Skip to content

model_selection

skforecast.model_selection._validation.backtesting_forecaster

backtesting_forecaster(
    forecaster,
    y,
    cv,
    metric,
    exog=None,
    interval=None,
    n_boot=250,
    random_state=123,
    use_in_sample_residuals=True,
    use_binned_residuals=False,
    n_jobs="auto",
    verbose=False,
    show_progress=True,
)

Backtesting of forecaster model following the folds generated by the TimeSeriesFold class and using the metric(s) provided.

If forecaster is already trained and initial_train_size is set to None in the TimeSeriesFold class, no initial train will be done and all data will be used to evaluate the model. However, the first len(forecaster.last_window) observations are needed to create the initial predictors, so no predictions are calculated for them.

A copy of the original forecaster is created so that it is not modified during the process.

Parameters:

Name Type Description Default
forecaster (ForecasterRecursive, ForecasterDirect)

Forecaster model.

required
y pandas Series

Training time series.

required
cv TimeSeriesFold

TimeSeriesFold object with the information needed to split the data into folds. New in version 0.14.0

required
metric (str, Callable, list)

Metric used to quantify the goodness of fit of the model.

  • If string: {'mean_squared_error', 'mean_absolute_error', 'mean_absolute_percentage_error', 'mean_squared_log_error', 'mean_absolute_scaled_error', 'root_mean_squared_scaled_error'}
  • If Callable: Function with arguments y_true, y_pred and y_train (Optional) that returns a float.
  • If list: List containing multiple strings and/or Callables.
required
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s. Must have the same number of observations as y and should be aligned so that y[i] is regressed on exog[i].

`None`
interval list

Confidence of the prediction interval estimated. Sequence of percentiles to compute, which must be between 0 and 100 inclusive. For example, interval of 95% should be as interval = [2.5, 97.5]. If None, no intervals are estimated.

`None`
n_boot int

Number of bootstrapping iterations used to estimate prediction intervals.

`250`
random_state int

Sets a seed to the random generator, so that boot intervals are always deterministic.

`123`
use_in_sample_residuals bool

If True, residuals from the training data are used as proxy of prediction error to create prediction intervals. If False, out_sample_residuals are used if they are already stored inside the forecaster.

`True`
use_binned_residuals bool

If True, residuals used in each bootstrapping iteration are selected conditioning on the predicted values. If False, residuals are selected randomly without conditioning on the predicted values.

`False`
n_jobs (int, auto)

The number of jobs to run in parallel. If -1, then the number of jobs is set to the number of cores. If 'auto', n_jobs is set using the function skforecast.utils.select_n_jobs_backtesting.

`'auto'`
verbose bool

Print number of folds and index of training and validation sets used for backtesting.

`False`
show_progress bool

Whether to show a progress bar.

`True`

Returns:

Name Type Description
metric_values pandas DataFrame

Value(s) of the metric(s).

backtest_predictions pandas DataFrame

Value of predictions and their estimated interval if interval is not None.

  • column pred: predictions.
  • column lower_bound: lower bound of the interval.
  • column upper_bound: upper bound of the interval.
Source code in skforecast/model_selection/_validation.py
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
def backtesting_forecaster(
    forecaster: object,
    y: pd.Series,
    cv: TimeSeriesFold,
    metric: Union[str, Callable, list],
    exog: Optional[Union[pd.Series, pd.DataFrame]] = None,
    interval: Optional[list] = None,
    n_boot: int = 250,
    random_state: int = 123,
    use_in_sample_residuals: bool = True,
    use_binned_residuals: bool = False,
    n_jobs: Union[int, str] = 'auto',
    verbose: bool = False,
    show_progress: bool = True
) -> Tuple[pd.DataFrame, pd.DataFrame]:
    """
    Backtesting of forecaster model following the folds generated by the TimeSeriesFold
    class and using the metric(s) provided.

    If `forecaster` is already trained and `initial_train_size` is set to `None` in the
    TimeSeriesFold class, no initial train will be done and all data will be used
    to evaluate the model. However, the first `len(forecaster.last_window)` observations
    are needed to create the initial predictors, so no predictions are calculated for
    them.

    A copy of the original forecaster is created so that it is not modified during 
    the process.

    Parameters
    ----------
    forecaster : ForecasterRecursive, ForecasterDirect
        Forecaster model.
    y : pandas Series
        Training time series.
    cv : TimeSeriesFold
        TimeSeriesFold object with the information needed to split the data into folds.
        **New in version 0.14.0**
    metric : str, Callable, list
        Metric used to quantify the goodness of fit of the model.

        - If `string`: {'mean_squared_error', 'mean_absolute_error',
        'mean_absolute_percentage_error', 'mean_squared_log_error',
        'mean_absolute_scaled_error', 'root_mean_squared_scaled_error'}
        - If `Callable`: Function with arguments `y_true`, `y_pred` and `y_train`
        (Optional) that returns a float.
        - If `list`: List containing multiple strings and/or Callables.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s. Must have the same
        number of observations as `y` and should be aligned so that y[i] is
        regressed on exog[i].
    interval : list, default `None`
        Confidence of the prediction interval estimated. Sequence of percentiles
        to compute, which must be between 0 and 100 inclusive. For example, 
        interval of 95% should be as `interval = [2.5, 97.5]`. If `None`, no
        intervals are estimated.
    n_boot : int, default `250`
        Number of bootstrapping iterations used to estimate prediction
        intervals.
    random_state : int, default `123`
        Sets a seed to the random generator, so that boot intervals are always 
        deterministic.
    use_in_sample_residuals : bool, default `True`
        If `True`, residuals from the training data are used as proxy of prediction 
        error to create prediction intervals. If `False`, out_sample_residuals 
        are used if they are already stored inside the forecaster.
    use_binned_residuals : bool, default `False`
        If `True`, residuals used in each bootstrapping iteration are selected
        conditioning on the predicted values. If `False`, residuals are selected
        randomly without conditioning on the predicted values.
    n_jobs : int, 'auto', default `'auto'`
        The number of jobs to run in parallel. If `-1`, then the number of jobs is 
        set to the number of cores. If 'auto', `n_jobs` is set using the function
        skforecast.utils.select_n_jobs_backtesting.
    verbose : bool, default `False`
        Print number of folds and index of training and validation sets used 
        for backtesting.
    show_progress : bool, default `True`
        Whether to show a progress bar.

    Returns
    -------
    metric_values : pandas DataFrame
        Value(s) of the metric(s).
    backtest_predictions : pandas DataFrame
        Value of predictions and their estimated interval if `interval` is not `None`.

        - column pred: predictions.
        - column lower_bound: lower bound of the interval.
        - column upper_bound: upper bound of the interval.

