ForecasterRnn
¶
skforecast.deep_learning._forecaster_rnn.ForecasterRnn ¶
ForecasterRnn(
regressor,
levels,
lags="auto",
steps="auto",
transformer_series=MinMaxScaler(feature_range=(0, 1)),
weight_func=None,
fit_kwargs={},
forecaster_id=None,
n_jobs=None,
transformer_exog=None,
)
Bases: ForecasterBase
This class turns any regressor compatible with the Keras API into a Keras RNN multi-serie multi-step forecaster. A unique model is created to forecast all time steps and series. Keras enables workflows on top of either JAX, TensorFlow, or PyTorch. See documentation for more details.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
regressor |
regressor or pipeline compatible with the Keras API
|
An instance of a regressor or pipeline compatible with the Keras API. |
required |
levels |
(str, list)
|
Name of one or more time series to be predicted. This determine the series
the forecaster will be handling. If |
required |
lags |
(int, list, str)
|
Lags used as predictors. If 'auto', lags used are from 1 to N, where N is
extracted from the input layer |
`'auto'`
|
transformer_series |
(object, dict)
|
An instance of a transformer (preprocessor) compatible with the scikit-learn
preprocessing API with methods: fit, transform, fit_transform and
inverse_transform. Transformation is applied to each
|
`sklearn.preprocessing.MinMaxScaler(feature_range=(0, 1))`
|
fit_kwargs |
dict
|
Additional arguments to be passed to the |
`None`
|
forecaster_id |
(str, int)
|
Name used as an identifier of the forecaster. |
`None`
|
steps |
(int, list, str)
|
Steps to be predicted. If 'auto', steps used are from 1 to N, where N is
extracted from the output layer |
`'auto'`
|
lags |
Optional[Union[int, list, str]]
|
Not used, present here for API consistency by convention. |
'auto'
|
transformer_exog |
Ignored
|
Not used, present here for API consistency by convention. |
None
|
weight_func |
Ignored
|
Not used, present here for API consistency by convention. |
None
|
n_jobs |
Ignored
|
Not used, present here for API consistency by convention. |
None
|
Attributes:
Name | Type | Description |
---|---|---|
regressor |
regressor or pipeline compatible with the Keras API
|
An instance of a regressor or pipeline compatible with the Keras API.
An instance of this regressor is trained for each step. All of them
are stored in |
levels |
(str, list)
|
Name of one or more time series to be predicted. This determine the series
the forecaster will be handling. If |
steps |
numpy ndarray
|
Number of future steps the forecaster will predict when using method
|
lags |
numpy ndarray
|
Lags used as predictors. |
transformer_series |
(object, dict)
|
An instance of a transformer (preprocessor) compatible with the scikit-learn
preprocessing API with methods: fit, transform, fit_transform and
inverse_transform. Transformation is applied to each |
transformer_series_ |
dict
|
Dictionary with the transformer for each series. It is created cloning the
objects in |
transformer_exog |
Ignored
|
Not used, present here for API consistency by convention. |
max_lag |
int
|
Maximum lag included in |
window_size |
int
|
Size of the window needed to create the predictors. |
last_window_ |
pandas Series
|
Last window seen by the forecaster during training. It stores the values
needed to predict the next |
index_type_ |
type
|
Type of index of the input used in training. |
index_freq_ |
str
|
Frequency of Index of the input used in training. |
training_range_ |
pandas Index
|
First and last values of index of the data used during training. |
series_names_in_ |
list
|
Names of the series used during training. |
exog_in_ |
bool
|
If the forecaster has been trained using exogenous variable/s. |
exog_names_in_ |
list
|
Names of the exogenous variables used during training. |
exog_type_in_ |
type
|
Type of exogenous variable/s used in training. |
exog_dtypes_in_ |
dict
|
Type of each exogenous variable/s used in training. If |
X_train_dim_names_ |
dict
|
Labels for the multi-dimensional arrays created internally for training. |
y_train_dim_names_ |
dict
|
Labels for the multi-dimensional arrays created internally for training. |
fit_kwargs |
dict
|
Additional arguments to be passed to the |
in_sample_residuals_ |
dict
|
Residuals of the models when predicting training data. Only stored up to
