.sarimax import SARIMAX
from pmdarima import ARIMA
from pmdarima import auto_arima
import warnings
warnings.filterwarnings('ignore')
# Download data
# ==============================================================================
data = fetch_dataset(name="h2o_exog")
data.index.name = 'datetime'
h2o_exog -------- Monthly expenditure ($AUD) on corticosteroid drugs that the Australian health system had between 1991 and 2008. Two additional variables (exog_1, exog_2) are simulated. Hyndman R (2023). fpp3: Data for Forecasting: Principles and Practice (3rd Edition). http://pkg.robjhyndman.com/fpp3package/, https://github.com/robjhyndman/fpp3package, http://OTexts.com/fpp3. Shape of the dataset: (195, 3)
# Train-test dates
# ==============================================================================
end_train = '2005-06-01 23:59:59'
print(
f"Train dates : {data.index.min()} --- {data.loc[:end_train].index.max()} "
f"(n={len(data.loc[:end_train])})"
)
print(
f"Test dates : {data.loc[end_train:].index.min()} --- {data.loc[:].index.max()} "
f"(n={len(data.loc[end_train:])})"
)
data_train = data.loc[:end_train]
data_test = data.loc[end_train:]
# Plot
# ==============================================================================
fig, ax = plt.subplots(figsize=(7, 3))
data.plot(ax=ax)
ax.legend();
Train dates : 1992-04-01 00:00:00 --- 2005-06-01 00:00:00 (n=159) Test dates : 2005-07-01 00:00:00 --- 2008-06-01 00:00:00 (n=36)
Statsmodels, pmdarima and skforecast¶
The following section focus on how to train an ARIMA model and forecast future values with each of the three libraries.
statsmodels
# ARIMA model with statsmodels.Sarimax
# ==============================================================================
arima = SARIMAX(endog = data_train['y'], order = (1, 1, 1))
arima_res = arima.fit(disp=0)
arima_res.summary()
Dep. Variable: | y | No. Observations: | 159 |
---|---|---|---|
Model: | SARIMAX(1, 1, 1) | Log Likelihood | 89.934 |
Date: | Sun, 10 Nov 2024 | AIC | -173.869 |
Time: | 16:35:33 | BIC | -164.681 |
Sample: | 04-01-1992 | HQIC | -170.137 |
- 06-01-2005 | |||
Covariance Type: | opg |
coef | std err | z | P>|z| | [0.025 | 0.975] | |
---|---|---|---|---|---|---|
ar.L1 | 0.6316 | 0.143 | 4.420 | 0.000 | 0.352 | 0.912 |
ma.L1 | -0.9535 | 0.054 | -17.817 | 0.000 | -1.058 | -0.849 |
sigma2 | 0.0186 | 0.002 | 8.619 | 0.000 | 0.014 | 0.023 |
Ljung-Box (L1) (Q): | 0.75 | Jarque-Bera (JB): | 167.05 |
---|---|---|---|
Prob(Q): | 0.39 | Prob(JB): | 0.00 |
Heteroskedasticity (H): | 2.13 | Skew: | -1.66 |
Prob(H) (two-sided): | 0.01 | Kurtosis: | 6.78 |
Warnings:
[1] Covariance matrix calculated using the outer product of gradients (complex-step).
