feature_selection
¶
skforecast.feature_selection.feature_selection.select_features ¶
select_features(
forecaster,
selector,
y,
exog=None,
select_only=None,
force_inclusion=None,
subsample=0.5,
random_state=123,
verbose=True,
)
Feature selection using any of the sklearn.feature_selection module selectors
(such as RFECV
, SelectFromModel
, etc.). Two groups of features are
evaluated: autoregressive features (lags and window features) and exogenous
features. By default, the selection process is performed on both sets of features
at the same time, so that the most relevant autoregressive and exogenous features
are selected. However, using the select_only
argument, the selection process
can focus only on the autoregressive or exogenous features without taking into
account the other features. Therefore, all other features will remain in the model.
It is also possible to force the inclusion of certain features in the final list
of selected features using the force_inclusion
parameter.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
forecaster |
(ForecasterRecursive, ForecasterDirect)
|
Forecaster model. If forecaster is a ForecasterDirect, the selector will only be applied to the features of the first step. |
required |
selector |
object
|
A feature selector from sklearn.feature_selection. |
required |
y |
pandas Series, pandas DataFrame
|
Target time series to which the feature selection will be applied. |
required |
exog |
pandas Series, pandas DataFrame
|
Exogenous variable/s included as predictor/s. Must have the same
number of observations as |
`None`
|
select_only |
str
|
Decide what type of features to include in the selection process.
|
`None`
|
force_inclusion |
(list, str)
|
Features to force include in the final list of selected features.
|
`None`
|
subsample |
(int, float)
|
Proportion of records to use for feature selection. |
`0.5`
|
random_state |
int
|
Sets a seed for the random subsample so that the subsampling process is always deterministic. |
`123`
|
verbose |
bool
|
Print information about feature selection process. |
`True`
|
Returns:
Name | Type | Description |
---|---|---|
selected_lags |
list
|
List of selected lags. |
selected_window_features |
list
|
List of selected window features. |
selected_exog |
list
|
List of selected exogenous features. |
Source code in skforecast/feature_selection/feature_selection.py
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
|
skforecast.feature_selection.feature_selection.select_features_multiseries ¶
select_features_multiseries(
forecaster,
selector,
series,
exog=None,
select_only=None,
force_inclusion=None,
subsample=0.5,
random_state=123,
verbose=True,
)
Feature selection using any of the sklearn.feature_selection module selectors
(such as RFECV
, SelectFromModel
, etc.). Two groups of features are
evaluated: autoregressive features and exogenous features. By default, the
selection process is performed on both sets of features at the same time,
so that the most relevant autoregressive and exogenous features are selected.
However, using the select_only
argument, the selection process can focus
only on the autoregressive or exogenous features without taking into account
the other features. Therefore, all other features will remain in the model.
It is also possible to force the inclusion of certain features in the final
list of selected features using the force_inclusion
parameter.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
forecaster |
(ForecasterRecursiveMultiSeries, ForecasterDirectMultiVariate)
|
Forecaster model. If forecaster is a ForecasterDirectMultiVariate, the selector will only be applied to the features of the first step. |
required |
selector |
object
|
A feature selector from sklearn.feature_selection. |
required |
series |
pandas DataFrame
|
Target time series to which the feature selection will be applied. |
required |
exog |
pandas Series, pandas DataFrame, dict
|
Exogenous variables. |
`None`
|
select_only |
str
|
Decide what type of features to include in the selection process.
|
`None`
|
force_inclusion |
(list, str)
|
Features to force include in the final list of selected features.
|
`None`
|
subsample |
(int, float)
|
Proportion of records to use for feature selection. |
`0.5`
|
random_state |
int
|
Sets a seed for the random subsample so that the subsampling process is always deterministic. |
`123`
|
verbose |
bool
|
Print information about feature selection process. |
`True`
|
Returns:
Name | Type | Description |
---|---|---|
selected_lags |
(list, dict)
|
List of selected lags. If the forecaster is a ForecasterDirectMultiVariate, the output is a dict with the selected lags for each series, {series_name: lags}, as the lags can be different for each series. |
selected_window_features |
list
|
List of selected window features. |
selected_exog |
list
|
List of selected exogenous features. |
Source code in skforecast/feature_selection/feature_selection.py
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 |
|