Skip to content

ForecasterDirect

skforecast.direct._forecaster_direct.ForecasterDirect

ForecasterDirect(
    regressor,
    steps,
    lags=None,
    window_features=None,
    transformer_y=None,
    transformer_exog=None,
    weight_func=None,
    differentiation=None,
    fit_kwargs=None,
    n_jobs="auto",
    forecaster_id=None,
)

Bases: ForecasterBase

This class turns any regressor compatible with the scikit-learn API into a autoregressive direct multi-step forecaster. A separate model is created for each forecast time step. See documentation for more details.

Parameters:

Name Type Description Default
regressor regressor or pipeline compatible with the scikit-learn API

An instance of a regressor or pipeline compatible with the scikit-learn API.

required
steps int

Maximum number of future steps the forecaster will predict when using method predict(). Since a different model is created for each step, this value should be defined before training.

required
lags int, list, numpy ndarray, range

Lags used as predictors. Index starts at 1, so lag 1 is equal to t-1.

  • int: include lags from 1 to lags (included).
  • list, 1d numpy ndarray or range: include only lags present in lags, all elements must be int.
  • None: no lags are included as predictors.
`None`
window_features (object, list)

Instance or list of instances used to create window features. Window features are created from the original time series and are included as predictors.

`None`
transformer_y object transformer (preprocessor)

An instance of a transformer (preprocessor) compatible with the scikit-learn preprocessing API with methods: fit, transform, fit_transform and inverse_transform. ColumnTransformers are not allowed since they do not have inverse_transform method. The transformation is applied to y before training the forecaster.

`None`
transformer_exog object transformer (preprocessor)

An instance of a transformer (preprocessor) compatible with the scikit-learn preprocessing API. The transformation is applied to exog before training the forecaster. inverse_transform is not available when using ColumnTransformers.

`None`
weight_func Callable

Function that defines the individual weights for each sample based on the index. For example, a function that assigns a lower weight to certain dates. Ignored if regressor does not have the argument sample_weight in its fit method. The resulting sample_weight cannot have negative values.

`None`
differentiation int

Order of differencing applied to the time series before training the forecaster. If None, no differencing is applied. The order of differentiation is the number of times the differencing operation is applied to a time series. Differencing involves computing the differences between consecutive data points in the series. Differentiation is reversed in the output of predict() and predict_interval(). WARNING: This argument is newly introduced and requires special attention. It is still experimental and may undergo changes.

`None`
fit_kwargs dict

Additional arguments to be passed to the fit method of the regressor.

`None`
n_jobs (int, auto)

The number of jobs to run in parallel. If -1, then the number of jobs is set to the number of cores. If 'auto', n_jobs is set using the function skforecast.utils.select_n_jobs_fit_forecaster.

`'auto'`
forecaster_id (str, int)

Name used as an identifier of the forecaster.

`None`

Attributes:

Name Type Description
regressor regressor or pipeline compatible with the scikit-learn API

An instance of a regressor or pipeline compatible with the scikit-learn API. An instance of this regressor is trained for each step. All of them are stored in self.regressors_.

regressors_ dict

Dictionary with regressors trained for each step. They are initialized as a copy of regressor.

steps int

Number of future steps the forecaster will predict when using method predict(). Since a different model is created for each step, this value should be defined before training.

lags numpy ndarray

Lags used as predictors.

lags_names list

Names of the lags used as predictors.

max_lag int

Maximum lag included in lags.

window_features list

Class or list of classes used to create window features.

window_features_names list

Names of the window features to be included in the X_train matrix.

window_features_class_names list

Names of the classes used to create the window features.

max_size_window_features int

Maximum window size required by the window features.

window_size int

The window size needed to create the predictors. It is calculated as the maximum value between max_lag and max_size_window_features. If differentiation is used, window_size is increased by n units equal to the order of differentiation so that predictors can be generated correctly.

transformer_y object transformer (preprocessor)

An instance of a transformer (preprocessor) compatible with the scikit-learn preprocessing API with methods: fit, transform, fit_transform and inverse_transform. ColumnTransformers are not allowed since they do not have inverse_transform method. The transformation is applied to y before training the forecaster.

transformer_exog object transformer (preprocessor)

An instance of a transformer (preprocessor) compatible with the scikit-learn preprocessing API. The transformation is applied to exog before training the forecaster. inverse_transform is not available when using ColumnTransformers.

weight_func Callable

Function that defines the individual weights for each sample based on the index. For example, a function that assigns a lower weight to certain dates. Ignored if regressor does not have the argument sample_weight in its fit method. The resulting sample_weight cannot have negative values.

source_code_weight_func str

Source code of the custom function used to create weights.

differentiation int

Order of differencing applied to the time series before training the forecaster.

differentiator TimeSeriesDifferentiator

Skforecast object used to differentiate the time series.

last_window_ pandas DataFrame

This window represents the most recent data observed by the predictor during its training phase. It contains the values needed to predict the next step immediately after the training data. These values are stored in the original scale of the time series before undergoing any transformations or differentiation. When differentiation parameter is specified, the dimensions of the last_window_ are expanded as many values as the order of differentiation. For example, if lags = 7 and differentiation = 1, last_window_ will have 8 values.

index_type_ type

Type of index of the input used in training.

index_freq_ str

Frequency of Index of the input used in training.

training_range_ pandas Index

First and last values of index of the data used during training.

exog_in_ bool

If the forecaster has been trained using exogenous variable/s.

exog_names_in_ list

Names of the exogenous variables used during training.

exog_type_in_ type

Type of exogenous data (pandas Series or DataFrame) used in training.

exog_dtypes_in_ dict

Type of each exogenous variable/s used in training. If transformer_exog is used, the dtypes are calculated after the transformation.

X_train_window_features_names_out_ list

Names of the window features included in the matrix X_train created internally for training.

X_train_exog_names_out_ list

Names of the exogenous variables included in the matrix X_train created internally for training. It can be different from exog_names_in_ if some exogenous variables are transformed during the training process.

X_train_direct_exog_names_out_ list

Same as X_train_exog_names_out_ but using the direct format. The same exogenous variable is repeated for each step.

X_train_features_names_out_ list

Names of columns of the matrix created internally for training.

fit_kwargs dict

Additional arguments to be passed to the fit method of the regressor.

in_sample_residuals_ dict

Residuals of the models when predicting training data. Only stored up to 1000 values per model in the form {step: residuals}. If transformer_y is not None, residuals are stored in the transformed scale.

out_sample_residuals_ dict

Residuals of the models when predicting non training data. Only stored up to 1000 values per model in the form {step: residuals}. If transformer_y is not None, residuals are assumed to be in the transformed scale. Use set_out_sample_residuals() method to set values.

creation_date str

Date of creation.

is_fitted bool

Tag to identify if the regressor has been fitted (trained).

fit_date str

Date of last fit.

skforecast_version str

Version of skforecast library used to create the forecaster.

python_version str

Version of python used to create the forecaster.

n_jobs (int, auto)

The number of jobs to run in parallel. If -1, then the number of jobs is set to the number of cores. If 'auto', n_jobs is set using the function skforecast.utils.select_n_jobs_fit_forecaster.

forecaster_id (str, int)

Name used as an identifier of the forecaster.

binner Ignored

Not used, present here for API consistency by convention.

binner_intervals_ Ignored

Not used, present here for API consistency by convention.

binner_kwargs Ignored

Not used, present here for API consistency by convention.

in_sample_residuals_by_bin_ Ignored

Not used, present here for API consistency by convention.

out_sample_residuals_by_bin_ Ignored

Not used, present here for API consistency by convention.

Notes

A separate model is created for each forecasting time step. It is important to note that all models share the same parameter and hyperparameter configuration.

Source code in skforecast\direct\_forecaster_direct.py
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
def __init__(
    self,
    regressor: object,
    steps: int,
    lags: Optional[Union[int, list, np.ndarray, range]] = None,
    window_features: Optional[Union[object, list]] = None,
    transformer_y: Optional[object] = None,
    transformer_exog: Optional[object] = None,
    weight_func: Optional[Callable] = None,
    differentiation: Optional[int] = None,
    fit_kwargs: Optional[dict] = None,
    n_jobs: Union[int, str] = 'auto',
    forecaster_id: Optional[Union[str, int]] = None
) -> None:

    self.regressor                          = copy(regressor)
    self.steps                              = steps
    self.transformer_y                      = transformer_y
    self.transformer_exog                   = transformer_exog
    self.weight_func                        = weight_func
    self.source_code_weight_func            = None
    self.differentiation                    = differentiation
    self.differentiator                     = None
    self.last_window_                       = None
    self.index_type_                        = None
    self.index_freq_                        = None
    self.training_range_                    = None
    self.exog_in_                           = False
    self.exog_names_in_                     = None
    self.exog_type_in_                      = None
    self.exog_dtypes_in_                    = None
    self.X_train_window_features_names_out_ = None
    self.X_train_exog_names_out_            = None
    self.X_train_direct_exog_names_out_     = None
    self.X_train_features_names_out_        = None
    self.creation_date                      = pd.Timestamp.today().strftime('%Y-%m-%d %H:%M:%S')
    self.is_fitted                          = False
    self.fit_date                           = None
    self.skforecast_version                 = skforecast.__version__
    self.python_version                     = sys.version.split(" ")[0]
    self.forecaster_id                      = forecaster_id
    self.binner                             = None
    self.binner_intervals_                  = None
    self.binner_kwargs                      = None
    self.in_sample_residuals_by_bin_        = None
    self.out_sample_residuals_by_bin_       = None

    if not isinstance(steps, int):
        raise TypeError(
            f"`steps` argument must be an int greater than or equal to 1. "
            f"Got {type(steps)}."
        )

    if steps < 1:
        raise ValueError(
            f"`steps` argument must be greater than or equal to 1. Got {steps}."
        )

    self.regressors_ = {step: clone(self.regressor) for step in range(1, steps + 1)}
    self.lags, self.lags_names, self.max_lag = initialize_lags(type(self).__name__, lags)
    self.window_features, self.window_features_names, self.max_size_window_features = (
        initialize_window_features(window_features)
    )
    if self.window_features is None and self.lags is None:
        raise ValueError(
            "At least one of the arguments `lags` or `window_features` "
            "must be different from None. This is required to create the "
            "predictors used in training the forecaster."
        )

    self.window_size = max(
        [ws for ws in [self.max_lag, self.max_size_window_features] 
         if ws is not None]
    )
    self.window_features_class_names = None
    if window_features is not None:
        self.window_features_class_names = [
            type(wf).__name__ for wf in self.window_features
        ]

    if self.differentiation is not None:
        if not isinstance(differentiation, int) or differentiation < 1:
            raise ValueError(
                f"Argument `differentiation` must be an integer equal to or "
                f"greater than 1. Got {differentiation}."
            )
        self.window_size += self.differentiation
        self.differentiator = TimeSeriesDifferentiator(
            order=self.differentiation, window_size=self.window_size
        )

    self.weight_func, self.source_code_weight_func, _ = initialize_weights(
        forecaster_name = type(self).__name__, 
        regressor       = regressor, 
        weight_func     = weight_func, 
        series_weights  = None
    )

    self.fit_kwargs = check_select_fit_kwargs(
                          regressor  = regressor,
                          fit_kwargs = fit_kwargs
                      )

    self.in_sample_residuals_ = {step: None for step in range(1, steps + 1)}
    self.out_sample_residuals_ = None

    if n_jobs == 'auto':
        self.n_jobs = select_n_jobs_fit_forecaster(
                          forecaster_name = type(self).__name__,
                          regressor       = self.regressor
                      )
    else:
        if not isinstance(n_jobs, int):
            raise TypeError(
                f"`n_jobs` must be an integer or `'auto'`. Got {type(n_jobs)}."
            )
        self.n_jobs = n_jobs if n_jobs > 0 else cpu_count()

_repr_html_

_repr_html_()

HTML representation of the object. The "General Information" section is expanded by default.