# Prediction
# ==============================================================================
predictions = arima_res.get_forecast(steps=12)
predictions.predicted_mean.head(4)
2005-07-01 0.859452 2005-08-01 0.870310 2005-09-01 0.877167 2005-10-01 0.881499 Freq: MS, Name: predicted_mean, dtype: float64
pmdarima
# ARIMA model with pmdarima.ARIMA
# ==============================================================================
arima = ARIMA(order=(1, 1, 1), suppress_warnings=True)
arima.fit(y=data_train['y'])
arima.summary()
Dep. Variable: | y | No. Observations: | 159 |
---|---|---|---|
Model: | SARIMAX(1, 1, 1) | Log Likelihood | 93.643 |
Date: | Sun, 10 Nov 2024 | AIC | -179.286 |
Time: | 16:35:33 | BIC | -167.036 |
Sample: | 04-01-1992 | HQIC | -174.311 |
- 06-01-2005 | |||
Covariance Type: | opg |
coef | std err | z | P>|z| | [0.025 | 0.975] | |
---|---|---|---|---|---|---|
intercept | 0.0011 | 0.000 | 2.188 | 0.029 | 0.000 | 0.002 |
ar.L1 | 0.6023 | 0.108 | 5.584 | 0.000 | 0.391 | 0.814 |
ma.L1 | -0.9995 | 2.322 | -0.431 | 0.667 | -5.550 | 3.551 |
sigma2 | 0.0175 | 0.041 | 0.432 | 0.666 | -0.062 | 0.097 |
Ljung-Box (L1) (Q): | 1.57 | Jarque-Bera (JB): | 130.09 |
---|---|---|---|
Prob(Q): | 0.21 | Prob(JB): | 0.00 |
Heteroskedasticity (H): | 2.19 | Skew: | -1.49 |
Prob(H) (two-sided): | 0.01 | Kurtosis: | 6.29 |
Warnings:
[1] Covariance matrix calculated using the outer product of gradients (complex-step).
# Prediction
# ==============================================================================
predictions = arima.predict(n_periods=12)
predictions.head(4)
2005-07-01 0.891939 2005-08-01 0.922945 2005-09-01 0.942706 2005-10-01 0.955694 Freq: MS, dtype: float64
skforecast
# ARIMA model with skforecast.Sarimax
# ==============================================================================
arima = Sarimax(order=(1, 1, 1))
arima.fit(y=data_train['y'])
arima.summary()
Dep. Variable: | y | No. Observations: | 159 |
---|---|---|---|
Model: | SARIMAX(1, 1, 1) | Log Likelihood | 89.934 |
Date: | Sun, 10 Nov 2024 | AIC | -173.869 |
Time: | 16:35:33 | BIC | -164.681 |
Sample: | 04-01-1992 | HQIC | -170.137 |
- 06-01-2005 | |||
Covariance Type: | opg |
coef | std err | z | P>|z| | [0.025 | 0.975] | |
---|---|---|---|---|---|---|
ar.L1 | 0.6316 | 0.143 | 4.420 | 0.000 | 0.352 | 0.912 |
ma.L1 | -0.9535 | 0.054 | -17.817 | 0.000 | -1.058 | -0.849 |
sigma2 | 0.0186 | 0.002 | 8.619 | 0.000 | 0.014 | 0.023 |
Ljung-Box (L1) (Q): | 0.75 | Jarque-Bera (JB): | 167.05 |
---|---|---|---|
Prob(Q): | 0.39 | Prob(JB): | 0.00 |
Heteroskedasticity (H): | 2.13 | Skew: | -1.66 |
Prob(H) (two-sided): | 0.01 | Kurtosis: | 6.78 |
Warnings:
[1] Covariance matrix calculated using the outer product of gradients (complex-step).
# Prediction
# ==============================================================================
predictions = arima.predict(steps=12)
predictions.head(4)
pred | |
---|---|
2005-07-01 | 0.859452 |
2005-08-01 | 0.870310 |
2005-09-01 | 0.877167 |
2005-10-01 | 0.881499 |
ForecasterSarimax¶
The previous section introduced the construction of ARIMA-SARIMAX models using three different implementations. In order to seamlessly integrate these models with the various functionalities provided by skforecast, the next step is to encapsulate the skforecast Sarimax
model within a ForecasterSarimax
object. This encapsulation harmonizes the intricacies of the model and allows for the coherent use of skforecast's extensive capabilities.