1000 values per model in the form |
out_sample_residuals |
dict
|
Residuals of the models when predicting non training data. Only stored
up to 1000 values per model in the form |
creation_date |
str
|
Date of creation. |
is_fitted |
bool
|
Tag to identify if the regressor has been fitted (trained). |
fit_date |
str
|
Date of last fit. |
skforcast_version |
str
|
Version of skforecast library used to create the forecaster. |
python_version |
str
|
Version of python used to create the forecaster. |
forecaster_id |
(str, int)
|
Name used as an identifier of the forecaster. |
history |
dict
|
Dictionary with the history of the training of each step. It is created internally to avoid overwriting. |
dropna_from_series |
Ignored
|
Not used, present here for API consistency by convention. |
encoding |
Ignored
|
Not used, present here for API consistency by convention. |
differentiation |
Ignored
|
Not used, present here for API consistency by convention. |
differentiator |
Ignored
|
Not used, present here for API consistency by convention. |
Source code in skforecast\deep_learning\_forecaster_rnn.py
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
|
_create_lags ¶
_create_lags(y)
Transforms a 1d array into a 3d array (X) and a 3d array (y). Each row in X is associated with a value of y and it represents the lags that precede it.
Notice that, the returned matrix X_data, contains the lag 1 in the first column, the lag 2 in the second column and so on.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y |
numpy ndarray
|
1d numpy ndarray Training time series. |
required |
Returns:
Name | Type | Description |
---|---|---|
X_data |
numpy ndarray
|
3d numpy ndarray with the lagged values (predictors). Shape: (samples - max(lags), len(lags)) |
y_data |
numpy ndarray
|
3d numpy ndarray with the values of the time series related to each
row of |
Source code in skforecast\deep_learning\_forecaster_rnn.py
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 |
|
create_train_X_y ¶
create_train_X_y(series, exog=None)
Create training matrices. The resulting multi-dimensional matrices contain the target variable and predictors needed to train the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
series |
pandas DataFrame
|
Training time series. |
required |
exog |
Ignored
|
Not used, present here for API consistency by convention. This type of forecaster does not allow exogenous variables. |
None
|
Returns:
Name | Type | Description |
---|---|---|
X_train |
ndarray
|
Training values (predictors) for each step. The resulting array has 3 dimensions: (time_points, n_lags, n_series) |
y_train |
ndarray
|
Values (target) of the time series related to each row of |
dimension_names |
dict
|
Labels for the multi-dimensional arrays created internally for training. |
Source code in skforecast\deep_learning\_forecaster_rnn.py
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 |
|
fit ¶
fit(
series,
store_in_sample_residuals=True,
exog=None,
suppress_warnings=False,
store_last_window="Ignored",
)
Training Forecaster.
Additional arguments to be passed to the fit
method of the regressor
can be added with the fit_kwargs
argument when initializing the forecaster.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
series |
pandas DataFrame
|
Training time series. |
required |
store_in_sample_residuals |
bool
|
If |
`True`
|
exog |
Ignored
|
Not used, present here for API consistency by convention. |
None
|
suppress_warnings |
bool
|
If |
`False`
|
store_last_window |
Ignored
|
Not used, present here for API consistency by convention. |
'Ignored'
|
Returns:
Type | Description |
---|---|
None
|
|
Source code in skforecast\deep_learning\_forecaster_rnn.py
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 |
|
predict ¶
predict(
steps=None,
levels=None,
last_window=None,
exog=None,
suppress_warnings=False,
)
Predict n steps ahead
Parameters:
Name | Type | Description | Default |
---|---|---|---|
steps |
(int, list, None)
|
Predict n steps. The value of
|
`None`
|
levels |
(str, list)
|
Name of one or more time series to be predicted. It must be included
in |
`None`
|
last_window |
pandas DataFrame
|
Series values used to create the predictors (lags) needed in the
first iteration of the prediction (t + 1).