    """

    forecaters_allowed = [
        'ForecasterRecursive', 
        'ForecasterDirect',
        'ForecasterEquivalentDate'
    ]

    if type(forecaster).__name__ not in forecaters_allowed:
        raise TypeError(
            (f"`forecaster` must be of type {forecaters_allowed}, for all other types of "
             f" forecasters use the functions available in the other `model_selection` "
             f"modules.")
        )

    check_backtesting_input(
        forecaster              = forecaster,
        cv                      = cv,
        y                       = y,
        metric                  = metric,
        interval                = interval,
        n_boot                  = n_boot,
        random_state            = random_state,
        use_in_sample_residuals = use_in_sample_residuals,
        use_binned_residuals    = use_binned_residuals,
        n_jobs                  = n_jobs,
        show_progress           = show_progress
    )

    if type(forecaster).__name__ == 'ForecasterDirect' and \
       forecaster.steps < cv.steps + cv.gap:
        raise ValueError(
            (f"When using a ForecasterDirect, the combination of steps "
             f"+ gap ({cv.steps + cv.gap}) cannot be greater than the `steps` parameter "
             f"declared when the forecaster is initialized ({forecaster.steps}).")
        )

    metric_values, backtest_predictions = _backtesting_forecaster(
        forecaster              = forecaster,
        y                       = y,
        cv                      = cv,
        metric                  = metric,
        exog                    = exog,
        interval                = interval,
        n_boot                  = n_boot,
        random_state            = random_state,
        use_in_sample_residuals = use_in_sample_residuals,
        use_binned_residuals    = use_binned_residuals,
        n_jobs                  = n_jobs,
        verbose                 = verbose,
        show_progress           = show_progress
    )

    return metric_values, backtest_predictions

skforecast.model_selection._search.grid_search_forecaster

grid_search_forecaster(
    forecaster,
    y,
    cv,
    param_grid,
    metric,
    exog=None,
    lags_grid=None,
    return_best=True,
    n_jobs="auto",
    verbose=True,
    show_progress=True,
    output_file=None,
)

Exhaustive search over specified parameter values for a Forecaster object. Validation is done using time series backtesting.

Parameters:

Name Type Description Default
forecaster (ForecasterRecursive, ForecasterDirect)

Forecaster model.

required
y pandas Series

Training time series.

required
cv (TimeSeriesFold, OneStepAheadFold)

TimeSeriesFold or OneStepAheadFold object with the information needed to split the data into folds. New in version 0.14.0

required
param_grid dict

Dictionary with parameters names (str) as keys and lists of parameter settings to try as values.

required
metric (str, Callable, list)

Metric used to quantify the goodness of fit of the model.

  • If string: {'mean_squared_error', 'mean_absolute_error', 'mean_absolute_percentage_error', 'mean_squared_log_error', 'mean_absolute_scaled_error', 'root_mean_squared_scaled_error'}
  • If Callable: Function with arguments y_true, y_pred and y_train (Optional) that returns a float.
  • If list: List containing multiple strings and/or Callables.
required
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s. Must have the same number of observations as y and should be aligned so that y[i] is regressed on exog[i].

`None`
lags_grid (list, dict)

Lists of lags to try, containing int, lists, numpy ndarray, or range objects. If dict, the keys are used as labels in the results DataFrame, and the values are used as the lists of lags to try.

`None`
return_best bool

Refit the forecaster using the best found parameters on the whole data.

`True`
n_jobs (int, auto)

The number of jobs to run in parallel. If -1, then the number of jobs is set to the number of cores. If 'auto', n_jobs is set using the function skforecast.utils.select_n_jobs_backtesting.

`'auto'`
verbose bool

Print number of folds used for cv or backtesting.

`True`
show_progress bool

Whether to show a progress bar.

`True`
output_file str

Specifies the filename or full path where the results should be saved. The results will be saved in a tab-separated values (TSV) format. If None, the results will not be saved to a file. New in version 0.12.0

`None`

Returns:

Name Type Description
results pandas DataFrame

Results for each combination of parameters.

  • column lags: lags configuration for each iteration.
  • column lags_label: descriptive label or alias for the lags.
  • column params: parameters configuration for each iteration.
  • column metric: metric value estimated for each iteration.
  • additional n columns with param = value.
Source code in skforecast/model_selection/_search.py
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
def grid_search_forecaster(
    forecaster: object,
    y: pd.Series,
    cv: Union[TimeSeriesFold, OneStepAheadFold],
    param_grid: dict,
    metric: Union[str, Callable, list],
    exog: Optional[Union[pd.Series, pd.DataFrame]] = None,
    lags_grid: Optional[Union[list, dict]] = None,
    return_best: bool = True,
    n_jobs: Union[int, str] = 'auto',
    verbose: bool = True,
    show_progress: bool = True,
    output_file: Optional[str] = None
) -> pd.DataFrame:
    """
    Exhaustive search over specified parameter values for a Forecaster object.
    Validation is done using time series backtesting.

    Parameters
    ----------
    forecaster : ForecasterRecursive, ForecasterDirect
        Forecaster model.
    y : pandas Series
        Training time series.
    cv : TimeSeriesFold, OneStepAheadFold
        TimeSeriesFold or OneStepAheadFold object with the information needed to split
        the data into folds.
        **New in version 0.14.0**
    param_grid : dict
        Dictionary with parameters names (`str`) as keys and lists of parameter
        settings to try as values.
    metric : str, Callable, list
        Metric used to quantify the goodness of fit of the model.

        - If `string`: {'mean_squared_error', 'mean_absolute_error',
        'mean_absolute_percentage_error', 'mean_squared_log_error',
        'mean_absolute_scaled_error', 'root_mean_squared_scaled_error'}
        - If `Callable`: Function with arguments `y_true`, `y_pred` and `y_train`
        (Optional) that returns a float.
        - If `list`: List containing multiple strings and/or Callables.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s. Must have the same
        number of observations as `y` and should be aligned so that y[i] is
        regressed on exog[i].
    lags_grid : list, dict, default `None`
        Lists of lags to try, containing int, lists, numpy ndarray, or range 
        objects. If `dict`, the keys are used as labels in the `results` 
        DataFrame, and the values are used as the lists of lags to try.
    return_best : bool, default `True`
        Refit the `forecaster` using the best found parameters on the whole data.
    n_jobs : int, 'auto', default `'auto'`
        The number of jobs to run in parallel. If `-1`, then the number of jobs is 
        set to the number of cores. If 'auto', `n_jobs` is set using the function
        skforecast.utils.select_n_jobs_backtesting.
    verbose : bool, default `True`
        Print number of folds used for cv or backtesting.
    show_progress : bool, default `True`
        Whether to show a progress bar.
    output_file : str, default `None`
        Specifies the filename or full path where the results should be saved. 
        The results will be saved in a tab-separated values (TSV) format. If 
        `None`, the results will not be saved to a file.
        **New in version 0.12.0**

    Returns
    -------
    results : pandas DataFrame
        Results for each combination of parameters.

        - column lags: lags configuration for each iteration.
        - column lags_label: descriptive label or alias for the lags.
        - column params: parameters configuration for each iteration.
        - column metric: metric value estimated for each iteration.
        - additional n columns with param = value.

    """

    param_grid = list(ParameterGrid(param_grid))

    results = _evaluate_grid_hyperparameters(
                  forecaster    = forecaster,
                  y             = y,
                  cv            = cv,
                  param_grid    = param_grid,
                  metric        = metric,
                  exog          = exog,
                  lags_grid     = lags_grid,
                  return_best   = return_best,
                  n_jobs        = n_jobs,
                  verbose       = verbose,
                  show_progress = show_progress,
                  output_file   = output_file
              )

    return results

skforecast.model_selection._search.random_search_forecaster

random_search_forecaster(
    forecaster,
    y,
    cv,
    param_distributions,
    metric,
    exog=None,
    lags_grid=None,
    n_iter=10,
    random_state=123,
    return_best=True,
    n_jobs="auto",
    verbose=True,
    show_progress=True,
    output_file=None,
)

Random search over specified parameter values or distributions for a Forecaster object. Validation is done using time series backtesting.

Parameters:

Name Type Description Default
forecaster (ForecasterRecursive, ForecasterDirect)

Forecaster model.

required
y pandas Series

Training time series.

required
cv (TimeSeriesFold, OneStepAheadFold)

TimeSeriesFold or OneStepAheadFold object with the information needed to split the data into folds. New in version 0.14.0

required
param_distributions dict

Dictionary with parameters names (str) as keys and distributions or lists of parameters to try.

required
metric (str, Callable, list)

Metric used to quantify the goodness of fit of the model.