Training¶
# Create and fit ForecasterSarimax
# ==============================================================================
forecaster = ForecasterSarimax(
regressor=Sarimax(order=(12, 1, 1), seasonal_order=(0, 0, 0, 0), maxiter=200),
)
forecaster.fit(y=data_train['y'], suppress_warnings=True)
forecaster
================= ForecasterSarimax ================= Regressor: Sarimax(12,1,1)(0,0,0)[0] Exogenous included: False Exogenous names: None Transformer for y: None Transformer for exog: None Training range: [Timestamp('1992-04-01 00:00:00'), Timestamp('2005-06-01 00:00:00')] Training index type: DatetimeIndex Training index frequency: MS Regressor parameters: {'concentrate_scale': False, 'dates': None, 'disp': False, 'enforce_invertibility': True, 'enforce_stationarity': True, 'freq': None, 'hamilton_representation': False, 'maxiter': 200, 'measurement_error': False, 'method': 'lbfgs', 'missing': 'none', 'mle_regression': True, 'order': (12, 1, 1), 'seasonal_order': (0, 0, 0, 0), 'simple_differencing': False, 'sm_fit_kwargs': {}, 'sm_init_kwargs': {}, 'sm_predict_kwargs': {}, 'start_params': None, 'time_varying_regression': False, 'trend': None, 'trend_offset': 1, 'use_exact_diffuse': False, 'validate_specification': True} fit_kwargs: {} Creation date: 2024-11-10 16:35:33 Last fit date: 2024-11-10 16:35:34 Index seen by the forecaster: DatetimeIndex(['1992-04-01', '1992-05-01', '1992-06-01', '1992-07-01', '1992-08-01', '1992-09-01', '1992-10-01', '1992-11-01', '1992-12-01', '1993-01-01', ... '2004-09-01', '2004-10-01', '2004-11-01', '2004-12-01', '2005-01-01', '2005-02-01', '2005-03-01', '2005-04-01', '2005-05-01', '2005-06-01'], dtype='datetime64[ns]', name='datetime', length=159, freq='MS') Skforecast version: 0.14.0 Python version: 3.11.10 Forecaster id: None
Prediction¶
# Predict
# ==============================================================================
predictions = forecaster.predict(steps=36)
predictions.head(3)
2005-07-01 0.957727 2005-08-01 0.960103 2005-09-01 1.108399 Freq: MS, Name: pred, dtype: float64
# Plot predictions
# ==============================================================================
fig, ax = plt.subplots(figsize=(7, 3))
data_train['y'].plot(ax=ax, label='train')
data_test['y'].plot(ax=ax, label='test')
predictions.plot(ax=ax, label='predictions')
ax.legend();
# Prediction error
# ==============================================================================
error_mse = mean_absolute_error(
y_true = data_test['y'],
y_pred = predictions
)
print(f"Test error (mse): {error_mse}")
Test error (mse): 0.07123026078782618
Interval prediction¶
Either alpha
or interval
can be used to indicate the confidence of the estimated prediction interval.
# Predict intervals
# ==============================================================================
predictions = forecaster.predict_interval(steps=36, alpha=0.05)
predictions.head(3)
pred | lower_bound | upper_bound | |
---|---|---|---|
2005-07-01 | 0.957727 | 0.857672 | 1.057781 |
2005-08-01 | 0.960103 | 0.853857 | 1.066350 |
2005-09-01 | 1.108399 | 0.997995 | 1.218803 |
Exogenous variables¶
The addition of exogenous variables is done using the exog
argument. The only requirement for including an exogenous variable is the need to know the value of the variable also during the forecast period.
💡 Tip
To learn more about exogenous variables and how to correctly manage them with skforecast visit: Exogenous variables (features) user guide.
# Create and fit ForecasterSarimax with exogenous variables
# ==============================================================================
forecaster = ForecasterSarimax(
regressor=Sarimax(order=(12, 1, 1), seasonal_order=(0, 0, 0, 0), maxiter=200),
)
forecaster.fit(
y = data_train['y'],
exog = data_train[['exog_1', 'exog_2']],
suppress_warnings = True
)
# Predict with exog
# ==============================================================================
predictions = forecaster.predict(
steps = 36,
exog = data_test[['exog_1', 'exog_2']]
)
predictions.head(3)
2005-07-01 0.904069 2005-08-01 0.931670 2005-09-01 1.089182 Freq: MS, Name: pred, dtype: float64
Using an already trained ARIMA¶
Forecasting with an ARIMA model becomes challenging when the forecast horizon data does not immediately follow the last observed value during the training phase. This complexity is due to the moving average (MA) component, which relies on past forecast errors as predictors. Thus, to predict at time 't', the error of the 't-1' prediction becomes a necessity. In situations where this prediction isn't available, the corresponding error remains unavailable.
For this reason, in most cases, ARIMA models are retrained each time predictions need to be made. Despite considerable efforts and advances to speed up the training process for these models, it is not always feasible to retrain the model between predictions, either due to time constraints or insufficient computational resources for repeated access to historical data. An intermediate approach is to feed the model with data from the last training observation to the start of the prediction phase. This technique enables the estimation of intermediate predictions and, as a result, the necessary errors.