If |
`None`
|
exog |
Ignored
|
Not used, present here for API consistency by convention. |
None
|
suppress_warnings |
bool
|
If |
`False`
|
Returns:
Name | Type | Description |
---|---|---|
predictions |
pandas DataFrame
|
Predicted values. |
Source code in skforecast\deep_learning\_forecaster_rnn.py
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 |
|
plot_history ¶
plot_history(ax=None, **fig_kw)
Plots the training and validation loss curves from the given history object stores in the ForecasterRnn.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ax |
Axes
|
Pre-existing ax for the plot. Otherwise, call matplotlib.pyplot.subplots() internally. |
`None`
|
fig_kw |
dict
|
Other keyword arguments are passed to matplotlib.pyplot.subplots(). |
{}
|
Returns:
Name | Type | Description |
---|---|---|
fig |
Figure
|
Matplotlib Figure. |
Source code in skforecast\deep_learning\_forecaster_rnn.py
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 |
|
set_params ¶
set_params(params)
Set new values to the parameters of the scikit learn model stored in the forecaster. It is important to note that all models share the same configuration of parameters and hyperparameters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
params |
dict
|
Parameters values. |
required |
Returns:
Type | Description |
---|---|
None
|
|
Source code in skforecast\deep_learning\_forecaster_rnn.py
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 |
|
set_fit_kwargs ¶
set_fit_kwargs(fit_kwargs)
Set new values for the additional keyword arguments passed to the fit
method of the regressor.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
fit_kwargs |
dict
|
Dict of the form {"argument": new_value}. |
required |
Returns:
Type | Description |
---|---|
None
|
|
Source code in skforecast\deep_learning\_forecaster_rnn.py
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 |
|
set_lags ¶
set_lags(lags)
Not used, present here for API consistency by convention.
Returns:
Type | Description |
---|---|
None
|
|
Source code in skforecast\deep_learning\_forecaster_rnn.py
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 |
|
skforecast.deep_learning.utils.create_and_compile_model ¶
create_and_compile_model(
series,
lags,
steps,
levels=None,
recurrent_layer="LSTM",
recurrent_units=100,
dense_units=64,
activation="relu",
optimizer=Adam(learning_rate=0.01),
loss=MeanSquaredError(),
compile_kwargs={},
)
Creates a neural network model for time series prediction with flexible recurrent layers.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
series |
pandas DataFrame
|
Input time series. |
required |
lags |
(int, list)
|
Number of lagged time steps to consider in the input, or a list of specific lag indices. |
required |
steps |
(int, list)
|
Number of steps to predict into the future, or a list of specific step indices. |
required |
levels |
(str, int, list)
|
Number of output levels (features) to predict, or a list of specific level indices. If None, defaults to the number of input series. |
`None`
|
recurrent_layer |
str
|
Type of recurrent layer to be used ('LSTM' or 'RNN'). |
`'LSTM'`
|
recurrent_units |
(int, list)
|
Number of units in the recurrent layer(s). Can be an integer or a list of integers for multiple layers. |
`100`
|
dense_units |
(int, list)
|
List of integers representing the number of units in each dense layer. |
`64`
|
activation |
(str, dict)
|
Activation function for the recurrent and dense layers. Can be a single string for all layers or a dictionary specifying different activations for 'recurrent_units' and 'dense_units'. |
`'relu'`
|
optimizer |
object
|
Optimization algorithm and learning rate. |
`Adam(learning_rate=0.01)`
|
loss |
object
|
Loss function for model training. |
`MeanSquaredError()`
|
compile_kwargs |
dict
|
Additional arguments for model compilation. |
`{}`
|
Returns:
Name | Type | Description |
---|---|---|
model |
Model
|
Compiled neural network model. |
Raises:
Type | Description |
---|---|
TypeError
|
If any of the input arguments are of incorrect type. |
ValueError
|
If the activation dictionary does not have the required keys or if the lengths of the lists in the activation dictionary do not match the corresponding parameters. |
Source code in skforecast\deep_learning\utils.py
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
|