Source code in skforecast\direct\_forecaster_direct.py
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
def _repr_html_(self):
    """
    HTML representation of the object.
    The "General Information" section is expanded by default.
    """

    (
        params,
        _,
        _,
        exog_names_in_,
        _,
    ) = self._preprocess_repr(
            regressor      = self.regressor,
            exog_names_in_ = self.exog_names_in_
        )

    style, unique_id = self._get_style_repr_html(self.is_fitted)

    content = f"""
    <div class="container-{unique_id}">
        <h2>{type(self).__name__}</h2>
        <details open>
            <summary>General Information</summary>
            <ul>
                <li><strong>Regressor:</strong> {type(self.regressor).__name__}</li>
                <li><strong>Lags:</strong> {self.lags}</li>
                <li><strong>Window features:</strong> {self.window_features_names}</li>
                <li><strong>Window size:</strong> {self.window_size}</li>
                <li><strong>Maximum steps to predict:</strong> {self.steps}</li>
                <li><strong>Exogenous included:</strong> {self.exog_in_}</li>
                <li><strong>Weight function included:</strong> {self.weight_func is not None}</li>
                <li><strong>Differentiation order:</strong> {self.differentiation}</li>
                <li><strong>Creation date:</strong> {self.creation_date}</li>
                <li><strong>Last fit date:</strong> {self.fit_date}</li>
                <li><strong>Skforecast version:</strong> {self.skforecast_version}</li>
                <li><strong>Python version:</strong> {self.python_version}</li>
                <li><strong>Forecaster id:</strong> {self.forecaster_id}</li>
            </ul>
        </details>
        <details>
            <summary>Exogenous Variables</summary>
            <ul>
                {exog_names_in_}
            </ul>
        </details>
        <details>
            <summary>Data Transformations</summary>
            <ul>
                <li><strong>Transformer for y:</strong> {self.transformer_y}</li>
                <li><strong>Transformer for exog:</strong> {self.transformer_exog}</li>
            </ul>
        </details>
        <details>
            <summary>Training Information</summary>
            <ul>
                <li><strong>Training range:</strong> {self.training_range_.to_list() if self.is_fitted else 'Not fitted'}</li>
                <li><strong>Training index type:</strong> {str(self.index_type_).split('.')[-1][:-2] if self.is_fitted else 'Not fitted'}</li>
                <li><strong>Training index frequency:</strong> {self.index_freq_ if self.is_fitted else 'Not fitted'}</li>
            </ul>
        </details>
        <details>
            <summary>Regressor Parameters</summary>
            <ul>
                {params}
            </ul>
        </details>
        <details>
            <summary>Fit Kwargs</summary>
            <ul>
                {self.fit_kwargs}
            </ul>
        </details>
        <p>
            <a href="https://skforecast.org/{skforecast.__version__}/api/forecasterdirect.html">&#128712 <strong>API Reference</strong></a>
            &nbsp;&nbsp;
            <a href="https://skforecast.org/{skforecast.__version__}/user_guides/direct-multi-step-forecasting.html">&#128462 <strong>User Guide</strong></a>
        </p>
    </div>
    """

    # Return the combined style and content
    return style + content

_create_lags

_create_lags(y, X_as_pandas=False, train_index=None)

Create the lagged values and their target variable from a time series.

Note that the returned matrix X_data contains the lag 1 in the first column, the lag 2 in the in the second column and so on.

Parameters:

Name Type Description Default
y numpy ndarray

Training time series values.

required
X_as_pandas bool

If True, the returned matrix X_data is a pandas DataFrame.

`False`
train_index pandas Index

Index of the training data. It is used to create the pandas DataFrame X_data when X_as_pandas is True.

`None`

Returns:

Name Type Description
X_data numpy ndarray, pandas DataFrame, None

Lagged values (predictors).

y_data numpy ndarray

Values of the time series related to each row of X_data.

Source code in skforecast\direct\_forecaster_direct.py
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
def _create_lags(
    self, 
    y: np.ndarray,
    X_as_pandas: bool = False,
    train_index: Optional[pd.Index] = None
) -> Tuple[Optional[Union[np.ndarray, pd.DataFrame]], np.ndarray]:
    """
    Create the lagged values and their target variable from a time series.

    Note that the returned matrix `X_data` contains the lag 1 in the first 
    column, the lag 2 in the in the second column and so on.

    Parameters
    ----------
    y : numpy ndarray
        Training time series values.
    X_as_pandas : bool, default `False`
        If `True`, the returned matrix `X_data` is a pandas DataFrame.
    train_index : pandas Index, default `None`
        Index of the training data. It is used to create the pandas DataFrame
        `X_data` when `X_as_pandas` is `True`.

    Returns
    -------
    X_data : numpy ndarray, pandas DataFrame, None
        Lagged values (predictors).
    y_data : numpy ndarray
        Values of the time series related to each row of `X_data`.

    """

    n_rows = len(y) - self.window_size - (self.steps - 1)

    X_data = None
    if self.lags is not None:
        X_data = np.full(
            shape=(n_rows, len(self.lags)), fill_value=np.nan, order='F', dtype=float
        )
        for i, lag in enumerate(self.lags):
            X_data[:, i] = y[self.window_size - lag : -(lag + self.steps - 1)] 

        if X_as_pandas:
            X_data = pd.DataFrame(
                         data    = X_data,
                         columns = self.lags_names,
                         index   = train_index
                     )

    y_data = np.full(
        shape=(n_rows, self.steps), fill_value=np.nan, order='F', dtype=float
    )
    for step in range(self.steps):
        y_data[:, step] = y[self.window_size + step : self.window_size + step + n_rows]

    return X_data, y_data

_create_window_features

_create_window_features(y, train_index, X_as_pandas=False)

Parameters:

Name Type Description Default
y pandas Series

Training time series.

required
train_index pandas Index

Index of the training data. It is used to create the pandas DataFrame X_train_window_features when X_as_pandas is True.

required
X_as_pandas bool

If True, the returned matrix X_train_window_features is a pandas DataFrame.

`False`

Returns:

Name Type Description
X_train_window_features list

List of numpy ndarrays or pandas DataFrames with the window features.

X_train_window_features_names_out_ list

Names of the window features.

Source code in skforecast\direct\_forecaster_direct.py
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
def _create_window_features(
    self, 
    y: pd.Series,
    train_index: pd.Index,
    X_as_pandas: bool = False,
) -> Tuple[list, list]:
    """

    Parameters
    ----------
    y : pandas Series
        Training time series.
    train_index : pandas Index
        Index of the training data. It is used to create the pandas DataFrame
        `X_train_window_features` when `X_as_pandas` is `True`.
    X_as_pandas : bool, default `False`
        If `True`, the returned matrix `X_train_window_features` is a 
        pandas DataFrame.

    Returns
    -------
    X_train_window_features : list
        List of numpy ndarrays or pandas DataFrames with the window features.
    X_train_window_features_names_out_ : list
        Names of the window features.

    """

    len_train_index = len(train_index)
    X_train_window_features = []
    X_train_window_features_names_out_ = []
    for wf in self.window_features:
        X_train_wf = wf.transform_batch(y)
        if not isinstance(X_train_wf, pd.DataFrame):
            raise TypeError(
                (f"The method `transform_batch` of {type(wf).__name__} "
                 f"must return a pandas DataFrame.")
            )
        X_train_wf = X_train_wf.iloc[-len_train_index:]
        if not len(X_train_wf) == len_train_index:
            raise ValueError(
                (f"The method `transform_batch` of {type(wf).__name__} "
                 f"must return a DataFrame with the same number of rows as "
                 f"the input time series - (`window_size` + (`steps` - 1)): {len_train_index}.")
            )
        X_train_wf.index = train_index

        X_train_window_features_names_out_.extend(X_train_wf.columns)
        if not X_as_pandas:
            X_train_wf = X_train_wf.to_numpy()     
        X_train_window_features.append(X_train_wf)

    return X_train_window_features, X_train_window_features_names_out_

_create_train_X_y

_create_train_X_y(y, exog=None)

Create training matrices from univariate time series and exogenous variables. The resulting matrices contain the target variable and predictors needed to train all the regressors (one per step).

Parameters:

Name Type Description Default
y pandas Series

Training time series.

required
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s. Must have the same number of observations as y and their indexes must be aligned.

`None`

Returns:

Name Type Description
X_train pandas DataFrame

Training values (predictors) for each step. Note that the index corresponds to that of the last step. It is updated for the corresponding step in the filter_train_X_y_for_step method.

y_train dict

Values of the time series related to each row of X_train for each step in the form {step: y_step_[i]}.

exog_names_in_ list

Names of the exogenous variables used during training.

X_train_exog_names_out_ list

Names of the exogenous variables included in the matrix X_train created internally for training. It can be different from exog_names_in_ if some exogenous variables are transformed during the training process.

X_train_features_names_out_ list

Names of the columns of the matrix created internally for training.

exog_dtypes_in_ dict

Type of each exogenous variable/s used in training. If transformer_exog is used, the dtypes are calculated before the transformation.

Source code in skforecast\direct\_forecaster_direct.py
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
def _create_train_X_y(
    self,
    y: pd.Series,
    exog: Optional[Union[pd.Series, pd.DataFrame]] = None
) -> Tuple[pd.DataFrame, dict, list, list, list, dict]:
    """
    Create training matrices from univariate time series and exogenous
    variables. The resulting matrices contain the target variable and 
    predictors needed to train all the regressors (one per step).

    Parameters
    ----------
    y : pandas Series
        Training time series.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s. Must have the same
        number of observations as `y` and their indexes must be aligned.

    Returns
    -------
    X_train : pandas DataFrame
        Training values (predictors) for each step. Note that the index 
        corresponds to that of the last step. It is updated for the corresponding 
        step in the `filter_train_X_y_for_step` method.
    y_train : dict
        Values of the time series related to each row of `X_train` for each 
        step in the form {step: y_step_[i]}.
    exog_names_in_ : list
        Names of the exogenous variables used during training.
    X_train_exog_names_out_ : list
        Names of the exogenous variables included in the matrix `X_train` created
        internally for training. It can be different from `exog_names_in_` if
        some exogenous variables are transformed during the training process.
    X_train_features_names_out_ : list
        Names of the columns of the matrix created internally for training.
    exog_dtypes_in_ : dict
        Type of each exogenous variable/s used in training. If `transformer_exog` 
        is used, the dtypes are calculated before the transformation.