For example, imagine a situation where a model was trained 20 days ago with daily data from the past three years. When generating new predictions, only the 20 most recent values would be needed, rather than the complete historical dataset (365 * 3 + 20).
Integrating new data into the model can be complex, but the ForecasterSarimax
class simplifies this considerably by automating the process through the last_window
argument in its predict
method.
# Split data Train - Last window - Test
# ==============================================================================
end_train = '2005-06-01 23:59:59'
end_last_window = '2007-06-01 23:59:59'
print(
f"Train dates : {data.index.min()} --- {data.loc[:end_train].index.max()} "
f"(n={len(data.loc[:end_train])})"
)
print(
f"Last window dates : {data.loc[end_train:].index.min()} --- {data.loc[:end_last_window].index.max()} "
f"(n={len(data.loc[end_train:end_last_window])})"
)
print(
f"Test dates : {data.loc[end_last_window:].index.min()} --- {data.index.max()} "
f"(n={len(data.loc[end_last_window:])})"
)
data_train = data.loc[:end_train]
data_last_window = data.loc[end_train:end_last_window]
data_test = data.loc[end_last_window:]
# Plot
# ======================================================================================
fig, ax = plt.subplots(figsize=(7, 3))
data_train['y'].plot(ax=ax, label='train')
data_last_window['y'].plot(ax=ax, label='last window')
data_test['y'].plot(ax=ax, label='test')
ax.legend();
Train dates : 1992-04-01 00:00:00 --- 2005-06-01 00:00:00 (n=159) Last window dates : 2005-07-01 00:00:00 --- 2007-06-01 00:00:00 (n=24) Test dates : 2007-07-01 00:00:00 --- 2008-06-01 00:00:00 (n=12)
Since exogenous variables have been included in the Forecaster tuning, it is necessary to pass both past values and their future values to the predict
method using the last_window_exog
and exog
parameters when making predictions.
# Create and fit ForecasterSarimax with exogenous variables
# ==============================================================================
forecaster = ForecasterSarimax(
regressor=Sarimax(order=(12, 1, 1), seasonal_order=(0, 0, 0, 0), maxiter=200),
)
forecaster.fit(
y = data_train['y'],
exog = data_train[['exog_1', 'exog_2']],
suppress_warnings = True
)
# Predict with exog and last window
# ==============================================================================
predictions = forecaster.predict(
steps = 12,
exog = data_test[['exog_1', 'exog_2']],
last_window = data_last_window['y'],
last_window_exog = data_last_window[['exog_1', 'exog_2']]
)
predictions.head(3)
2007-07-01 0.883806 2007-08-01 1.041050 2007-09-01 1.071687 Freq: MS, Name: pred, dtype: float64
# Prediction error
# ==============================================================================
error_mse = mean_absolute_error(
y_true = data_test['y'],
y_pred = predictions
)
print(f"Test error (mse): {error_mse}")
Test error (mse): 0.06280550767395036
# Plot predictions
# ==============================================================================
fig, ax = plt.subplots(figsize=(7, 3))
data_train['y'].plot(ax=ax, label='train')
data_last_window['y'].plot(ax=ax, label='last window')
data_test['y'].plot(ax=ax, label='test')
predictions.plot(ax=ax, label='predictions')
ax.legend();
Feature importances¶
Returns the parameters of the model.
# Feature importances
# ==============================================================================
forecaster.get_feature_importances()
feature | importance | |
---|---|---|
1 | exog_2 | 1.523893 |
13 | ar.L12 | 0.674807 |
15 | sigma2 | 0.001585 |
12 | ar.L11 | -0.148613 |
2 | ar.L1 | -0.159481 |
6 | ar.L5 | -0.188342 |
4 | ar.L3 | -0.190626 |
7 | ar.L6 | -0.207007 |
10 | ar.L9 | -0.208029 |
9 | ar.L8 | -0.210240 |
11 | ar.L10 | -0.226946 |
3 | ar.L2 | -0.234267 |
8 | ar.L7 | -0.245370 |
5 | ar.L4 | -0.282110 |
0 | exog_1 | -0.539596 |
14 | ma.L1 | -0.979138 |
Backtesting¶
SARIMAX models can be evaluated using any of the backtesting strategies implemented in skforecast.