  • If string: {'mean_squared_error', 'mean_absolute_error', 'mean_absolute_percentage_error', 'mean_squared_log_error', 'mean_absolute_scaled_error', 'root_mean_squared_scaled_error'}
  • If Callable: Function with arguments y_true, y_pred and y_train (Optional) that returns a float.
  • If list: List containing multiple strings and/or Callables.
required
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s. Must have the same number of observations as y and should be aligned so that y[i] is regressed on exog[i].

`None`
lags_grid (list, dict)

Lists of lags to try, containing int, lists, numpy ndarray, or range objects. If dict, the keys are used as labels in the results DataFrame, and the values are used as the lists of lags to try.

`None`
n_iter int

Number of parameter settings that are sampled per lags configuration. n_iter trades off runtime vs quality of the solution.

`10`
random_state int

Sets a seed to the random sampling for reproducible output.

`123`
return_best bool

Refit the forecaster using the best found parameters on the whole data.

`True`
n_jobs (int, auto)

The number of jobs to run in parallel. If -1, then the number of jobs is set to the number of cores. If 'auto', n_jobs is set using the function skforecast.utils.select_n_jobs_backtesting.

`'auto'`
verbose bool

Print number of folds used for cv or backtesting.

`True`
show_progress bool

Whether to show a progress bar.

`True`
output_file str

Specifies the filename or full path where the results should be saved. The results will be saved in a tab-separated values (TSV) format. If None, the results will not be saved to a file. New in version 0.12.0

`None`

Returns:

Name Type Description
results pandas DataFrame

Results for each combination of parameters.

  • column lags: lags configuration for each iteration.
  • column lags_label: descriptive label or alias for the lags.
  • column params: parameters configuration for each iteration.
  • column metric: metric value estimated for each iteration.
  • additional n columns with param = value.
Source code in skforecast/model_selection/_search.py
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
def random_search_forecaster(
    forecaster: object,
    y: pd.Series,
    cv: Union[TimeSeriesFold, OneStepAheadFold],
    param_distributions: dict,
    metric: Union[str, Callable, list],
    exog: Optional[Union[pd.Series, pd.DataFrame]] = None,
    lags_grid: Optional[Union[list, dict]] = None,
    n_iter: int = 10,
    random_state: int = 123,
    return_best: bool = True,
    n_jobs: Union[int, str] = 'auto',
    verbose: bool = True,
    show_progress: bool = True,
    output_file: Optional[str] = None
) -> pd.DataFrame:
    """
    Random search over specified parameter values or distributions for a Forecaster 
    object. Validation is done using time series backtesting.

    Parameters
    ----------
    forecaster : ForecasterRecursive, ForecasterDirect
        Forecaster model.
    y : pandas Series
        Training time series.
    cv : TimeSeriesFold, OneStepAheadFold
        TimeSeriesFold or OneStepAheadFold object with the information needed to split
        the data into folds.
        **New in version 0.14.0**
    param_distributions : dict
        Dictionary with parameters names (`str`) as keys and 
        distributions or lists of parameters to try.
    metric : str, Callable, list
        Metric used to quantify the goodness of fit of the model.

        - If `string`: {'mean_squared_error', 'mean_absolute_error',
        'mean_absolute_percentage_error', 'mean_squared_log_error',
        'mean_absolute_scaled_error', 'root_mean_squared_scaled_error'}
        - If `Callable`: Function with arguments `y_true`, `y_pred` and `y_train`
        (Optional) that returns a float.
        - If `list`: List containing multiple strings and/or Callables.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s. Must have the same
        number of observations as `y` and should be aligned so that y[i] is
        regressed on exog[i]. 
    lags_grid : list, dict, default `None`
        Lists of lags to try, containing int, lists, numpy ndarray, or range 
        objects. If `dict`, the keys are used as labels in the `results` 
        DataFrame, and the values are used as the lists of lags to try.
    n_iter : int, default `10`
        Number of parameter settings that are sampled per lags configuration. 
        n_iter trades off runtime vs quality of the solution.
    random_state : int, default `123`
        Sets a seed to the random sampling for reproducible output.
    return_best : bool, default `True`
        Refit the `forecaster` using the best found parameters on the whole data.
    n_jobs : int, 'auto', default `'auto'`
        The number of jobs to run in parallel. If `-1`, then the number of jobs is 
        set to the number of cores. If 'auto', `n_jobs` is set using the function
        skforecast.utils.select_n_jobs_backtesting.
    verbose : bool, default `True`
        Print number of folds used for cv or backtesting.
    show_progress : bool, default `True`
        Whether to show a progress bar.
    output_file : str, default `None`
        Specifies the filename or full path where the results should be saved. 
        The results will be saved in a tab-separated values (TSV) format. If 
        `None`, the results will not be saved to a file.
        **New in version 0.12.0**

    Returns
    -------
    results : pandas DataFrame
        Results for each combination of parameters.

        - column lags: lags configuration for each iteration.
        - column lags_label: descriptive label or alias for the lags.
        - column params: parameters configuration for each iteration.
        - column metric: metric value estimated for each iteration.
        - additional n columns with param = value.

    """

    param_grid = list(ParameterSampler(param_distributions, n_iter=n_iter, random_state=random_state))

    results = _evaluate_grid_hyperparameters(
                  forecaster    = forecaster,
                  y             = y,
                  cv            = cv,
                  param_grid    = param_grid,
                  metric        = metric,
                  exog          = exog,
                  lags_grid     = lags_grid,
                  return_best   = return_best,
                  n_jobs        = n_jobs,
                  verbose       = verbose,
                  show_progress = show_progress,
                  output_file   = output_file
              )

    return results

skforecast.model_selection._search.bayesian_search_forecaster

bayesian_search_forecaster(
    forecaster,
    y,
    cv,
    search_space,
    metric,
    exog=None,
    n_trials=10,
    random_state=123,
    return_best=True,
    n_jobs="auto",
    verbose=True,
    show_progress=True,
    output_file=None,
    kwargs_create_study={},
    kwargs_study_optimize={},
)

Bayesian search for hyperparameters of a Forecaster object.

Parameters:

Name Type Description Default
forecaster (ForecasterRecursive, ForecasterDirect)

Forecaster model.

required
y pandas Series

Training time series.

required
cv (TimeSeriesFold, OneStepAheadFold)

TimeSeriesFold or OneStepAheadFold object with the information needed to split the data into folds. New in version 0.14.0

required
search_space Callable(optuna)

Function with argument trial which returns a dictionary with parameters names (str) as keys and Trial object from optuna (trial.suggest_float, trial.suggest_int, trial.suggest_categorical) as values.

required
metric (str, Callable, list)

Metric used to quantify the goodness of fit of the model.

  • If string: {'mean_squared_error', 'mean_absolute_error', 'mean_absolute_percentage_error', 'mean_squared_log_error', 'mean_absolute_scaled_error', 'root_mean_squared_scaled_error'}
  • If Callable: Function with arguments y_true, y_pred and y_train (Optional) that returns a float.
  • If list: List containing multiple strings and/or Callables.
required
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s. Must have the same number of observations as y and should be aligned so that y[i] is regressed on exog[i].

`None`
n_trials int

Number of parameter settings that are sampled in each lag configuration.

`10`
random_state int

Sets a seed to the sampling for reproducible output. When a new sampler is passed in kwargs_create_study, the seed must be set within the sampler. For example {'sampler': TPESampler(seed=145)}.