    """

    check_y(y=y)
    y = input_to_frame(data=y, input_name='y')

    if len(y) < self.window_size + self.steps:
        raise ValueError(
            f"Minimum length of `y` for training this forecaster is "
            f"{self.window_size + self.steps}. Reduce the number of "
            f"predicted steps, {self.steps}, or the maximum "
            f"window_size, {self.window_size}, if no more data is available.\n"
            f"    Length `y`: {len(y)}.\n"
            f"    Max step : {self.steps}.\n"
            f"    Max window size: {self.window_size}.\n"
            f"    Lags window size: {self.max_lag}.\n"
            f"    Window features window size: {self.max_size_window_features}."
        )

    fit_transformer = False if self.is_fitted else True
    y = transform_dataframe(
            df                = y, 
            transformer       = self.transformer_y,
            fit               = fit_transformer,
            inverse_transform = False,
        )
    y_values, y_index = preprocess_y(y=y)

    if self.differentiation is not None:
        if not self.is_fitted:
            y_values = self.differentiator.fit_transform(y_values)
        else:
            differentiator = copy(self.differentiator)
            y_values = differentiator.fit_transform(y_values)

    exog_names_in_ = None
    exog_dtypes_in_ = None
    categorical_features = False
    if exog is not None:
        check_exog(exog=exog, allow_nan=True)
        exog = input_to_frame(data=exog, input_name='exog')

        y_index_no_ws = y_index[self.window_size:]
        len_y = len(y_values)
        len_y_no_ws = len_y - self.window_size
        len_exog = len(exog)
        if not len_exog == len_y and not len_exog == len_y_no_ws:
            raise ValueError(
                f"Length of `exog` must be equal to the length of `y` (if index is "
                f"fully aligned) or length of `y` - `window_size` (if `exog` "
                f"starts after the first `window_size` values).\n"
                f"    `exog`              : ({exog.index[0]} -- {exog.index[-1]})  (n={len_exog})\n"
                f"    `y`                 : ({y.index[0]} -- {y.index[-1]})  (n={len_y})\n"
                f"    `y` - `window_size` : ({y_index_no_ws[0]} -- {y_index_no_ws[-1]})  (n={len_y_no_ws})"
            )

        # NOTE: Need here for filter_train_X_y_for_step to work without fitting
        self.exog_in_ = True
        exog_names_in_ = exog.columns.to_list()
        exog_dtypes_in_ = get_exog_dtypes(exog=exog)

        exog = transform_dataframe(
                   df                = exog,
                   transformer       = self.transformer_exog,
                   fit               = fit_transformer,
                   inverse_transform = False
               )

        check_exog_dtypes(exog, call_check_exog=True)
        categorical_features = (
            exog.select_dtypes(include=np.number).shape[1] != exog.shape[1]
        )

        _, exog_index = preprocess_exog(exog=exog, return_values=False)
        if len_exog == len_y:
            if not (exog_index == y_index).all():
                raise ValueError(
                    "When `exog` has the same length as `y`, the index of "
                    "`exog` must be aligned with the index of `y` "
                    "to ensure the correct alignment of values."
                )
            # The first `self.window_size` positions have to be removed from 
            # exog since they are not in X_train.
            exog = exog.iloc[self.window_size:, ]
        else:
            if not (exog_index == y_index_no_ws).all():
                raise ValueError(
                    "When `exog` doesn't contain the first `window_size` observations, "
                    "the index of `exog` must be aligned with the index of `y` minus "
                    "the first `window_size` observations to ensure the correct "
                    "alignment of values."
                )

    X_train = []
    X_train_features_names_out_ = []
    train_index = y_index[self.window_size + (self.steps - 1):]
    len_train_index = len(train_index)
    X_as_pandas = True if categorical_features else False

    X_train_lags, y_train = self._create_lags(
        y=y_values, X_as_pandas=X_as_pandas, train_index=train_index
    )
    if X_train_lags is not None:
        X_train.append(X_train_lags)
        X_train_features_names_out_.extend(self.lags_names)

    X_train_window_features_names_out_ = None
    if self.window_features is not None:
        n_diff = 0 if self.differentiation is None else self.differentiation
        end_wf = None if self.steps == 1 else -(self.steps - 1)
        y_window_features = pd.Series(
            y_values[n_diff:end_wf], index=y_index[n_diff:end_wf]
        )
        X_train_window_features, X_train_window_features_names_out_ = (
            self._create_window_features(
                y           = y_window_features, 
                X_as_pandas = X_as_pandas, 
                train_index = train_index
            )
        )
        X_train.extend(X_train_window_features)
        X_train_features_names_out_.extend(X_train_window_features_names_out_)

    # NOTE: Need here for filter_train_X_y_for_step to work without fitting
    self.X_train_window_features_names_out_ = X_train_window_features_names_out_

    X_train_exog_names_out_ = None
    if exog is not None:
        X_train_exog_names_out_ = exog.columns.to_list()
        if X_as_pandas:
            exog_direct, X_train_direct_exog_names_out_ = exog_to_direct(
                exog=exog, steps=self.steps
            )
            exog_direct.index = train_index
        else:
            exog_direct, X_train_direct_exog_names_out_ = exog_to_direct_numpy(
                exog=exog, steps=self.steps
            )

        # NOTE: Need here for filter_train_X_y_for_step to work without fitting
        self.X_train_direct_exog_names_out_ = X_train_direct_exog_names_out_

        X_train_features_names_out_.extend(self.X_train_direct_exog_names_out_)
        X_train.append(exog_direct)

    if len(X_train) == 1:
        X_train = X_train[0]
    else:
        if X_as_pandas:
            X_train = pd.concat(X_train, axis=1)
        else:
            X_train = np.concatenate(X_train, axis=1)

    if X_as_pandas:
        X_train.index = train_index
    else:
        X_train = pd.DataFrame(
                      data    = X_train,
                      index   = train_index,
                      columns = X_train_features_names_out_
                  )

    y_train = {
        step: pd.Series(
                  data  = y_train[:, step - 1], 
                  index = y_index[self.window_size + step - 1:][:len_train_index],
                  name  = f"y_step_{step}"
              )
        for step in range(1, self.steps + 1)
    }

    return (
        X_train,
        y_train,
        exog_names_in_,
        X_train_exog_names_out_,
        X_train_features_names_out_,
        exog_dtypes_in_
    )

create_train_X_y

create_train_X_y(y, exog=None)

Create training matrices from univariate time series and exogenous variables. The resulting matrices contain the target variable and predictors needed to train all the regressors (one per step).

Parameters:

Name Type Description Default
y pandas Series

Training time series.

required
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s. Must have the same number of observations as y and their indexes must be aligned.

`None`

Returns:

Name Type Description
X_train pandas DataFrame

Training values (predictors) for each step. Note that the index corresponds to that of the last step. It is updated for the corresponding step in the filter_train_X_y_for_step method.

y_train dict

Values of the time series related to each row of X_train for each step in the form {step: y_step_[i]}.

Source code in skforecast\direct\_forecaster_direct.py
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
def create_train_X_y(
    self,
    y: pd.Series,
    exog: Optional[Union[pd.Series, pd.DataFrame]] = None
) -> Tuple[pd.DataFrame, dict]:
    """
    Create training matrices from univariate time series and exogenous
    variables. The resulting matrices contain the target variable and 
    predictors needed to train all the regressors (one per step).

    Parameters
    ----------
    y : pandas Series
        Training time series.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s. Must have the same
        number of observations as `y` and their indexes must be aligned.

    Returns
    -------
    X_train : pandas DataFrame
        Training values (predictors) for each step. Note that the index 
        corresponds to that of the last step. It is updated for the corresponding 
        step in the `filter_train_X_y_for_step` method.
    y_train : dict
        Values of the time series related to each row of `X_train` for each 
        step in the form {step: y_step_[i]}.

    """

    output = self._create_train_X_y(y=y, exog=exog)

    X_train = output[0]
    y_train = output[1]

    return X_train, y_train

filter_train_X_y_for_step

filter_train_X_y_for_step(
    step, X_train, y_train, remove_suffix=False
)

Select the columns needed to train a forecaster for a specific step.
The input matrices should be created using create_train_X_y method. This method updates the index of X_train to the corresponding one according to y_train. If remove_suffix=True the suffix "_step_i" will be removed from the column names.

Parameters:

Name Type Description Default
step int

Step for which columns must be selected selected. Starts at 1.

required
X_train pandas DataFrame

Dataframe created with the create_train_X_y method, first return.

required
y_train dict

Dict created with the create_train_X_y method, second return.

required
remove_suffix bool

If True, suffix "_step_i" is removed from the column names.

`False`

Returns:

Name Type Description
X_train_step pandas DataFrame

Training values (predictors) for the selected step.

y_train_step pandas Series

Values of the time series related to each row of X_train.

Source code in skforecast\direct\_forecaster_direct.py
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
def filter_train_X_y_for_step(
    self,
    step: int,
    X_train: pd.DataFrame,
    y_train: dict,
    remove_suffix: bool = False
) -> Tuple[pd.DataFrame, pd.Series]:
    """
    Select the columns needed to train a forecaster for a specific step.  
    The input matrices should be created using `create_train_X_y` method. 
    This method updates the index of `X_train` to the corresponding one 
    according to `y_train`. If `remove_suffix=True` the suffix "_step_i" 
    will be removed from the column names. 

    Parameters
    ----------
    step : int
        Step for which columns must be selected selected. Starts at 1.
    X_train : pandas DataFrame
        Dataframe created with the `create_train_X_y` method, first return.
    y_train : dict
        Dict created with the `create_train_X_y` method, second return.
    remove_suffix : bool, default `False`
        If True, suffix "_step_i" is removed from the column names.

    Returns
    -------
    X_train_step : pandas DataFrame
        Training values (predictors) for the selected step.
    y_train_step : pandas Series
        Values of the time series related to each row of `X_train`.

    """

    if (step < 1) or (step > self.steps):
        raise ValueError(
            (f"Invalid value `step`. For this forecaster, minimum value is 1 "
             f"and the maximum step is {self.steps}.")
        )

    y_train_step = y_train[step]

    # Matrix X_train starts at index 0.
    if not self.exog_in_:
        X_train_step = X_train
    else:
        n_lags = len(self.lags) if self.lags is not None else 0
        n_window_features = (
            len(self.X_train_window_features_names_out_) if self.window_features is not None else 0
        )
        idx_columns_autoreg = np.arange(n_lags + n_window_features)
        n_exog = len(self.X_train_direct_exog_names_out_) / self.steps
        idx_columns_exog = (
            np.arange((step - 1) * n_exog, (step) * n_exog) + idx_columns_autoreg[-1] + 1
        )
        idx_columns = np.concatenate((idx_columns_autoreg, idx_columns_exog))
        X_train_step = X_train.iloc[:, idx_columns]

    X_train_step.index = y_train_step.index

    if remove_suffix:
        X_train_step.columns = [
            col_name.replace(f"_step_{step}", "")
            for col_name in X_train_step.columns
        ]
        y_train_step.name = y_train_step.name.replace(f"_step_{step}", "")

    return X_train_step, y_train_step

_train_test_split_one_step_ahead

_train_test_split_one_step_ahead(
    y, initial_train_size, exog=None
)

Create matrices needed to train and test the forecaster for one-step-ahead predictions.

Parameters:

Name Type Description Default
y pandas Series

Training time series.

required
initial_train_size int

Initial size of the training set. It is the number of observations used to train the forecaster before making the first prediction.

required
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s. Must have the same number of observations as y and their indexes must be aligned.