# Backtest forecaster
# ======================================================================================
forecaster = ForecasterSarimax(
regressor=Sarimax(order=(12, 1, 1), seasonal_order=(0, 0, 0, 0), maxiter=200),
)
cv = TimeSeriesFold(
steps = 12,
initial_train_size = len(data_train),
refit = True,
fixed_train_size = False,
)
metric, predictions = backtesting_sarimax(
forecaster = forecaster,
y = data['y'],
exog = data[['exog_1', 'exog_2']],
cv = cv,
metric = 'mean_absolute_error',
n_jobs = 'auto',
suppress_warnings_fit = True,
verbose = True,
show_progress = True
)
metric
Information of folds -------------------- Number of observations used for initial training: 159 Number of observations used for backtesting: 36 Number of folds: 3 Number skipped folds: 0 Number of steps per fold: 12 Number of steps to exclude between last observed data (last window) and predictions (gap): 0 Fold: 0 Training: 1992-04-01 00:00:00 -- 2005-06-01 00:00:00 (n=159) Validation: 2005-07-01 00:00:00 -- 2006-06-01 00:00:00 (n=12) Fold: 1 Training: 1992-04-01 00:00:00 -- 2006-06-01 00:00:00 (n=171) Validation: 2006-07-01 00:00:00 -- 2007-06-01 00:00:00 (n=12) Fold: 2 Training: 1992-04-01 00:00:00 -- 2007-06-01 00:00:00 (n=183) Validation: 2007-07-01 00:00:00 -- 2008-06-01 00:00:00 (n=12)
0%| | 0/3 [00:00<?, ?it/s]
mean_absolute_error | |
---|---|
0 | 0.056369 |
# Backtest predictions
# ======================================================================================
predictions.head(4)
pred | |
---|---|
2005-07-01 | 0.904069 |
2005-08-01 | 0.931670 |
2005-09-01 | 1.089182 |
2005-10-01 | 1.113034 |
Model tunning¶
To find the optimal hyperparameters for the SARIMAX model, the use of strategic search methods is essential. Among these methods, two widely used approaches are:
Statistical Criteria: Information criterion metrics, such as Akaike's Information Criterion (AIC) or Bayesian Information Criterion (BIC), use different penalties on the maximum likelihood (log-likelihood) estimate of the model as a measure of fit. The advantage of using such criteria is that they are computed only on the training data, eliminating the need for predictions on new data. As a result, the optimization process is greatly accelerated. The well-known Auto Arima algorithm uses this approach.
Validation Techniques: The use of validation techniques, especially backtesting, is another effective strategy. Backtesting involves evaluating the performance of the model using historical data to simulate real-world conditions. This helps to validate the effectiveness of the hyperparameters under different scenarios, providing a practical assessment of their viability.
In the first approach, calculations are based solely on training data, eliminating the need for predictions on new data. This makes the optimization process very fast. However, it is important to note that information criteria metrics only measure the relative quality of models. This means that all tested models could still be poor fits. Therefore, the final selected model must undergo a backtesting phase. This phase calculates a metric (such as MAE, MSE, MAPE, etc.) that validates its performance on a meaningful scale.
On the other hand, the second approach - validation techniques - tends to be more time-consuming, since the model must be trained and then evaluated on new data. However, the results generated are often more robust, and the metrics derived can provide deeper insights.
💡 Tip
In summary, while the statistical criteria approach offers speed and efficiency, validation techniques provide a more comprehensive and insightful evaluation, albeit at a slower pace due to their reliance on new data for testing. Fortunately, for sufficiently large data sets, they all lead to the same model.
⚠ Warning
When evaluating ARIMA-SARIMAX models, it is important to note that AIC assumes that all models are trained on the same data. Thus, using AIC to decide between different orders of differencing is technically invalid, since one data point is lost with each order of differencing. Therefore, the Auto Arima algorithm uses a unit root test to select the order of differencing, and only uses the AIC to select the order of the AR and MA components.
✎ Note
For a detailed explanation of Akaike's Information Criterion (AIC) see Rob J Hyndman's blog and AIC Myths and Misunderstandings by Anderson and Burnham.