`123`
return_best bool

Refit the forecaster using the best found parameters on the whole data.

`True`
n_jobs (int, auto)

The number of jobs to run in parallel. If -1, then the number of jobs is set to the number of cores. If 'auto', n_jobs is set using the function skforecast.utils.select_n_jobs_backtesting.

`'auto'`
verbose bool

Print number of folds used for cv or backtesting.

`True`
show_progress bool

Whether to show a progress bar.

`True`
output_file str

Specifies the filename or full path where the results should be saved. The results will be saved in a tab-separated values (TSV) format. If None, the results will not be saved to a file. New in version 0.12.0

`None`
kwargs_create_study dict

Keyword arguments (key, value mappings) to pass to optuna.create_study(). If default, the direction is set to 'minimize' and a TPESampler(seed=123) sampler is used during optimization.

`{}`
kwargs_study_optimize dict

Other keyword arguments (key, value mappings) to pass to study.optimize().

`{}`

Returns:

Name Type Description
results pandas DataFrame

Results for each combination of parameters.

  • column lags: lags configuration for each iteration.
  • column params: parameters configuration for each iteration.
  • column metric: metric value estimated for each iteration.
  • additional n columns with param = value.
best_trial optuna object

The best optimization result returned as a FrozenTrial optuna object.

Source code in skforecast/model_selection/_search.py
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
def bayesian_search_forecaster(
    forecaster: object,
    y: pd.Series,
    cv: Union[TimeSeriesFold, OneStepAheadFold],
    search_space: Callable,
    metric: Union[str, Callable, list],
    exog: Optional[Union[pd.Series, pd.DataFrame]] = None,
    n_trials: int = 10,
    random_state: int = 123,
    return_best: bool = True,
    n_jobs: Union[int, str] = 'auto',
    verbose: bool = True,
    show_progress: bool = True,
    output_file: Optional[str] = None,
    kwargs_create_study: dict = {},
    kwargs_study_optimize: dict = {}
) -> Tuple[pd.DataFrame, object]:
    """
    Bayesian search for hyperparameters of a Forecaster object.

    Parameters
    ----------
    forecaster : ForecasterRecursive, ForecasterDirect
        Forecaster model.
    y : pandas Series
        Training time series.
    cv : TimeSeriesFold, OneStepAheadFold
        TimeSeriesFold or OneStepAheadFold object with the information needed to split
        the data into folds.
        **New in version 0.14.0**
    search_space : Callable (optuna)
        Function with argument `trial` which returns a dictionary with parameters names 
        (`str`) as keys and Trial object from optuna (trial.suggest_float, 
        trial.suggest_int, trial.suggest_categorical) as values.
    metric : str, Callable, list
        Metric used to quantify the goodness of fit of the model.

        - If `string`: {'mean_squared_error', 'mean_absolute_error',
        'mean_absolute_percentage_error', 'mean_squared_log_error',
        'mean_absolute_scaled_error', 'root_mean_squared_scaled_error'}
        - If `Callable`: Function with arguments `y_true`, `y_pred` and `y_train`
        (Optional) that returns a float.
        - If `list`: List containing multiple strings and/or Callables.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s. Must have the same
        number of observations as `y` and should be aligned so that y[i] is
        regressed on exog[i].
    n_trials : int, default `10`
        Number of parameter settings that are sampled in each lag configuration.
    random_state : int, default `123`
        Sets a seed to the sampling for reproducible output. When a new sampler 
        is passed in `kwargs_create_study`, the seed must be set within the 
        sampler. For example `{'sampler': TPESampler(seed=145)}`.
    return_best : bool, default `True`
        Refit the `forecaster` using the best found parameters on the whole data.
    n_jobs : int, 'auto', default `'auto'`
        The number of jobs to run in parallel. If `-1`, then the number of jobs is 
        set to the number of cores. If 'auto', `n_jobs` is set using the function
        skforecast.utils.select_n_jobs_backtesting.
    verbose : bool, default `True`
        Print number of folds used for cv or backtesting.
    show_progress : bool, default `True`
        Whether to show a progress bar.
    output_file : str, default `None`
        Specifies the filename or full path where the results should be saved. 
        The results will be saved in a tab-separated values (TSV) format. If 
        `None`, the results will not be saved to a file.
        **New in version 0.12.0**
    kwargs_create_study : dict, default `{}`
        Keyword arguments (key, value mappings) to pass to optuna.create_study().
        If default, the direction is set to 'minimize' and a TPESampler(seed=123) 
        sampler is used during optimization.
    kwargs_study_optimize : dict, default `{}`
        Other keyword arguments (key, value mappings) to pass to study.optimize().

    Returns
    -------
    results : pandas DataFrame
        Results for each combination of parameters.

        - column lags: lags configuration for each iteration.
        - column params: parameters configuration for each iteration.
        - column metric: metric value estimated for each iteration.
        - additional n columns with param = value.
    best_trial : optuna object
        The best optimization result returned as a FrozenTrial optuna object.

    """

    if return_best and exog is not None and (len(exog) != len(y)):
        raise ValueError(
            f"`exog` must have same number of samples as `y`. "
            f"length `exog`: ({len(exog)}), length `y`: ({len(y)})"
        )

    results, best_trial = _bayesian_search_optuna(
                              forecaster            = forecaster,
                              y                     = y,
                              cv                    = cv,
                              exog                  = exog,
                              search_space          = search_space,
                              metric                = metric,
                              n_trials              = n_trials,
                              random_state          = random_state,
                              return_best           = return_best,
                              n_jobs                = n_jobs,
                              verbose               = verbose,
                              show_progress         = show_progress,
                              output_file           = output_file,
                              kwargs_create_study   = kwargs_create_study,
                              kwargs_study_optimize = kwargs_study_optimize
                          )

    return results, best_trial

skforecast.model_selection._validation.backtesting_forecaster_multiseries

backtesting_forecaster_multiseries(
    forecaster,
    series,
    cv,
    metric,
    levels=None,
    add_aggregated_metric=True,
    exog=None,
    interval=None,
    n_boot=250,
    random_state=123,
    use_in_sample_residuals=True,
    n_jobs="auto",
    verbose=False,
    show_progress=True,
    suppress_warnings=False,
)

Backtesting of forecaster model following the folds generated by the TimeSeriesFold class and using the metric(s) provided.

If forecaster is already trained and initial_train_size is set to None in the TimeSeriesFold class, no initial train will be done and all data will be used to evaluate the model. However, the first len(forecaster.last_window) observations are needed to create the initial predictors, so no predictions are calculated for them.

A copy of the original forecaster is created so that it is not modified during the process.

Parameters:

Name Type Description Default
forecaster (ForecasterRecursiveMultiSeries, ForecasterDirectMultiVariate, ForecasterRnn)

Forecaster model.

required
series pandas DataFrame, dict

Training time series.

required
cv TimeSeriesFold

TimeSeriesFold object with the information needed to split the data into folds.

required
metric (str, Callable, list)

Metric used to quantify the goodness of fit of the model.

  • If string: {'mean_squared_error', 'mean_absolute_error', 'mean_absolute_percentage_error', 'mean_squared_log_error', 'mean_absolute_scaled_error', 'root_mean_squared_scaled_error'}
  • If Callable: Function with arguments y_true, y_pred and y_train (Optional) that returns a float.
  • If list: List containing multiple strings and/or Callables.
required
levels (str, list)

Time series to be predicted. If None all levels will be predicted.

`None`
add_aggregated_metric bool

If True, and multiple series (levels) are predicted, the aggregated metrics (average, weighted average and pooled) are also returned.