`None`

Returns:

Name Type Description
X_train pandas DataFrame

Predictor values used to train the model.

y_train dict

Values of the time series related to each row of X_train for each step in the form {step: y_step_[i]}.

X_test pandas DataFrame

Predictor values used to test the model.

y_test dict

Values of the time series related to each row of X_test for each step in the form {step: y_step_[i]}.

Source code in skforecast\direct\_forecaster_direct.py
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
def _train_test_split_one_step_ahead(
    self,
    y: pd.Series,
    initial_train_size: int,
    exog: Optional[Union[pd.Series, pd.DataFrame]] = None
) -> Tuple[pd.DataFrame, dict, pd.DataFrame, dict]:
    """
    Create matrices needed to train and test the forecaster for one-step-ahead
    predictions.

    Parameters
    ----------
    y : pandas Series
        Training time series.
    initial_train_size : int
        Initial size of the training set. It is the number of observations used
        to train the forecaster before making the first prediction.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s. Must have the same
        number of observations as `y` and their indexes must be aligned.

    Returns
    -------
    X_train : pandas DataFrame
        Predictor values used to train the model.
    y_train : dict
        Values of the time series related to each row of `X_train` for each 
        step in the form {step: y_step_[i]}.
    X_test : pandas DataFrame
        Predictor values used to test the model.
    y_test : dict
        Values of the time series related to each row of `X_test` for each 
        step in the form {step: y_step_[i]}.

    """

    is_fitted = self.is_fitted
    self.is_fitted = False
    X_train, y_train, *_ = self._create_train_X_y(
        y    = y.iloc[: initial_train_size],
        exog = exog.iloc[: initial_train_size] if exog is not None else None
    )

    test_init = initial_train_size - self.window_size
    self.is_fitted = True
    X_test, y_test, *_ = self._create_train_X_y(
        y    = y.iloc[test_init:],
        exog = exog.iloc[test_init:] if exog is not None else None
    )

    self.is_fitted = is_fitted

    return X_train, y_train, X_test, y_test

create_sample_weights

create_sample_weights(X_train)

Crate weights for each observation according to the forecaster's attribute weight_func.

Parameters:

Name Type Description Default
X_train pandas DataFrame

Dataframe created with create_train_X_y and filter_train_X_y_for_step methods, first return.

required

Returns:

Name Type Description
sample_weight numpy ndarray

Weights to use in fit method.

Source code in skforecast\direct\_forecaster_direct.py
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
def create_sample_weights(
    self,
    X_train: pd.DataFrame,
) -> np.ndarray:
    """
    Crate weights for each observation according to the forecaster's attribute
    `weight_func`.

    Parameters
    ----------
    X_train : pandas DataFrame
        Dataframe created with `create_train_X_y` and `filter_train_X_y_for_step`
        methods, first return.

    Returns
    -------
    sample_weight : numpy ndarray
        Weights to use in `fit` method.

    """

    sample_weight = None

    if self.weight_func is not None:
        sample_weight = self.weight_func(X_train.index)

    if sample_weight is not None:
        if np.isnan(sample_weight).any():
            raise ValueError(
                "The resulting `sample_weight` cannot have NaN values."
            )
        if np.any(sample_weight < 0):
            raise ValueError(
                "The resulting `sample_weight` cannot have negative values."
            )
        if np.sum(sample_weight) == 0:
            raise ValueError(
                ("The resulting `sample_weight` cannot be normalized because "
                 "the sum of the weights is zero.")
            )

    return sample_weight

fit

fit(
    y,
    exog=None,
    store_last_window=True,
    store_in_sample_residuals=True,
)

Training Forecaster.

Additional arguments to be passed to the fit method of the regressor can be added with the fit_kwargs argument when initializing the forecaster.

Parameters:

Name Type Description Default
y pandas Series

Training time series.

required
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s. Must have the same number of observations as y and their indexes must be aligned so that y[i] is regressed on exog[i].

`None`
store_last_window bool

Whether or not to store the last window (last_window_) of training data.

`True`
store_in_sample_residuals bool

If True, in-sample residuals will be stored in the forecaster object after fitting (in_sample_residuals_ attribute).

`True`

Returns:

Type Description
None
Source code in skforecast\direct\_forecaster_direct.py
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
def fit(
    self,
    y: pd.Series,
    exog: Optional[Union[pd.Series, pd.DataFrame]] = None,
    store_last_window: bool = True,
    store_in_sample_residuals: bool = True
) -> None:
    """
    Training Forecaster.

    Additional arguments to be passed to the `fit` method of the regressor 
    can be added with the `fit_kwargs` argument when initializing the forecaster.

    Parameters
    ----------
    y : pandas Series
        Training time series.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s. Must have the same
        number of observations as `y` and their indexes must be aligned so
        that y[i] is regressed on exog[i].
    store_last_window : bool, default `True`
        Whether or not to store the last window (`last_window_`) of training data.
    store_in_sample_residuals : bool, default `True`
        If `True`, in-sample residuals will be stored in the forecaster object
        after fitting (`in_sample_residuals_` attribute).

    Returns
    -------
    None

    """

    # Reset values in case the forecaster has already been fitted.
    self.last_window_                       = None
    self.index_type_                        = None
    self.index_freq_                        = None
    self.training_range_                    = None
    self.exog_in_                           = False
    self.exog_names_in_                     = None
    self.exog_type_in_                      = None
    self.exog_dtypes_in_                    = None
    self.X_train_window_features_names_out_ = None
    self.X_train_exog_names_out_            = None
    self.X_train_direct_exog_names_out_     = None
    self.X_train_features_names_out_        = None
    self.in_sample_residuals_               = {step: None for step in range(1, self.steps + 1)}
    self.is_fitted                          = False
    self.fit_date                           = None

    (
        X_train,
        y_train,
        exog_names_in_,
        X_train_exog_names_out_,
        X_train_features_names_out_,
        exog_dtypes_in_
    ) = self._create_train_X_y(y=y, exog=exog)

    def fit_forecaster(regressor, X_train, y_train, step, store_in_sample_residuals):
        """
        Auxiliary function to fit each of the forecaster's regressors in parallel.

        Parameters
        ----------
        regressor : object
            Regressor to be fitted.
        X_train : pandas DataFrame
            Dataframe created with the `create_train_X_y` method, first return.
        y_train : dict
            Dict created with the `create_train_X_y` method, second return.
        step : int
            Step of the forecaster to be fitted.
        store_in_sample_residuals : bool
            If `True`, in-sample residuals will be stored in the forecaster object
            after fitting (`in_sample_residuals_` attribute).

        Returns
        -------
        Tuple with the step, fitted regressor and in-sample residuals.

        """

        X_train_step, y_train_step = self.filter_train_X_y_for_step(
                                         step          = step,
                                         X_train       = X_train,
                                         y_train       = y_train,
                                         remove_suffix = True
                                     )
        sample_weight = self.create_sample_weights(X_train=X_train_step)
        if sample_weight is not None:
            regressor.fit(
                X             = X_train_step,
                y             = y_train_step,
                sample_weight = sample_weight,
                **self.fit_kwargs
            )
        else:
            regressor.fit(
                X = X_train_step,
                y = y_train_step,
                **self.fit_kwargs
            )

        # This is done to save time during fit in functions such as backtesting()
        if store_in_sample_residuals:
            residuals = (
                (y_train_step - regressor.predict(X_train_step))
            ).to_numpy()

            if len(residuals) > 1000:
                rng = np.random.default_rng(seed=123)
                residuals = rng.choice(
                                a       = residuals, 
                                size    = 1000, 
                                replace = False
                            )
        else:
            residuals = None

        return step, regressor, residuals

    results_fit = (
        Parallel(n_jobs=self.n_jobs)
        (delayed(fit_forecaster)
        (
            regressor                 = copy(self.regressor),
            X_train                   = X_train,
            y_train                   = y_train,
            step                      = step,
            store_in_sample_residuals = store_in_sample_residuals
        )
        for step in range(1, self.steps + 1))
    )

    self.regressors_ = {step: regressor for step, regressor, _ in results_fit}

    if store_in_sample_residuals:
        self.in_sample_residuals_ = {
            step: residuals 
            for step, _, residuals in results_fit
        }

    self.X_train_features_names_out_ = X_train_features_names_out_

    self.is_fitted = True
    self.fit_date = pd.Timestamp.today().strftime('%Y-%m-%d %H:%M:%S')
    self.training_range_ = preprocess_y(y=y, return_values=False)[1][[0, -1]]
    self.index_type_ = type(X_train.index)
    if isinstance(X_train.index, pd.DatetimeIndex):
        self.index_freq_ = X_train.index.freqstr
    else: 
        self.index_freq_ = X_train.index.step

    if exog is not None:
        self.exog_in_ = True
        self.exog_type_in_ = type(exog)
        self.exog_names_in_ = exog_names_in_
        self.exog_dtypes_in_ = exog_dtypes_in_
        self.X_train_exog_names_out_ = X_train_exog_names_out_

    if store_last_window:
        self.last_window_ = (
            y.iloc[-self.window_size:]
            .copy()
            .to_frame(name=y.name if y.name is not None else 'y')
        )

_create_predict_inputs

_create_predict_inputs(
    steps=None,
    last_window=None,
    exog=None,
    check_inputs=True,
)

Create the inputs needed for the prediction process.

Parameters:

Name Type Description Default
steps (int, list, None)

Predict n steps. The value of steps must be less than or equal to the value of steps defined when initializing the forecaster. Starts at 1.

  • If int: Only steps within the range of 1 to int are predicted.
  • If list: List of ints. Only the steps contained in the list are predicted.
  • If None: As many steps are predicted as were defined at initialization.
`None`
last_window pandas Series, pandas DataFrame

Series values used to create the predictors (lags) needed to predict steps. If last_window = None, the values stored in self.last_window_ are used to calculate the initial predictors, and the predictions start right after training data.

`None`
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s.

`None`
check_inputs bool

If True, the input is checked for possible warnings and errors with the check_predict_input function. This argument is created for internal use and is not recommended to be changed.

`True`

Returns:

Name Type Description
Xs list

List of numpy arrays with the predictors for each step.

Xs_col_names list

Names of the columns of the matrix created internally for prediction.

steps list

Steps to predict.

prediction_index pandas Index

Index of the predictions.

Source code in skforecast\direct\_forecaster_direct.py
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
def _create_predict_inputs(
    self,
    steps: Optional[Union[int, list]] = None,
    last_window: Optional[Union[pd.Series, pd.DataFrame]] = None,
    exog: Optional[Union[pd.Series, pd.DataFrame]] = None,
    check_inputs: bool = True
) -> Tuple[list, list, list, pd.Index]:
    """
    Create the inputs needed for the prediction process.

    Parameters
    ----------
    steps : int, list, None, default `None`
        Predict n steps. The value of `steps` must be less than or equal to the 
        value of steps defined when initializing the forecaster. Starts at 1.

        - If `int`: Only steps within the range of 1 to int are predicted.
        - If `list`: List of ints. Only the steps contained in the list 
        are predicted.
        - If `None`: As many steps are predicted as were defined at 
        initialization.
    last_window : pandas Series, pandas DataFrame, default `None`
        Series values used to create the predictors (lags) needed to 
        predict `steps`.
        If `last_window = None`, the values stored in `self.last_window_` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s.
    check_inputs : bool, default `True`
        If `True`, the input is checked for possible warnings and errors 
        with the `check_predict_input` function. This argument is created 
        for internal use and is not recommended to be changed.