# Train-validation-test data
# ======================================================================================
end_train = '2001-01-01 23:59:00'
end_val = '2006-01-01 23:59:00'
print(f"Train dates : {data.index.min()} --- {data.loc[:end_train].index.max()} (n={len(data.loc[:end_train])})")
print(f"Validation dates : {data.loc[end_train:].index.min()} --- {data.loc[:end_val].index.max()} (n={len(data.loc[end_train:end_val])})")
print(f"Test dates : {data.loc[end_val:].index.min()} --- {data.index.max()} (n={len(data.loc[end_val:])})")
# Plot
# ======================================================================================
fig, ax = plt.subplots(figsize=(7, 3))
data.loc[:end_train, 'y'].plot(ax=ax, label='train')
data.loc[end_train:end_val, 'y'].plot(ax=ax, label='validation')
data.loc[end_val:, 'y'].plot(ax=ax, label='test')
ax.legend();
Train dates : 1992-04-01 00:00:00 --- 2001-01-01 00:00:00 (n=106) Validation dates : 2001-02-01 00:00:00 --- 2006-01-01 00:00:00 (n=60) Test dates : 2006-02-01 00:00:00 --- 2008-06-01 00:00:00 (n=29)
Grid search with backtesting¶
# Grid search hyperparameter
# ======================================================================================
forecaster = ForecasterSarimax(
regressor=Sarimax(order=(12, 1, 1), maxiter=200)
)
param_grid = {
'order': [(12, 0, 0), (12, 1, 0), (12, 1, 1)],
'trend': [None, 'n', 'c']
}
cv = TimeSeriesFold(
steps = 12,
initial_train_size = len(data.loc[:end_train, 'y']),
refit = False
)
results_grid = grid_search_sarimax(
forecaster = forecaster,
y = data.loc[:end_val, 'y'],
param_grid = param_grid,
cv = cv,
metric = 'mean_absolute_error',
return_best = True,
n_jobs = 'auto',
suppress_warnings_fit = True,
verbose = False,
show_progress = True
)
results_grid.head(5)
Number of models compared: 9.
params grid: 0%| | 0/9 [00:00<?, ?it/s]
`Forecaster` refitted using the best-found parameters, and the whole data set: Parameters: {'order': (12, 1, 0), 'trend': 'c'} Backtesting metric: 0.05878838816487376
params | mean_absolute_error | order | trend | |
---|---|---|---|---|
0 | {'order': (12, 1, 0), 'trend': 'c'} | 0.058788 | (12, 1, 0) | c |
1 | {'order': (12, 1, 1), 'trend': 'c'} | 0.058981 | (12, 1, 1) | c |
2 | {'order': (12, 1, 1), 'trend': None} | 0.059508 | (12, 1, 1) | None |
3 | {'order': (12, 1, 1), 'trend': 'n'} | 0.059508 | (12, 1, 1) | n |
4 | {'order': (12, 1, 0), 'trend': None} | 0.061717 | (12, 1, 0) | None |
Since return_best = True
, the Forecaster object is updated with the most optimal configuration found and trained with the entire dataset. This means that the grid search will yield the lowest error model with the best hyperparameters that lead to the highest performance metric. This last model can subsequently be utilized for forecasts on new data.