  • 'average': the average (arithmetic mean) of all levels.
  • 'weighted_average': the average of the metrics weighted by the number of predicted values of each level.
  • 'pooling': the values of all levels are pooled and then the metric is calculated.
`True`
exog pandas Series, pandas DataFrame, dict

Exogenous variables.

`None`
interval list

Confidence of the prediction interval estimated. Sequence of percentiles to compute, which must be between 0 and 100 inclusive. If None, no intervals are estimated.

`None`
n_boot int

Number of bootstrapping iterations used to estimate prediction intervals.

`250`
random_state int

Sets a seed to the random generator, so that boot intervals are always deterministic.

`123`
use_in_sample_residuals bool

If True, residuals from the training data are used as proxy of prediction error to create prediction intervals. If False, out_sample_residuals are used if they are already stored inside the forecaster.

`True`
n_jobs (int, auto)

The number of jobs to run in parallel. If -1, then the number of jobs is set to the number of cores. If 'auto', n_jobs is set using the function skforecast.utils.select_n_jobs_backtesting.

`'auto'`
verbose bool

Print number of folds and index of training and validation sets used for backtesting.

`False`
show_progress bool

Whether to show a progress bar.

`True`
suppress_warnings bool

If True, skforecast warnings will be suppressed during the backtesting process. See skforecast.exceptions.warn_skforecast_categories for more information.

False

Returns:

Name Type Description
metrics_levels pandas DataFrame

Value(s) of the metric(s). Index are the levels and columns the metrics.

backtest_predictions pandas DataFrame

Value of predictions and their estimated interval if interval is not None. If there is more than one level, this structure will be repeated for each of them.

  • column pred: predictions.
  • column lower_bound: lower bound of the interval.
  • column upper_bound: upper bound of the interval.
Source code in skforecast/model_selection/_validation.py
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
def backtesting_forecaster_multiseries(
    forecaster: object,
    series: Union[pd.DataFrame, dict],
    cv: TimeSeriesFold,
    metric: Union[str, Callable, list],
    levels: Optional[Union[str, list]] = None,
    add_aggregated_metric: bool = True,
    exog: Optional[Union[pd.Series, pd.DataFrame, dict]] = None,
    interval: Optional[list] = None,
    n_boot: int = 250,
    random_state: int = 123,
    use_in_sample_residuals: bool = True,
    n_jobs: Union[int, str] = 'auto',
    verbose: bool = False,
    show_progress: bool = True,
    suppress_warnings: bool = False
) -> Tuple[pd.DataFrame, pd.DataFrame]:
    """
    Backtesting of forecaster model following the folds generated by the TimeSeriesFold
    class and using the metric(s) provided.

    If `forecaster` is already trained and `initial_train_size` is set to `None` in the
    TimeSeriesFold class, no initial train will be done and all data will be used
    to evaluate the model. However, the first `len(forecaster.last_window)` observations
    are needed to create the initial predictors, so no predictions are calculated for
    them.

    A copy of the original forecaster is created so that it is not modified during 
    the process.

    Parameters
    ----------
    forecaster : ForecasterRecursiveMultiSeries, ForecasterDirectMultiVariate, ForecasterRnn
        Forecaster model.
    series : pandas DataFrame, dict
        Training time series.
    cv : TimeSeriesFold
        TimeSeriesFold object with the information needed to split the data into folds.
    metric : str, Callable, list
        Metric used to quantify the goodness of fit of the model.

        - If `string`: {'mean_squared_error', 'mean_absolute_error',
        'mean_absolute_percentage_error', 'mean_squared_log_error',
        'mean_absolute_scaled_error', 'root_mean_squared_scaled_error'}
        - If `Callable`: Function with arguments `y_true`, `y_pred` and `y_train`
        (Optional) that returns a float.
        - If `list`: List containing multiple strings and/or Callables.
    levels : str, list, default `None`
        Time series to be predicted. If `None` all levels will be predicted.
    add_aggregated_metric : bool, default `True`
        If `True`, and multiple series (`levels`) are predicted, the aggregated
        metrics (average, weighted average and pooled) are also returned.

        - 'average': the average (arithmetic mean) of all levels.
        - 'weighted_average': the average of the metrics weighted by the number of
        predicted values of each level.
        - 'pooling': the values of all levels are pooled and then the metric is
        calculated.
    exog : pandas Series, pandas DataFrame, dict, default `None`
        Exogenous variables.
    interval : list, default `None`
        Confidence of the prediction interval estimated. Sequence of percentiles
        to compute, which must be between 0 and 100 inclusive. If `None`, no
        intervals are estimated.
    n_boot : int, default `250`
        Number of bootstrapping iterations used to estimate prediction
        intervals.
    random_state : int, default `123`
        Sets a seed to the random generator, so that boot intervals are always 
        deterministic.
    use_in_sample_residuals : bool, default `True`
        If `True`, residuals from the training data are used as proxy of prediction 
        error to create prediction intervals. If `False`, out_sample_residuals 
        are used if they are already stored inside the forecaster.
    n_jobs : int, 'auto', default `'auto'`
        The number of jobs to run in parallel. If `-1`, then the number of jobs is 
        set to the number of cores. If 'auto', `n_jobs` is set using the function
        skforecast.utils.select_n_jobs_backtesting.
    verbose : bool, default `False`
        Print number of folds and index of training and validation sets used 
        for backtesting.
    show_progress : bool, default `True`
        Whether to show a progress bar.
    suppress_warnings: bool, default `False`
        If `True`, skforecast warnings will be suppressed during the backtesting 
        process. See skforecast.exceptions.warn_skforecast_categories for more
        information.

    Returns
    -------
    metrics_levels : pandas DataFrame
        Value(s) of the metric(s). Index are the levels and columns the metrics.
    backtest_predictions : pandas DataFrame
        Value of predictions and their estimated interval if `interval` is not `None`.
        If there is more than one level, this structure will be repeated for each of them.

        - column pred: predictions.
        - column lower_bound: lower bound of the interval.
        - column upper_bound: upper bound of the interval.

    """

    multi_series_forecasters = [
        'ForecasterRecursiveMultiSeries', 
        'ForecasterDirectMultiVariate',
        'ForecasterRnn'
    ]

    forecaster_name = type(forecaster).__name__

    if forecaster_name not in multi_series_forecasters:
        raise TypeError(
            (f"`forecaster` must be of type {multi_series_forecasters}, "
             f"for all other types of forecasters use the functions available in "
             f"the `model_selection` module. Got {forecaster_name}")
        )

    check_backtesting_input(
        forecaster              = forecaster,
        cv                      = cv,
        metric                  = metric,
        add_aggregated_metric   = add_aggregated_metric,
        series                  = series,
        exog                    = exog,
        interval                = interval,
        n_boot                  = n_boot,
        random_state            = random_state,
        use_in_sample_residuals = use_in_sample_residuals,
        n_jobs                  = n_jobs,
        show_progress           = show_progress,
        suppress_warnings       = suppress_warnings
    )

    metrics_levels, backtest_predictions = _backtesting_forecaster_multiseries(
        forecaster              = forecaster,
        series                  = series,
        cv                      = cv,
        levels                  = levels,
        metric                  = metric,
        add_aggregated_metric   = add_aggregated_metric,
        exog                    = exog,
        interval                = interval,
        n_boot                  = n_boot,
        random_state            = random_state,
        use_in_sample_residuals = use_in_sample_residuals,
        n_jobs                  = n_jobs,
        verbose                 = verbose,
        show_progress           = show_progress,
        suppress_warnings       = suppress_warnings
    )

    return metrics_levels, backtest_predictions

skforecast.model_selection._search.grid_search_forecaster_multiseries

grid_search_forecaster_multiseries(
    forecaster,
    series,
    cv,
    param_grid,
    metric,
    aggregate_metric=[
        "weighted_average",
        "average",
        "pooling",
    ],
    levels=None,
    exog=None,
    lags_grid=None,
    return_best=True,
    n_jobs="auto",
    verbose=True,
    show_progress=True,
    suppress_warnings=False,
    output_file=None,
)

Exhaustive search over specified parameter values for a Forecaster object. Validation is done using multi-series backtesting.