    Returns
    -------
    Xs : list
        List of numpy arrays with the predictors for each step.
    Xs_col_names : list
        Names of the columns of the matrix created internally for prediction.
    steps : list
        Steps to predict.
    prediction_index : pandas Index
        Index of the predictions.

    """

    steps = prepare_steps_direct(
                max_step = self.steps,
                steps    = steps
            )

    if last_window is None:
        last_window = self.last_window_

    if check_inputs:
        check_predict_input(
            forecaster_name = type(self).__name__,
            steps           = steps,
            is_fitted       = self.is_fitted,
            exog_in_        = self.exog_in_,
            index_type_     = self.index_type_,
            index_freq_     = self.index_freq_,
            window_size     = self.window_size,
            last_window     = last_window,
            exog            = exog,
            exog_type_in_   = self.exog_type_in_,
            exog_names_in_  = self.exog_names_in_,
            interval        = None,
            max_steps       = self.steps
        )

    last_window = last_window.iloc[-self.window_size:].copy()
    last_window_values, last_window_index = preprocess_last_window(
                                                last_window = last_window
                                            )

    last_window_values = transform_numpy(
                             array             = last_window_values,
                             transformer       = self.transformer_y,
                             fit               = False,
                             inverse_transform = False
                         )
    if self.differentiation is not None:
        last_window_values = self.differentiator.fit_transform(last_window_values)

    X_autoreg = []
    Xs_col_names = []
    if self.lags is not None:
        X_lags = last_window_values[-self.lags]
        X_autoreg.append(X_lags)
        Xs_col_names.extend(self.lags_names)

    if self.window_features is not None:
        n_diff = 0 if self.differentiation is None else self.differentiation
        X_window_features = np.concatenate(
            [
                wf.transform(last_window_values[n_diff:])
                for wf in self.window_features
            ]
        )
        X_autoreg.append(X_window_features)
        Xs_col_names.extend(self.X_train_window_features_names_out_)

    X_autoreg = np.concatenate(X_autoreg).reshape(1, -1)
    if exog is not None:
        exog = input_to_frame(data=exog, input_name='exog')
        exog = exog.loc[:, self.exog_names_in_]
        exog = transform_dataframe(
                   df                = exog,
                   transformer       = self.transformer_exog,
                   fit               = False,
                   inverse_transform = False
               )
        check_exog_dtypes(exog=exog)
        exog_values, _ = exog_to_direct_numpy(
                             exog  = exog.to_numpy()[:max(steps)],
                             steps = max(steps)
                         )
        exog_values = exog_values[0]

        n_exog = exog.shape[1]
        Xs = [
            np.concatenate(
                [
                    X_autoreg,
                    exog_values[(step - 1) * n_exog : step * n_exog].reshape(1, -1),
                ],
                axis=1
            )
            for step in steps
        ]
        # HACK: This is not the best way to do it. Can have any problem
        # if the exog_columns are not in the same order as the
        # self.window_features_names.
        Xs_col_names = Xs_col_names + exog.columns.to_list()
    else:
        Xs = [X_autoreg] * len(steps)

    prediction_index = expand_index(
                           index = last_window_index,
                           steps = max(steps)
                       )[np.array(steps) - 1]
    if isinstance(last_window_index, pd.DatetimeIndex) and np.array_equal(
        steps, np.arange(min(steps), max(steps) + 1)
    ):
        prediction_index.freq = last_window_index.freq

    # HACK: Why no use self.X_train_features_names_out_ as Xs_col_names?
    return Xs, Xs_col_names, steps, prediction_index

create_predict_X

create_predict_X(steps=None, last_window=None, exog=None)

Create the predictors needed to predict steps ahead.

Parameters:

Name Type Description Default
steps (int, list, None)

Predict n steps. The value of steps must be less than or equal to the value of steps defined when initializing the forecaster. Starts at 1.

  • If int: Only steps within the range of 1 to int are predicted.
  • If list: List of ints. Only the steps contained in the list are predicted.
  • If None: As many steps are predicted as were defined at initialization.
`None`
last_window pandas Series, pandas DataFrame

Series values used to create the predictors (lags) needed to predict steps. If last_window = None, the values stored in self.last_window_ are used to calculate the initial predictors, and the predictions start right after training data.

`None`
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s.

`None`

Returns:

Name Type Description
X_predict pandas DataFrame

Pandas DataFrame with the predictors for each step. The index is the same as the prediction index.

Source code in skforecast\direct\_forecaster_direct.py
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
def create_predict_X(
    self,
    steps: Optional[Union[int, list]] = None,
    last_window: Optional[Union[pd.Series, pd.DataFrame]] = None,
    exog: Optional[Union[pd.Series, pd.DataFrame]] = None
) -> pd.DataFrame:
    """
    Create the predictors needed to predict `steps` ahead.

    Parameters
    ----------
    steps : int, list, None, default `None`
        Predict n steps. The value of `steps` must be less than or equal to the 
        value of steps defined when initializing the forecaster. Starts at 1.

        - If `int`: Only steps within the range of 1 to int are predicted.
        - If `list`: List of ints. Only the steps contained in the list 
        are predicted.
        - If `None`: As many steps are predicted as were defined at 
        initialization.
    last_window : pandas Series, pandas DataFrame, default `None`
        Series values used to create the predictors (lags) needed to 
        predict `steps`.
        If `last_window = None`, the values stored in `self.last_window_` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s.

    Returns
    -------
    X_predict : pandas DataFrame
        Pandas DataFrame with the predictors for each step. The index 
        is the same as the prediction index.

    """

    Xs, Xs_col_names, steps, prediction_index = self._create_predict_inputs(
        steps=steps, last_window=last_window, exog=exog
    )

    X_predict = pd.DataFrame(
                    data    = np.concatenate(Xs, axis=0), 
                    columns = Xs_col_names, 
                    index   = prediction_index
                )

    if self.transformer_y is not None or self.differentiation is not None:
        warnings.warn(
            "The output matrix is in the transformed scale due to the "
            "inclusion of transformations or differentiation in the Forecaster. "
            "As a result, any predictions generated using this matrix will also "
            "be in the transformed scale. Please refer to the documentation "
            "for more details: "
            "https://skforecast.org/latest/user_guides/training-and-prediction-matrices.html",
            DataTransformationWarning
        )

    return X_predict

predict

predict(
    steps=None,
    last_window=None,
    exog=None,
    check_inputs=True,
)

Predict n steps ahead.

Parameters:

Name Type Description Default
steps (int, list, None)

Predict n steps. The value of steps must be less than or equal to the value of steps defined when initializing the forecaster. Starts at 1.

  • If int: Only steps within the range of 1 to int are predicted.
  • If list: List of ints. Only the steps contained in the list are predicted.
  • If None: As many steps are predicted as were defined at initialization.
`None`
last_window pandas Series, pandas DataFrame

Series values used to create the predictors (lags) needed to predict steps. If last_window = None, the values stored inself.last_window_ are used to calculate the initial predictors, and the predictions start right after training data.

`None`
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s.

`None`
check_inputs bool

If True, the input is checked for possible warnings and errors with the check_predict_input function. This argument is created for internal use and is not recommended to be changed.

`True`

Returns:

Name Type Description
predictions pandas Series

Predicted values.

Source code in skforecast\direct\_forecaster_direct.py
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
def predict(
    self,
    steps: Optional[Union[int, list]] = None,
    last_window: Optional[Union[pd.Series, pd.DataFrame]] = None,
    exog: Optional[Union[pd.Series, pd.DataFrame]] = None,
    check_inputs: bool = True
) -> pd.Series:
    """
    Predict n steps ahead.

    Parameters
    ----------
    steps : int, list, None, default `None`
        Predict n steps. The value of `steps` must be less than or equal to the 
        value of steps defined when initializing the forecaster. Starts at 1.

        - If `int`: Only steps within the range of 1 to int are predicted.
        - If `list`: List of ints. Only the steps contained in the list 
        are predicted.
        - If `None`: As many steps are predicted as were defined at 
        initialization.
    last_window : pandas Series, pandas DataFrame, default `None`
        Series values used to create the predictors (lags) needed to 
        predict `steps`.
        If `last_window = None`, the values stored in` self.last_window_` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s.
    check_inputs : bool, default `True`
        If `True`, the input is checked for possible warnings and errors 
        with the `check_predict_input` function. This argument is created 
        for internal use and is not recommended to be changed.

    Returns
    -------
    predictions : pandas Series
        Predicted values.

    """

    Xs, _, steps, prediction_index = self._create_predict_inputs(
        steps=steps, last_window=last_window, exog=exog, check_inputs=check_inputs
    )

    regressors = [self.regressors_[step] for step in steps]
    with warnings.catch_warnings():
        warnings.filterwarnings(
            "ignore", 
            message="X does not have valid feature names", 
            category=UserWarning
        )
        predictions = np.array([
            regressor.predict(X).ravel()[0] 
            for regressor, X in zip(regressors, Xs)
        ])

    if self.differentiation is not None:
        predictions = self.differentiator.inverse_transform_next_window(predictions)

    predictions = transform_numpy(
                      array             = predictions,
                      transformer       = self.transformer_y,
                      fit               = False,
                      inverse_transform = True
                  )

    predictions = pd.Series(
                      data  = predictions,
                      index = prediction_index,
                      name  = 'pred'
                  )

    return predictions

predict_bootstrapping

predict_bootstrapping(
    steps=None,
    last_window=None,
    exog=None,
    n_boot=250,
    random_state=123,
    use_in_sample_residuals=True,
    use_binned_residuals=None,
)

Generate multiple forecasting predictions using a bootstrapping process. By sampling from a collection of past observed errors (the residuals), each iteration of bootstrapping generates a different set of predictions. See the Notes section for more information.

Parameters:

Name Type Description Default
steps (int, list, None)

Predict n steps. The value of steps must be less than or equal to the value of steps defined when initializing the forecaster. Starts at 1.

  • If int: Only steps within the range of 1 to int are predicted.
  • If list: List of ints. Only the steps contained in the list are predicted.
  • If None: As many steps are predicted as were defined at initialization.
`None`
last_window pandas Series

Series values used to create the predictors (lags) needed to predict steps. If last_window = None, the values stored inself.last_window_ are used to calculate the initial predictors, and the predictions start right after training data.

`None`
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s.

`None`
n_boot int

Number of bootstrapping iterations used to estimate predictions.

`250`
random_state int

Sets a seed to the random generator, so that boot predictions are always deterministic.

`123`
use_in_sample_residuals bool

If True, residuals from the training data are used as proxy of prediction error to create predictions. If False, out of sample residuals are used. In the latter case, the user should have calculated and stored the residuals within the forecaster (see set_out_sample_residuals()).

`True`
use_binned_residuals Ignored

Not used, present here for API consistency by convention.

None

Returns:

Name Type Description
boot_predictions pandas DataFrame

Predictions generated by bootstrapping. Shape: (steps, n_boot)

Notes

More information about prediction intervals in forecasting: https://otexts.com/fpp3/prediction-intervals.html#prediction-intervals-from-bootstrapped-residuals Forecasting: Principles and Practice (3nd ed) Rob J Hyndman and George Athanasopoulos.