forecaster
================= ForecasterSarimax ================= Regressor: Sarimax(12,1,0)(0,0,0)[0] Exogenous included: False Exogenous names: None Transformer for y: None Transformer for exog: None Training range: [Timestamp('1992-04-01 00:00:00'), Timestamp('2006-01-01 00:00:00')] Training index type: DatetimeIndex Training index frequency: MS Regressor parameters: {'concentrate_scale': False, 'dates': None, 'disp': False, 'enforce_invertibility': True, 'enforce_stationarity': True, 'freq': None, 'hamilton_representation': False, 'maxiter': 200, 'measurement_error': False, 'method': 'lbfgs', 'missing': 'none', 'mle_regression': True, 'order': (12, 1, 0), 'seasonal_order': (0, 0, 0, 0), 'simple_differencing': False, 'sm_fit_kwargs': {}, 'sm_init_kwargs': {}, 'sm_predict_kwargs': {}, 'start_params': None, 'time_varying_regression': False, 'trend': 'c', 'trend_offset': 1, 'use_exact_diffuse': False, 'validate_specification': True} fit_kwargs: {} Creation date: 2024-11-10 16:38:01 Last fit date: 2024-11-10 16:38:16 Index seen by the forecaster: DatetimeIndex(['1992-04-01', '1992-05-01', '1992-06-01', '1992-07-01', '1992-08-01', '1992-09-01', '1992-10-01', '1992-11-01', '1992-12-01', '1993-01-01', ... '2005-04-01', '2005-05-01', '2005-06-01', '2005-07-01', '2005-08-01', '2005-09-01', '2005-10-01', '2005-11-01', '2005-12-01', '2006-01-01'], dtype='datetime64[ns]', name='datetime', length=166, freq='MS') Skforecast version: 0.14.0 Python version: 3.11.10 Forecaster id: None
Auto arima¶
# Auto arima: selection base on AIC
# ==============================================================================
model = auto_arima(
y = data.loc[:end_val, 'y'],
start_p = 12,
start_q = 0,
max_p = 12,
max_q = 1,
seasonal = True,
test = 'adf',
m = 12, # Seasonal period
d = None, # The algorithm will determine 'd'
D = None, # The algorithm will determine 'D'
trace = True,
error_action = 'ignore',
suppress_warnings = True,
stepwise = True
)
Performing stepwise search to minimize aic ARIMA(11,1,0)(1,1,1)[12] : AIC=-465.630, Time=1.84 sec ARIMA(0,1,0)(0,1,0)[12] : AIC=-383.254, Time=0.02 sec ARIMA(1,1,0)(1,1,0)[12] : AIC=-439.401, Time=0.11 sec ARIMA(0,1,1)(0,1,1)[12] : AIC=-463.505, Time=0.21 sec ARIMA(11,1,0)(0,1,1)[12] : AIC=-467.479, Time=0.96 sec ARIMA(11,1,0)(0,1,0)[12] : AIC=-439.864, Time=0.34 sec ARIMA(11,1,0)(0,1,2)[12] : AIC=-465.752, Time=1.78 sec ARIMA(11,1,0)(1,1,0)[12] : AIC=-450.415, Time=0.84 sec ARIMA(11,1,0)(1,1,2)[12] : AIC=-464.761, Time=2.39 sec ARIMA(10,1,0)(0,1,1)[12] : AIC=-466.868, Time=0.84 sec ARIMA(11,1,1)(0,1,1)[12] : AIC=-464.317, Time=1.01 sec ARIMA(10,1,1)(0,1,1)[12] : AIC=-464.448, Time=1.44 sec ARIMA(11,1,0)(0,1,1)[12] intercept : AIC=-465.810, Time=1.85 sec Best model: ARIMA(11,1,0)(0,1,1)[12] Total fit time: 13.679 seconds
Prediction on training data (In-sample Predictions)¶
Predictions on the training data are crucial for evaluating the accuracy and effectiveness of the model. By comparing the predicted values wtih the actual observed values in the training dataset, you can assess how well the model has learned the underlying patterns and trends in the data. This comparison helps in understanding the model's performance and identify areas where it may need improvement or adjustment. In essence, they act as a mirror, reflecting how the model interprets and reconstructs the historical data on which it was trained.
The predictions of the fitted values are stored in the fittedvalues
attribute of the SARIMAXResults
object. This object is stored within the sarimax_res
attribute of the skforecast Sarimax
model:
# Create and fit ForecasterSarimax (skforecast)
# ==============================================================================
forecaster = ForecasterSarimax(
regressor=Sarimax(order=(12, 1, 1), maxiter=200),
)
forecaster.fit(y=data_train['y'], suppress_warnings=True)
# In-sample Predictions
# ==============================================================================
forecaster.regressor.sarimax_res.fittedvalues
datetime 1992-04-01 0.000000 1992-05-01 0.379808 1992-06-01 0.361444 1992-07-01 0.413136 1992-08-01 0.480509 ... 2005-02-01 0.739239 2005-03-01 0.750984 2005-04-01 0.716174 2005-05-01 0.749955 2005-06-01 0.817745 Freq: MS, Length: 159, dtype: float64