Parameters:

Name Type Description Default
forecaster (ForecasterRecursiveMultiSeries, ForecasterDirectMultiVariate)

Forecaster model.

required
series pandas DataFrame, dict

Training time series.

required
cv (TimeSeriesFold, OneStepAheadFold)

TimeSeriesFold or OneStepAheadFold object with the information needed to split the data into folds. New in version 0.14.0

required
param_grid dict

Dictionary with parameters names (str) as keys and lists of parameter settings to try as values.

required
metric (str, Callable, list)

Metric used to quantify the goodness of fit of the model.

  • If string: {'mean_squared_error', 'mean_absolute_error', 'mean_absolute_percentage_error', 'mean_squared_log_error', 'mean_absolute_scaled_error', 'root_mean_squared_scaled_error'}
  • If Callable: Function with arguments y_true, y_pred and y_train (Optional) that returns a float.
  • If list: List containing multiple strings and/or Callables.
required
aggregate_metric (str, list)

Aggregation method/s used to combine the metric/s of all levels (series) when multiple levels are predicted. If list, the first aggregation method is used to select the best parameters.

  • 'average': the average (arithmetic mean) of all levels.
  • 'weighted_average': the average of the metrics weighted by the number of predicted values of each level.
  • 'pooling': the values of all levels are pooled and then the metric is calculated.
`['weighted_average', 'average', 'pooling']`
levels (str, list)

level (str) or levels (list) at which the forecaster is optimized. If None, all levels are taken into account.

`None`
exog pandas Series, pandas DataFrame, dict

Exogenous variables.

`None`
lags_grid (list, dict)

Lists of lags to try, containing int, lists, numpy ndarray, or range objects. If dict, the keys are used as labels in the results DataFrame, and the values are used as the lists of lags to try.

`None`
return_best bool

Refit the forecaster using the best found parameters on the whole data.

`True`
n_jobs (int, auto)

The number of jobs to run in parallel. If -1, then the number of jobs is set to the number of cores. If 'auto', n_jobs is set using the function skforecast.utils.select_n_jobs_backtesting.

`'auto'`
verbose bool

Print number of folds used for cv or backtesting.

`True`
show_progress bool

Whether to show a progress bar.

`True`
suppress_warnings bool

If True, skforecast warnings will be suppressed during the hyperparameter search. See skforecast.exceptions.warn_skforecast_categories for more information.

False
output_file str

Specifies the filename or full path where the results should be saved. The results will be saved in a tab-separated values (TSV) format. If None, the results will not be saved to a file. New in version 0.12.0

`None`

Returns:

Name Type Description
results pandas DataFrame

Results for each combination of parameters.

  • column levels: levels configuration for each iteration.
  • column lags: lags configuration for each iteration.
  • column lags_label: descriptive label or alias for the lags.
  • column params: parameters configuration for each iteration.
  • column metric: metric value estimated for each iteration. The resulting metric will be the average of the optimization of all levels.
  • additional n columns with param = value.
Source code in skforecast/model_selection/_search.py
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
def grid_search_forecaster_multiseries(
    forecaster: object,
    series: Union[pd.DataFrame, dict],
    cv: Union[TimeSeriesFold, OneStepAheadFold],
    param_grid: dict,
    metric: Union[str, Callable, list],
    aggregate_metric: Union[str, list] = ['weighted_average', 'average', 'pooling'],
    levels: Optional[Union[str, list]] = None,
    exog: Optional[Union[pd.Series, pd.DataFrame, dict]] = None,
    lags_grid: Optional[Union[list, dict]] = None,
    return_best: bool = True,
    n_jobs: Union[int, str] = 'auto',
    verbose: bool = True,
    show_progress: bool = True,
    suppress_warnings: bool = False,
    output_file: Optional[str] = None
) -> pd.DataFrame:
    """
    Exhaustive search over specified parameter values for a Forecaster object.
    Validation is done using multi-series backtesting.

    Parameters
    ----------
    forecaster : ForecasterRecursiveMultiSeries, ForecasterDirectMultiVariate
        Forecaster model.
    series : pandas DataFrame, dict
        Training time series.
    cv : TimeSeriesFold, OneStepAheadFold
        TimeSeriesFold or OneStepAheadFold object with the information needed to split
        the data into folds.
        **New in version 0.14.0**
    param_grid : dict
        Dictionary with parameters names (`str`) as keys and lists of parameter
        settings to try as values.
    metric : str, Callable, list
        Metric used to quantify the goodness of fit of the model.

        - If `string`: {'mean_squared_error', 'mean_absolute_error',
        'mean_absolute_percentage_error', 'mean_squared_log_error',
        'mean_absolute_scaled_error', 'root_mean_squared_scaled_error'}
        - If `Callable`: Function with arguments `y_true`, `y_pred` and `y_train`
        (Optional) that returns a float.
        - If `list`: List containing multiple strings and/or Callables.
    aggregate_metric : str, list, default `['weighted_average', 'average', 'pooling']`
        Aggregation method/s used to combine the metric/s of all levels (series)
        when multiple levels are predicted. If list, the first aggregation method
        is used to select the best parameters.

        - 'average': the average (arithmetic mean) of all levels.
        - 'weighted_average': the average of the metrics weighted by the number of
        predicted values of each level.
        - 'pooling': the values of all levels are pooled and then the metric is
        calculated.
    levels : str, list, default `None`
        level (`str`) or levels (`list`) at which the forecaster is optimized. 
        If `None`, all levels are taken into account.
    exog : pandas Series, pandas DataFrame, dict, default `None`
        Exogenous variables.
    lags_grid : list, dict, default `None`
        Lists of lags to try, containing int, lists, numpy ndarray, or range 
        objects. If `dict`, the keys are used as labels in the `results` 
        DataFrame, and the values are used as the lists of lags to try.
    return_best : bool, default `True`
        Refit the `forecaster` using the best found parameters on the whole data.
    n_jobs : int, 'auto', default `'auto'`
        The number of jobs to run in parallel. If `-1`, then the number of jobs is 
        set to the number of cores. If 'auto', `n_jobs` is set using the function
        skforecast.utils.select_n_jobs_backtesting.
    verbose : bool, default `True`
        Print number of folds used for cv or backtesting.
    show_progress : bool, default `True`
        Whether to show a progress bar.
    suppress_warnings: bool, default `False`
        If `True`, skforecast warnings will be suppressed during the hyperparameter 
        search. See skforecast.exceptions.warn_skforecast_categories for more
        information.
    output_file : str, default `None`
        Specifies the filename or full path where the results should be saved. 
        The results will be saved in a tab-separated values (TSV) format. If 
        `None`, the results will not be saved to a file.
        **New in version 0.12.0**

    Returns
    -------
    results : pandas DataFrame
        Results for each combination of parameters.

        - column levels: levels configuration for each iteration.
        - column lags: lags configuration for each iteration.
        - column lags_label: descriptive label or alias for the lags.
        - column params: parameters configuration for each iteration.
        - column metric: metric value estimated for each iteration. The resulting 
        metric will be the average of the optimization of all levels.
        - additional n columns with param = value.