Source code in skforecast\direct\_forecaster_direct.py
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
def predict_bootstrapping(
    self,
    steps: Optional[Union[int, list]] = None,
    last_window: Optional[pd.Series] = None,
    exog: Optional[Union[pd.Series, pd.DataFrame]] = None,
    n_boot: int = 250,
    random_state: int = 123,
    use_in_sample_residuals: bool = True,
    use_binned_residuals: Any = None
) -> pd.DataFrame:
    """
    Generate multiple forecasting predictions using a bootstrapping process. 
    By sampling from a collection of past observed errors (the residuals),
    each iteration of bootstrapping generates a different set of predictions. 
    See the Notes section for more information. 

    Parameters
    ----------
    steps : int, list, None, default `None`
        Predict n steps. The value of `steps` must be less than or equal to the 
        value of steps defined when initializing the forecaster. Starts at 1.

        - If `int`: Only steps within the range of 1 to int are predicted.
        - If `list`: List of ints. Only the steps contained in the list 
        are predicted.
        - If `None`: As many steps are predicted as were defined at 
        initialization.
    last_window : pandas Series, default `None`
        Series values used to create the predictors (lags) needed to 
        predict `steps`.
        If `last_window = None`, the values stored in` self.last_window_` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s.
    n_boot : int, default `250`
        Number of bootstrapping iterations used to estimate predictions.
    random_state : int, default `123`
        Sets a seed to the random generator, so that boot predictions are always 
        deterministic.
    use_in_sample_residuals : bool, default `True`
        If `True`, residuals from the training data are used as proxy of
        prediction error to create predictions. If `False`, out of sample 
        residuals are used. In the latter case, the user should have
        calculated and stored the residuals within the forecaster (see
        `set_out_sample_residuals()`).
    use_binned_residuals : Ignored
        Not used, present here for API consistency by convention.

    Returns
    -------
    boot_predictions : pandas DataFrame
        Predictions generated by bootstrapping.
        Shape: (steps, n_boot)

    Notes
    -----
    More information about prediction intervals in forecasting:
    https://otexts.com/fpp3/prediction-intervals.html#prediction-intervals-from-bootstrapped-residuals
    Forecasting: Principles and Practice (3nd ed) Rob J Hyndman and George Athanasopoulos.

    """

    if self.is_fitted:

        steps = prepare_steps_direct(
                    steps    = steps,
                    max_step = self.steps
                )

        if use_in_sample_residuals:
            if not set(steps).issubset(set(self.in_sample_residuals_.keys())):
                raise ValueError(
                    f"Not `forecaster.in_sample_residuals_` for steps: "
                    f"{set(steps) - set(self.in_sample_residuals_.keys())}."
                )
            residuals = self.in_sample_residuals_
        else:
            if self.out_sample_residuals_ is None:
                raise ValueError(
                    "`forecaster.out_sample_residuals_` is `None`. Use "
                    "`use_in_sample_residuals=True` or the "
                    "`set_out_sample_residuals()` method before predicting."
                )
            else:
                if not set(steps).issubset(set(self.out_sample_residuals_.keys())):
                    raise ValueError(
                        f"No `forecaster.out_sample_residuals_` for steps: "
                        f"{set(steps) - set(self.out_sample_residuals_.keys())}. "
                        f"Use method `set_out_sample_residuals()`."
                    )
            residuals = self.out_sample_residuals_

        check_residuals = (
            "forecaster.in_sample_residuals_" if use_in_sample_residuals
            else "forecaster.out_sample_residuals_"
        )
        for step in steps:
            if residuals[step] is None:
                raise ValueError(
                    f"forecaster residuals for step {step} are `None`. "
                    f"Check {check_residuals}."
                )
            elif any(x is None or np.isnan(x) for x in residuals[step]):
                raise ValueError(
                    f"forecaster residuals for step {step} contains `None` values. "
                    f"Check {check_residuals}."
                )

    Xs, _, steps, prediction_index = self._create_predict_inputs(
        steps=steps, last_window=last_window, exog=exog
    )

    # NOTE: Predictions must be transformed and differenced before adding residuals
    regressors = [self.regressors_[step] for step in steps]
    with warnings.catch_warnings():
        warnings.filterwarnings(
            "ignore", 
            message="X does not have valid feature names", 
            category=UserWarning
        )
        predictions = np.array([
            regressor.predict(X).ravel()[0] 
            for regressor, X in zip(regressors, Xs)
        ])

    boot_predictions = np.tile(predictions, (n_boot, 1)).T
    boot_columns = [f"pred_boot_{i}" for i in range(n_boot)]

    rng = np.random.default_rng(seed=random_state)
    for i, step in enumerate(steps):
        sampled_residuals = residuals[step][
            rng.integers(low=0, high=len(residuals[step]), size=n_boot)
        ]
        boot_predictions[i, :] = boot_predictions[i, :] + sampled_residuals

    if self.differentiation is not None:
        boot_predictions = (
            self.differentiator.inverse_transform_next_window(boot_predictions)
        )

    if self.transformer_y:
        boot_predictions = np.apply_along_axis(
                               func1d            = transform_numpy,
                               axis              = 0,
                               arr               = boot_predictions,
                               transformer       = self.transformer_y,
                               fit               = False,
                               inverse_transform = True
                           )

    boot_predictions = pd.DataFrame(
                           data    = boot_predictions,
                           index   = prediction_index,
                           columns = boot_columns
                       )

    return boot_predictions

predict_interval

predict_interval(
    steps=None,
    last_window=None,
    exog=None,
    interval=[5, 95],
    n_boot=250,
    random_state=123,
    use_in_sample_residuals=True,
    use_binned_residuals=None,
)

Bootstrapping based predicted intervals. Both predictions and intervals are returned.

Parameters:

Name Type Description Default
steps (int, list, None)

Predict n steps. The value of steps must be less than or equal to the value of steps defined when initializing the forecaster. Starts at 1.

  • If int: Only steps within the range of 1 to int are predicted.
  • If list: List of ints. Only the steps contained in the list are predicted.
  • If None: As many steps are predicted as were defined at initialization.
`None`
last_window pandas Series

Series values used to create the predictors (lags) needed to predict steps. If last_window = None, the values stored inself.last_window_ are used to calculate the initial predictors, and the predictions start right after training data.

`None`
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s.

`None`
interval list

Confidence of the prediction interval estimated. Sequence of percentiles to compute, which must be between 0 and 100 inclusive. For example, interval of 95% should be as interval = [2.5, 97.5].

`[5, 95]`
n_boot int

Number of bootstrapping iterations used to estimate predictions.

`250`
random_state int

Sets a seed to the random generator, so that boot predictions are always deterministic.

`123`
use_in_sample_residuals bool

If True, residuals from the training data are used as proxy of prediction error to create predictions. If False, out of sample residuals are used. In the latter case, the user should have calculated and stored the residuals within the forecaster (see set_out_sample_residuals()).

`True`
use_binned_residuals Ignored

Not used, present here for API consistency by convention.

None

Returns:

Name Type Description
predictions pandas DataFrame

Values predicted by the forecaster and their estimated interval.

  • pred: predictions.
  • lower_bound: lower bound of the interval.
  • upper_bound: upper bound of the interval.
Notes

More information about prediction intervals in forecasting: https://otexts.com/fpp2/prediction-intervals.html Forecasting: Principles and Practice (2nd ed) Rob J Hyndman and George Athanasopoulos.

Source code in skforecast\direct\_forecaster_direct.py
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
def predict_interval(
    self,
    steps: Optional[Union[int, list]] = None,
    last_window: Optional[pd.Series] = None,
    exog: Optional[Union[pd.Series, pd.DataFrame]] = None,
    interval: list = [5, 95],
    n_boot: int = 250,
    random_state: int = 123,
    use_in_sample_residuals: bool = True,
    use_binned_residuals: Any = None
) -> pd.DataFrame:
    """
    Bootstrapping based predicted intervals.
    Both predictions and intervals are returned.

    Parameters
    ----------
    steps : int, list, None, default `None`
        Predict n steps. The value of `steps` must be less than or equal to the 
        value of steps defined when initializing the forecaster. Starts at 1.

        - If `int`: Only steps within the range of 1 to int are predicted.
        - If `list`: List of ints. Only the steps contained in the list 
        are predicted.
        - If `None`: As many steps are predicted as were defined at 
        initialization.
    last_window : pandas Series, default `None`
        Series values used to create the predictors (lags) needed to 
        predict `steps`.
        If `last_window = None`, the values stored in` self.last_window_` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s.
    interval : list, default `[5, 95]`
        Confidence of the prediction interval estimated. Sequence of 
        percentiles to compute, which must be between 0 and 100 inclusive. 
        For example, interval of 95% should be as `interval = [2.5, 97.5]`.
    n_boot : int, default `250`
        Number of bootstrapping iterations used to estimate predictions.
    random_state : int, default `123`
        Sets a seed to the random generator, so that boot predictions are always 
        deterministic.
    use_in_sample_residuals : bool, default `True`
        If `True`, residuals from the training data are used as proxy of
        prediction error to create predictions. If `False`, out of sample 
        residuals are used. In the latter case, the user should have
        calculated and stored the residuals within the forecaster (see
        `set_out_sample_residuals()`).
    use_binned_residuals : Ignored
        Not used, present here for API consistency by convention.

    Returns
    -------
    predictions : pandas DataFrame
        Values predicted by the forecaster and their estimated interval.

        - pred: predictions.
        - lower_bound: lower bound of the interval.
        - upper_bound: upper bound of the interval.

    Notes
    -----
    More information about prediction intervals in forecasting:
    https://otexts.com/fpp2/prediction-intervals.html
    Forecasting: Principles and Practice (2nd ed) Rob J Hyndman and
    George Athanasopoulos.

    """

    check_interval(interval=interval)

    boot_predictions = self.predict_bootstrapping(
                           steps                   = steps,
                           last_window             = last_window,
                           exog                    = exog,
                           n_boot                  = n_boot,
                           random_state            = random_state,
                           use_in_sample_residuals = use_in_sample_residuals
                       )

    predictions = self.predict(
                      steps        = steps,
                      last_window  = last_window,
                      exog         = exog,
                      check_inputs = False
                  )

    interval = np.array(interval) / 100
    predictions_interval = boot_predictions.quantile(q=interval, axis=1).transpose()
    predictions_interval.columns = ['lower_bound', 'upper_bound']
    predictions = pd.concat((predictions, predictions_interval), axis=1)

    return predictions

predict_quantiles

predict_quantiles(
    steps=None,
    last_window=None,
    exog=None,
    quantiles=[0.05, 0.5, 0.95],
    n_boot=250,
    random_state=123,
    use_in_sample_residuals=True,
    use_binned_residuals=None,
)

Bootstrapping based predicted quantiles.

Parameters:

Name Type Description Default
steps (int, list, None)

Predict n steps. The value of steps must be less than or equal to the value of steps defined when initializing the forecaster. Starts at 1.

  • If int: Only steps within the range of 1 to int are predicted.
  • If list: List of ints. Only the steps contained in the list are predicted.
  • If None: As many steps are predicted as were defined at initialization.
`None`
last_window pandas Series

Series values used to create the predictors (lags) needed to predict steps. If last_window = None, the values stored inself.last_window_ are used to calculate the initial predictors, and the predictions start right after training data.

`None`
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s.