    """

    param_grid = list(ParameterGrid(param_grid))

    results = _evaluate_grid_hyperparameters_multiseries(
                  forecaster        = forecaster,
                  series            = series,
                  cv                = cv,
                  param_grid        = param_grid,
                  metric            = metric,
                  aggregate_metric  = aggregate_metric,
                  levels            = levels,
                  exog              = exog,
                  lags_grid         = lags_grid,
                  n_jobs            = n_jobs,
                  return_best       = return_best,
                  verbose           = verbose,
                  show_progress     = show_progress,
                  suppress_warnings = suppress_warnings,
                  output_file       = output_file
              )

    return results

skforecast.model_selection._search.random_search_forecaster_multiseries

random_search_forecaster_multiseries(
    forecaster,
    series,
    cv,
    param_distributions,
    metric,
    aggregate_metric=[
        "weighted_average",
        "average",
        "pooling",
    ],
    levels=None,
    exog=None,
    lags_grid=None,
    n_iter=10,
    random_state=123,
    return_best=True,
    n_jobs="auto",
    verbose=True,
    show_progress=True,
    suppress_warnings=False,
    output_file=None,
)

Random search over specified parameter values or distributions for a Forecaster object. Validation is done using multi-series backtesting.

Parameters:

Name Type Description Default
forecaster (ForecasterRecursiveMultiSeries, ForecasterDirectMultiVariate)

Forecaster model.

required
series pandas DataFrame, dict

Training time series.

required
cv (TimeSeriesFold, OneStepAheadFold)

TimeSeriesFold or OneStepAheadFold object with the information needed to split the data into folds.

required
param_distributions dict

Dictionary with parameters names (str) as keys and distributions or lists of parameters to try.

required
metric (str, Callable, list)

Metric used to quantify the goodness of fit of the model.

  • If string: {'mean_squared_error', 'mean_absolute_error', 'mean_absolute_percentage_error', 'mean_squared_log_error', 'mean_absolute_scaled_error', 'root_mean_squared_scaled_error'}
  • If Callable: Function with arguments y_true, y_pred and y_train (Optional) that returns a float.
  • If list: List containing multiple strings and/or Callables.
required
aggregate_metric (str, list)

Aggregation method/s used to combine the metric/s of all levels (series) when multiple levels are predicted. If list, the first aggregation method is used to select the best parameters.

  • 'average': the average (arithmetic mean) of all levels.
  • 'weighted_average': the average of the metrics weighted by the number of predicted values of each level.
  • 'pooling': the values of all levels are pooled and then the metric is calculated.
`['weighted_average', 'average', 'pooling']`
levels (str, list)

level (str) or levels (list) at which the forecaster is optimized. If None, all levels are taken into account.

`None`
exog pandas Series, pandas DataFrame, dict

Exogenous variables.

`None`
lags_grid (list, dict)

Lists of lags to try, containing int, lists, numpy ndarray, or range objects. If dict, the keys are used as labels in the results DataFrame, and the values are used as the lists of lags to try.

`None`
n_iter int

Number of parameter settings that are sampled per lags configuration. n_iter trades off runtime vs quality of the solution.

`10`
random_state int

Sets a seed to the random sampling for reproducible output.

`123`
return_best bool

Refit the forecaster using the best found parameters on the whole data.

`True`
n_jobs (int, auto)

The number of jobs to run in parallel. If -1, then the number of jobs is set to the number of cores. If 'auto', n_jobs is set using the function skforecast.utils.select_n_jobs_backtesting.

`'auto'`
verbose bool

Print number of folds used for cv or backtesting.

`True`
show_progress bool

Whether to show a progress bar.

`True`
suppress_warnings bool

If True, skforecast warnings will be suppressed during the hyperparameter search. See skforecast.exceptions.warn_skforecast_categories for more information.

False
output_file str

Specifies the filename or full path where the results should be saved. The results will be saved in a tab-separated values (TSV) format. If None, the results will not be saved to a file. New in version 0.12.0

`None`

Returns:

Name Type Description
results pandas DataFrame

Results for each combination of parameters.

  • column levels: levels configuration for each iteration.
  • column lags: lags configuration for each iteration.
  • column lags_label: descriptive label or alias for the lags.
  • column params: parameters configuration for each iteration.
  • column metric: metric value estimated for each iteration. The resulting metric will be the average of the optimization of all levels.
  • additional n columns with param = value.
Source code in skforecast/model_selection/_search.py
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
def random_search_forecaster_multiseries(
    forecaster: object,
    series: Union[pd.DataFrame, dict],
    cv: Union[TimeSeriesFold, OneStepAheadFold],
    param_distributions: dict,
    metric: Union[str, Callable, list],
    aggregate_metric: Union[str, list] = ['weighted_average', 'average', 'pooling'],
    levels: Optional[Union[str, list]] = None,
    exog: Optional[Union[pd.Series, pd.DataFrame, dict]] = None,
    lags_grid: Optional[Union[list, dict]] = None,
    n_iter: int = 10,
    random_state: int = 123,
    return_best: bool = True,
    n_jobs: Union[int, str] = 'auto',
    verbose: bool = True,
    show_progress: bool = True,
    suppress_warnings: bool = False,
    output_file: Optional[str] = None
) -> pd.DataFrame:
    """
    Random search over specified parameter values or distributions for a Forecaster 
    object. Validation is done using multi-series backtesting.

    Parameters
    ----------
    forecaster : ForecasterRecursiveMultiSeries, ForecasterDirectMultiVariate
        Forecaster model.
    series : pandas DataFrame, dict
        Training time series.
    cv : TimeSeriesFold, OneStepAheadFold
        TimeSeriesFold or OneStepAheadFold object with the information needed to split
        the data into folds.
    param_distributions : dict
        Dictionary with parameters names (`str`) as keys and distributions or 
        lists of parameters to try.
    metric : str, Callable, list
        Metric used to quantify the goodness of fit of the model.

        - If `string`: {'mean_squared_error', 'mean_absolute_error',
        'mean_absolute_percentage_error', 'mean_squared_log_error',
        'mean_absolute_scaled_error', 'root_mean_squared_scaled_error'}
        - If `Callable`: Function with arguments `y_true`, `y_pred` and `y_train`
        (Optional) that returns a float.
        - If `list`: List containing multiple strings and/or Callables.
    aggregate_metric : str, list, default `['weighted_average', 'average', 'pooling']`
        Aggregation method/s used to combine the metric/s of all levels (series)
        when multiple levels are predicted. If list, the first aggregation method
        is used to select the best parameters.

        - 'average': the average (arithmetic mean) of all levels.
        - 'weighted_average': the average of the metrics weighted by the number of
        predicted values of each level.
        - 'pooling': the values of all levels are pooled and then the metric is
        calculated.
    levels : str, list, default `None`
        level (`str`) or levels (`list`) at which the forecaster is optimized. 
        If `None`, all levels are taken into account.
    exog : pandas Series, pandas DataFrame, dict, default `None`
        Exogenous variables.
    lags_grid : list, dict, default `None`
        Lists of lags to try, containing int, lists, numpy ndarray, or range 
        objects. If `dict`, the keys are used as labels in the `results` 
        DataFrame, and the values are used as the lists of lags to try.
    n_iter : int, default `10`
        Number of parameter settings that are sampled per lags configuration. 
        n_iter trades off runtime vs quality of the solution.
    random_state : int, default `123`
        Sets a seed to the random sampling for reproducible output.
    return_best : bool, default `True`
        Refit the `forecaster` using the best found parameters on the whole data.
    n_jobs : int, 'auto', default `'auto'`
        The number of jobs to run in parallel. If `-1`, then the number of jobs is 
        set to the number of cores. If 'auto', `n_jobs` is set using the function
        skforecast.utils.select_n_jobs_backtesting.
    verbose : bool, default `True`
        Print number of folds used for cv or backtesting.
    show_progress : bool, default `True`
        Whether to show a progress bar.
    suppress_warnings: bool, default `False`
        If `True`, skforecast warnings will be suppressed during the hyperparameter 
        search. See skforecast.exceptions.warn_skforecast_categories for more
        information.
    output_file : str, default `None`
        Specifies the filename or full path where the results should be saved. 
        The results will be saved in a tab-separated values (TSV) format. If 
        `None`, the results will not be saved to a file.
        **New in version 0.12.0**

    Returns
    -------
    results : pandas DataFrame
        Results for each combination of parameters.