`None`
quantiles list

Sequence of quantiles to compute, which must be between 0 and 1 inclusive. For example, quantiles of 0.05, 0.5 and 0.95 should be as quantiles = [0.05, 0.5, 0.95].

`[0.05, 0.5, 0.95]`
n_boot int

Number of bootstrapping iterations used to estimate quantiles.

`250`
random_state int

Sets a seed to the random generator, so that boot quantiles are always deterministic.

`123`
use_in_sample_residuals bool

If True, residuals from the training data are used as proxy of prediction error to create prediction quantiles. If False, out of sample residuals are used. In the latter case, the user should have calculated and stored the residuals within the forecaster (see set_out_sample_residuals()).

`True`
use_binned_residuals Ignored

Not used, present here for API consistency by convention.

None

Returns:

Name Type Description
predictions pandas DataFrame

Quantiles predicted by the forecaster.

Notes

More information about prediction intervals in forecasting: https://otexts.com/fpp2/prediction-intervals.html Forecasting: Principles and Practice (2nd ed) Rob J Hyndman and George Athanasopoulos.

Source code in skforecast\direct\_forecaster_direct.py
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
def predict_quantiles(
    self,
    steps: Optional[Union[int, list]] = None,
    last_window: Optional[pd.Series] = None,
    exog: Optional[Union[pd.Series, pd.DataFrame]] = None,
    quantiles: list = [0.05, 0.5, 0.95],
    n_boot: int = 250,
    random_state: int = 123,
    use_in_sample_residuals: bool = True,
    use_binned_residuals: Any = None
) -> pd.DataFrame:
    """
    Bootstrapping based predicted quantiles.

    Parameters
    ----------
    steps : int, list, None, default `None`
        Predict n steps. The value of `steps` must be less than or equal to the 
        value of steps defined when initializing the forecaster. Starts at 1.

        - If `int`: Only steps within the range of 1 to int are predicted.
        - If `list`: List of ints. Only the steps contained in the list 
        are predicted.
        - If `None`: As many steps are predicted as were defined at 
        initialization.
    last_window : pandas Series, default `None`
        Series values used to create the predictors (lags) needed to 
        predict `steps`.
        If `last_window = None`, the values stored in` self.last_window_` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s.
    quantiles : list, default `[0.05, 0.5, 0.95]`
        Sequence of quantiles to compute, which must be between 0 and 1 
        inclusive. For example, quantiles of 0.05, 0.5 and 0.95 should be as 
        `quantiles = [0.05, 0.5, 0.95]`.
    n_boot : int, default `250`
        Number of bootstrapping iterations used to estimate quantiles.
    random_state : int, default `123`
        Sets a seed to the random generator, so that boot quantiles are always 
        deterministic.
    use_in_sample_residuals : bool, default `True`
        If `True`, residuals from the training data are used as proxy of
        prediction error to create prediction quantiles. If `False`, out of
        sample residuals are used. In the latter case, the user should have
        calculated and stored the residuals within the forecaster (see
        `set_out_sample_residuals()`).
    use_binned_residuals : Ignored
        Not used, present here for API consistency by convention.

    Returns
    -------
    predictions : pandas DataFrame
        Quantiles predicted by the forecaster.

    Notes
    -----
    More information about prediction intervals in forecasting:
    https://otexts.com/fpp2/prediction-intervals.html
    Forecasting: Principles and Practice (2nd ed) Rob J Hyndman and
    George Athanasopoulos.

    """

    check_interval(quantiles=quantiles)

    boot_predictions = self.predict_bootstrapping(
                           steps                   = steps,
                           last_window             = last_window,
                           exog                    = exog,
                           n_boot                  = n_boot,
                           random_state            = random_state,
                           use_in_sample_residuals = use_in_sample_residuals
                       )

    predictions = boot_predictions.quantile(q=quantiles, axis=1).transpose()
    predictions.columns = [f'q_{q}' for q in quantiles]

    return predictions

predict_dist

predict_dist(
    distribution,
    steps=None,
    last_window=None,
    exog=None,
    n_boot=250,
    random_state=123,
    use_in_sample_residuals=True,
    use_binned_residuals=None,
)

Fit a given probability distribution for each step. After generating multiple forecasting predictions through a bootstrapping process, each step is fitted to the given distribution.

Parameters:

Name Type Description Default
distribution Object

A distribution object from scipy.stats.

required
steps (int, list, None)

Predict n steps. The value of steps must be less than or equal to the value of steps defined when initializing the forecaster. Starts at 1.

  • If int: Only steps within the range of 1 to int are predicted.
  • If list: List of ints. Only the steps contained in the list are predicted.
  • If None: As many steps are predicted as were defined at initialization.
`None`
last_window pandas Series

Series values used to create the predictors (lags) needed to predict steps. If last_window = None, the values stored inself.last_window_ are used to calculate the initial predictors, and the predictions start right after training data.

`None`
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s.

`None`
n_boot int

Number of bootstrapping iterations used to estimate predictions.

`250`
random_state int

Sets a seed to the random generator, so that boot predictions are always deterministic.

`123`
use_in_sample_residuals bool

If True, residuals from the training data are used as proxy of prediction error to create predictions. If False, out of sample residuals are used. In the latter case, the user should have calculated and stored the residuals within the forecaster (see set_out_sample_residuals()).

`True`
use_binned_residuals Ignored

Not used, present here for API consistency by convention.

None

Returns:

Name Type Description
predictions pandas DataFrame

Distribution parameters estimated for each step.

Source code in skforecast\direct\_forecaster_direct.py
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
def predict_dist(
    self,
    distribution: object,
    steps: Optional[Union[int, list]] = None,
    last_window: Optional[pd.Series] = None,
    exog: Optional[Union[pd.Series, pd.DataFrame]] = None,
    n_boot: int = 250,
    random_state: int = 123,
    use_in_sample_residuals: bool = True,
    use_binned_residuals: Any = None
) -> pd.DataFrame:
    """
    Fit a given probability distribution for each step. After generating 
    multiple forecasting predictions through a bootstrapping process, each 
    step is fitted to the given distribution.

    Parameters
    ----------
    distribution : Object
        A distribution object from scipy.stats.
    steps : int, list, None, default `None`
        Predict n steps. The value of `steps` must be less than or equal to the 
        value of steps defined when initializing the forecaster. Starts at 1.

        - If `int`: Only steps within the range of 1 to int are predicted.
        - If `list`: List of ints. Only the steps contained in the list 
        are predicted.
        - If `None`: As many steps are predicted as were defined at 
        initialization.
    last_window : pandas Series, default `None`
        Series values used to create the predictors (lags) needed to 
        predict `steps`.
        If `last_window = None`, the values stored in` self.last_window_` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s.
    n_boot : int, default `250`
        Number of bootstrapping iterations used to estimate predictions.
    random_state : int, default `123`
        Sets a seed to the random generator, so that boot predictions are always 
        deterministic.
    use_in_sample_residuals : bool, default `True`
        If `True`, residuals from the training data are used as proxy of
        prediction error to create predictions. If `False`, out of sample 
        residuals are used. In the latter case, the user should have
        calculated and stored the residuals within the forecaster (see
        `set_out_sample_residuals()`).
    use_binned_residuals : Ignored
        Not used, present here for API consistency by convention.

    Returns
    -------
    predictions : pandas DataFrame
        Distribution parameters estimated for each step.

    """

    boot_samples = self.predict_bootstrapping(
                       steps                   = steps,
                       last_window             = last_window,
                       exog                    = exog,
                       n_boot                  = n_boot,
                       random_state            = random_state,
                       use_in_sample_residuals = use_in_sample_residuals
                   )       

    param_names = [p for p in inspect.signature(distribution._pdf).parameters
                   if not p == 'x'] + ["loc", "scale"]
    param_values = np.apply_along_axis(
                       lambda x: distribution.fit(x),
                       axis = 1,
                       arr  = boot_samples
                   )
    predictions = pd.DataFrame(
                      data    = param_values,
                      columns = param_names,
                      index   = boot_samples.index
                  )

    return predictions

set_params

set_params(params)

Set new values to the parameters of the scikit learn model stored in the forecaster. It is important to note that all models share the same configuration of parameters and hyperparameters.

Parameters:

Name Type Description Default
params dict

Parameters values.

required

Returns:

Type Description
None
Source code in skforecast\direct\_forecaster_direct.py
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
def set_params(
    self, 
    params: dict
) -> None:
    """
    Set new values to the parameters of the scikit learn model stored in the
    forecaster. It is important to note that all models share the same 
    configuration of parameters and hyperparameters.

    Parameters
    ----------
    params : dict
        Parameters values.

    Returns
    -------
    None

    """

    self.regressor = clone(self.regressor)
    self.regressor.set_params(**params)
    self.regressors_ = {
        step: clone(self.regressor)
        for step in range(1, self.steps + 1)
    }

set_fit_kwargs

set_fit_kwargs(fit_kwargs)

Set new values for the additional keyword arguments passed to the fit method of the regressor.

Parameters:

Name Type Description Default
fit_kwargs dict

Dict of the form {"argument": new_value}.

required

Returns:

Type Description
None
Source code in skforecast\direct\_forecaster_direct.py
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
def set_fit_kwargs(
    self, 
    fit_kwargs: dict
) -> None:
    """
    Set new values for the additional keyword arguments passed to the `fit` 
    method of the regressor.

    Parameters
    ----------
    fit_kwargs : dict
        Dict of the form {"argument": new_value}.

    Returns
    -------
    None

    """

    self.fit_kwargs = check_select_fit_kwargs(self.regressor, fit_kwargs=fit_kwargs)

set_lags

set_lags(lags=None)

Set new value to the attribute lags. Attributes lags_names, max_lag and window_size are also updated.

Parameters:

Name Type Description Default
lags int, list, numpy ndarray, range

Lags used as predictors. Index starts at 1, so lag 1 is equal to t-1.

  • int: include lags from 1 to lags (included).
  • list, 1d numpy ndarray or range: include only lags present in lags, all elements must be int.
  • None: no lags are included as predictors.
`None`

Returns:

Type Description
None
Source code in skforecast\direct\_forecaster_direct.py
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
def set_lags(
    self, 
    lags: Optional[Union[int, list, np.ndarray, range]] = None
) -> None:
    """
    Set new value to the attribute `lags`. Attributes `lags_names`, 
    `max_lag` and `window_size` are also updated.

    Parameters
    ----------
    lags : int, list, numpy ndarray, range, default `None`
        Lags used as predictors. Index starts at 1, so lag 1 is equal to t-1. 

        - `int`: include lags from 1 to `lags` (included).
        - `list`, `1d numpy ndarray` or `range`: include only lags present in 
        `lags`, all elements must be int.
        - `None`: no lags are included as predictors. 

    Returns
    -------
    None

    """

    if self.window_features is None and lags is None:
        raise ValueError(
            ("At least one of the arguments `lags` or `window_features` "
             "must be different from None. This is required to create the "
             "predictors used in training the forecaster.")
        )

    self.lags, self.lags_names, self.max_lag = initialize_lags(type(self).__name__, lags)
    self.window_size = max(
        [ws for ws in [self.max_lag, self.max_size_window_features] 
         if ws is not None]
    )
    if self.differentiation is not None:
        self.window_size += self.differentiation
        self.differentiator.set_params(window_size=self.window_size)

set_window_features

set_window_features(window_features=None)

Set new value to the attribute window_features. Attributes max_size_window_features, window_features_names, window_features_class_names and window_size are also updated.

Parameters:

Name Type Description Default
window_features (object, list)

Instance or list of instances used to create window features. Window features are created from the original time series and are included as predictors.

`None`

Returns:

Type Description
None
Source code in skforecast\direct\_forecaster_direct.py
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
def set_window_features(
    self, 
    window_features: Optional[Union[object, list]] = None
) -> None:
    """
    Set new value to the attribute `window_features`. Attributes 
    `max_size_window_features`, `window_features_names`, 
    `window_features_class_names` and `window_size` are also updated.

    Parameters
    ----------
    window_features : object, list, default `None`
        Instance or list of instances used to create window features. Window features
        are created from the original time series and are included as predictors.

    Returns
    -------
    None

    """

    if window_features is None and self.lags is None:
        raise ValueError(
            ("At least one of the arguments `lags` or `window_features` "
             "must be different from None. This is required to create the "
             "predictors used in training the forecaster.")
        )

    self.window_features, self.window_features_names, self.max_size_window_features = (
        initialize_window_features(window_features)
    )
    self.window_features_class_names = None
    if window_features is not None:
        self.window_features_class_names = [
            type(wf).__name__ for wf in self.window_features
        ] 
    self.window_size = max(
        [ws for ws in [self.max_lag, self.max_size_window_features] 
         if ws is not None]
    )
    if self.differentiation is not None:
        self.window_size += self.differentiation   
        self.differentiator.set_params(window_size=self.window_size)

set_out_sample_residuals

set_out_sample_residuals(
    y_true, y_pred, append=False, random_state=36987
)

Set new values to the attribute out_sample_residuals_. Out of sample residuals are meant to be calculated using observations that did not participate in the training process. y_true and y_pred are expected to be in the original scale of the time series. Residuals are calculated as y_true - y_pred, after applying the necessary transformations and differentiations if the forecaster includes them (self.transformer_y and self.differentiation).

A total of 10_000 residuals are stored in the attribute out_sample_residuals_. If the number of residuals is greater than 10_000, a random sample of 10_000 residuals is stored.

Parameters:

Name Type Description Default
y_true dict

Dictionary of numpy ndarrays or pandas Series with the true values of the time series for each model in the form {step: y_true}.

required
y_pred dict

Dictionary of numpy ndarrays or pandas Series with the predicted values of the time series for each model in the form {step: y_pred}.

required
append bool

If True, new residuals are added to the once already stored in the attribute out_sample_residuals_. If after appending the new residuals, the limit of 10_000 samples is exceeded, a random sample of 10_000 is kept.

`False`
random_state int

Sets a seed to the random sampling for reproducible output.

`36987`

Returns:

Type Description
None
Source code in skforecast\direct\_forecaster_direct.py
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
def set_out_sample_residuals(
    self,
    y_true: dict,
    y_pred: dict,
    append: bool = False,
    random_state: int = 36987
) -> None:
    """
    Set new values to the attribute `out_sample_residuals_`. Out of sample
    residuals are meant to be calculated using observations that did not
    participate in the training process. `y_true` and `y_pred` are expected
    to be in the original scale of the time series. Residuals are calculated
    as `y_true` - `y_pred`, after applying the necessary transformations and
    differentiations if the forecaster includes them (`self.transformer_y`
    and `self.differentiation`).

    A total of 10_000 residuals are stored in the attribute `out_sample_residuals_`.
    If the number of residuals is greater than 10_000, a random sample of
    10_000 residuals is stored.

    Parameters
    ----------
    y_true : dict
        Dictionary of numpy ndarrays or pandas Series with the true values of
        the time series for each model in the form {step: y_true}.
    y_pred : dict
        Dictionary of numpy ndarrays or pandas Series with the predicted values
        of the time series for each model in the form {step: y_pred}.
    append : bool, default `False`
        If `True`, new residuals are added to the once already stored in the
        attribute `out_sample_residuals_`. If after appending the new residuals,
        the limit of 10_000 samples is exceeded, a random sample of 10_000 is
        kept.
    random_state : int, default `36987`
        Sets a seed to the random sampling for reproducible output.

    Returns
    -------
    None

    """

    if not self.is_fitted:
        raise NotFittedError(
            "This forecaster is not fitted yet. Call `fit` with appropriate "
            "arguments before using `set_out_sample_residuals()`."
        )

    if not isinstance(y_true, dict):
        raise TypeError(
            f"`y_true` must be a dictionary of numpy ndarrays or pandas Series. "
            f"Got {type(y_true)}."
        )

    if not isinstance(y_pred, dict):
        raise TypeError(
            f"`y_pred` must be a dictionary of numpy ndarrays or pandas Series. "
            f"Got {type(y_pred)}."
        )

    if not set(y_true.keys()) == set(y_pred.keys()):
        raise ValueError(
            f"`y_true` and `y_pred` must have the same keys. "
            f"Got {set(y_true.keys())} and {set(y_pred.keys())}."
        )

    for k in y_true.keys():
        if not isinstance(y_true[k], (np.ndarray, pd.Series)):
            raise TypeError(
                f"Values of `y_true` must be numpy ndarrays or pandas Series. "
                f"Got {type(y_true[k])} for step {k}."
            )
        if not isinstance(y_pred[k], (np.ndarray, pd.Series)):
            raise TypeError(
                f"Values of `y_pred` must be numpy ndarrays or pandas Series. "
                f"Got {type(y_pred[k])} for step {k}."
            )
        if len(y_true[k]) != len(y_pred[k]):
            raise ValueError(
                f"`y_true` and `y_pred` must have the same length. "
                f"Got {len(y_true[k])} and {len(y_pred[k])} for step {k}."
            )
        if isinstance(y_true[k], pd.Series) and isinstance(y_pred[k], pd.Series):
            if not y_true[k].index.equals(y_pred[k].index):
                raise ValueError(
                    f"When containing pandas Series, elements in `y_true` and "
                    f"`y_pred` must have the same index. Error in step {k}."
                )

    if self.out_sample_residuals_ is None:
        self.out_sample_residuals_ = {
            step: None for step in range(1, self.steps + 1)
        }

    steps_to_update = set(range(1, self.steps + 1)).intersection(set(y_pred.keys()))
    if not steps_to_update:
        raise ValueError(
            "Provided keys in `y_pred` and `y_true` do not match any step. "
            "Residuals cannot be updated."
        )

    residuals = {}
    rng = np.random.default_rng(seed=random_state)
    y_true = y_true.copy()
    y_pred = y_pred.copy()
    if self.differentiation is not None:
        differentiator = copy(self.differentiator)
        differentiator.set_params(window_size=None)

    for k in steps_to_update:
        if isinstance(y_true[k], pd.Series):
            y_true[k] = y_true[k].to_numpy()
        if isinstance(y_pred[k], pd.Series):
            y_pred[k] = y_pred[k].to_numpy()
        if self.transformer_y:
            y_true[k] = transform_numpy(
                            array             = y_true[k],
                            transformer       = self.transformer_y,
                            fit               = False,
                            inverse_transform = False
                        )
            y_pred[k] = transform_numpy(
                            array             = y_pred[k],
                            transformer       = self.transformer_y,
                            fit               = False,
                            inverse_transform = False
                        )
        if self.differentiation is not None:
            y_true[k] = differentiator.fit_transform(y_true[k])[self.differentiation:]
            y_pred[k] = differentiator.fit_transform(y_pred[k])[self.differentiation:]

        residuals[k] = y_true[k] - y_pred[k]

    for key, value in residuals.items():
        if append and self.out_sample_residuals_[key] is not None:
            value = np.concatenate((
                        self.out_sample_residuals_[key],
                        value
                    ))
        if len(value) > 10000:
            value = rng.choice(value, size=10000, replace=False)
        self.out_sample_residuals_[key] = value

get_feature_importances

get_feature_importances(step, sort_importance=True)

Return feature importance of the model stored in the forecaster for a specific step. Since a separate model is created for each forecast time step, it is necessary to select the model from which retrieve information. Only valid when regressor stores internally the feature importances in the attribute feature_importances_ or coef_. Otherwise, it returns
None.

Parameters:

Name Type Description Default
step int

Model from which retrieve information (a separate model is created for each forecast time step). First step is 1.

required
sort_importance bool

If True, sorts the feature importances in descending order.

True

Returns:

Name Type Description
feature_importances pandas DataFrame

Feature importances associated with each predictor.

Source code in skforecast\direct\_forecaster_direct.py
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
def get_feature_importances(
    self, 
    step: int,
    sort_importance: bool = True
) -> pd.DataFrame:
    """
    Return feature importance of the model stored in the forecaster for a
    specific step. Since a separate model is created for each forecast time
    step, it is necessary to select the model from which retrieve information.
    Only valid when regressor stores internally the feature importances in
    the attribute `feature_importances_` or `coef_`. Otherwise, it returns  
    `None`.

    Parameters
    ----------
    step : int
        Model from which retrieve information (a separate model is created 
        for each forecast time step). First step is 1.
    sort_importance: bool, default `True`
        If `True`, sorts the feature importances in descending order.

    Returns
    -------
    feature_importances : pandas DataFrame
        Feature importances associated with each predictor.

    """

    if not isinstance(step, int):
        raise TypeError(f"`step` must be an integer. Got {type(step)}.")

    if not self.is_fitted:
        raise NotFittedError(
            "This forecaster is not fitted yet. Call `fit` with appropriate "
            "arguments before using `get_feature_importances()`."
        )

    if (step < 1) or (step > self.steps):
        raise ValueError(
            f"The step must have a value from 1 to the maximum number of steps "
            f"({self.steps}). Got {step}."
        )

    if isinstance(self.regressor, Pipeline):
        estimator = self.regressors_[step][-1]
    else:
        estimator = self.regressors_[step]

    n_lags = len(self.lags) if self.lags is not None else 0
    n_window_features = (
        len(self.window_features_names) if self.window_features is not None else 0
    )
    idx_columns_autoreg = np.arange(n_lags + n_window_features)
    if not self.exog_in_:
        idx_columns = idx_columns_autoreg
    else:
        n_exog = len(self.X_train_direct_exog_names_out_) / self.steps
        idx_columns_exog = (
            np.arange((step - 1) * n_exog, (step) * n_exog) + idx_columns_autoreg[-1] + 1
        )
        idx_columns = np.concatenate((idx_columns_autoreg, idx_columns_exog))

    idx_columns = [int(x) for x in idx_columns]  # Required since numpy 2.0
    feature_names = [self.X_train_features_names_out_[i].replace(f"_step_{step}", "") 
                     for i in idx_columns]

    if hasattr(estimator, 'feature_importances_'):
        feature_importances = estimator.feature_importances_
    elif hasattr(estimator, 'coef_'):
        feature_importances = estimator.coef_
    else:
        warnings.warn(
            (f"Impossible to access feature importances for regressor of type "
             f"{type(estimator)}. This method is only valid when the "
             f"regressor stores internally the feature importances in the "
             f"attribute `feature_importances_` or `coef_`.")
        )
        feature_importances = None

    if feature_importances is not None:
        feature_importances = pd.DataFrame({
                                  'feature': feature_names,
                                  'importance': feature_importances
                              })
        if sort_importance:
            feature_importances = feature_importances.sort_values(
                                      by='importance', ascending=False
                                  )

    return feature_importances