        - column levels: levels configuration for each iteration.
        - column lags: lags configuration for each iteration.
        - column lags_label: descriptive label or alias for the lags.
        - column params: parameters configuration for each iteration.
        - column metric: metric value estimated for each iteration. The resulting 
        metric will be the average of the optimization of all levels.
        - additional n columns with param = value.

    """

    param_grid = list(ParameterSampler(param_distributions, n_iter=n_iter, 
                                       random_state=random_state))

    results = _evaluate_grid_hyperparameters_multiseries(
                  forecaster        = forecaster,
                  series            = series,
                  cv                = cv,
                  param_grid        = param_grid,
                  metric            = metric,
                  aggregate_metric  = aggregate_metric,
                  levels            = levels,
                  exog              = exog,
                  lags_grid         = lags_grid,
                  return_best       = return_best,
                  n_jobs            = n_jobs,
                  verbose           = verbose,
                  show_progress     = show_progress,
                  suppress_warnings = suppress_warnings,
                  output_file       = output_file
              )

    return results

skforecast.model_selection._search.bayesian_search_forecaster_multiseries

bayesian_search_forecaster_multiseries(
    forecaster,
    series,
    cv,
    search_space,
    metric,
    aggregate_metric=[
        "weighted_average",
        "average",
        "pooling",
    ],
    levels=None,
    exog=None,
    n_trials=10,
    random_state=123,
    return_best=True,
    n_jobs="auto",
    verbose=True,
    show_progress=True,
    suppress_warnings=False,
    output_file=None,
    kwargs_create_study={},
    kwargs_study_optimize={},
)

Bayesian search for hyperparameters of a Forecaster object using optuna library.

Parameters:

Name Type Description Default
forecaster (ForecasterRecursiveMultiSeries, ForecasterDirectMultiVariate)

Forecaster model.

required
series pandas DataFrame, dict

Training time series.

required
search_space Callable

Function with argument trial which returns a dictionary with parameters names (str) as keys and Trial object from optuna (trial.suggest_float, trial.suggest_int, trial.suggest_categorical) as values.

required
metric (str, Callable, list)

Metric used to quantify the goodness of fit of the model.

  • If string: {'mean_squared_error', 'mean_absolute_error', 'mean_absolute_percentage_error', 'mean_squared_log_error', 'mean_absolute_scaled_error', 'root_mean_squared_scaled_error'}
  • If Callable: Function with arguments y_true, y_pred and y_train (Optional) that returns a float.
  • If list: List containing multiple strings and/or Callables.
required
aggregate_metric (str, list)

Aggregation method/s used to combine the metric/s of all levels (series) when multiple levels are predicted. If list, the first aggregation method is used to select the best parameters.

  • 'average': the average (arithmetic mean) of all levels.
  • 'weighted_average': the average of the metrics weighted by the number of predicted values of each level.
  • 'pooling': the values of all levels are pooled and then the metric is calculated.
`['weighted_average', 'average', 'pooling']`
levels (str, list)

level (str) or levels (list) at which the forecaster is optimized. If None, all levels are taken into account.

`None`
exog pandas Series, pandas DataFrame, dict

Exogenous variables.

`None`
n_trials int

Number of parameter settings that are sampled in each lag configuration.

`10`
random_state int

Sets a seed to the sampling for reproducible output.

`123`
return_best bool

Refit the forecaster using the best found parameters on the whole data.

`True`
n_jobs (int, auto)

The number of jobs to run in parallel. If -1, then the number of jobs is set to the number of cores. If 'auto', n_jobs is set using the function skforecast.utils.select_n_jobs_backtesting.

`'auto'`
verbose bool

Print number of folds used for cv or backtesting.

`True`
show_progress bool

Whether to show a progress bar.

`True`
suppress_warnings bool

If True, skforecast warnings will be suppressed during the hyperparameter search. See skforecast.exceptions.warn_skforecast_categories for more information.

False
output_file str

Specifies the filename or full path where the results should be saved. The results will be saved in a tab-separated values (TSV) format. If None, the results will not be saved to a file. New in version 0.12.0

`None`
kwargs_create_study dict

Keyword arguments (key, value mappings) to pass to optuna.create_study(). If default, the direction is set to 'minimize' and a TPESampler(seed=123) sampler is used during optimization.

`{}`
kwargs_study_optimize dict

Other keyword arguments (key, value mappings) to pass to study.optimize().

`{}`

Returns:

Name Type Description
results pandas DataFrame

Results for each combination of parameters.

  • column levels: levels configuration for each iteration.
  • column lags: lags configuration for each iteration.
  • column params: parameters configuration for each iteration.
  • column metric: metric value estimated for each iteration. The resulting metric will be the average of the optimization of all levels.
  • additional n columns with param = value.
best_trial optuna object

The best optimization result returned as a FrozenTrial optuna object.

Source code in skforecast/model_selection/_search.py
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
def bayesian_search_forecaster_multiseries(
    forecaster: object,
    series: Union[pd.DataFrame, dict],
    cv: Union[TimeSeriesFold, OneStepAheadFold],
    search_space: Callable,
    metric: Union[str, Callable, list],
    aggregate_metric: Union[str, list] = ['weighted_average', 'average', 'pooling'],
    levels: Optional[Union[str, list]] = None,
    exog: Optional[Union[pd.Series, pd.DataFrame, dict]] = None,
    n_trials: int = 10,
    random_state: int = 123,
    return_best: bool = True,
    n_jobs: Union[int, str] = 'auto',
    verbose: bool = True,
    show_progress: bool = True,
    suppress_warnings: bool = False,
    output_file: Optional[str] = None,
    kwargs_create_study: dict = {},
    kwargs_study_optimize: dict = {}
) -> Tuple[pd.DataFrame, object]:
    """
    Bayesian search for hyperparameters of a Forecaster object using optuna library.

    Parameters
    ----------
    forecaster : ForecasterRecursiveMultiSeries, ForecasterDirectMultiVariate
        Forecaster model.
    series : pandas DataFrame, dict
        Training time series.
    search_space : Callable
        Function with argument `trial` which returns a dictionary with parameters names 
        (`str`) as keys and Trial object from optuna (trial.suggest_float, 
        trial.suggest_int, trial.suggest_categorical) as values.
    metric : str, Callable, list
        Metric used to quantify the goodness of fit of the model.

        - If `string`: {'mean_squared_error', 'mean_absolute_error',
        'mean_absolute_percentage_error', 'mean_squared_log_error',
        'mean_absolute_scaled_error', 'root_mean_squared_scaled_error'}
        - If `Callable`: Function with arguments `y_true`, `y_pred` and `y_train`
        (Optional) that returns a float.
        - If `list`: List containing multiple strings and/or Callables.
    aggregate_metric : str, list, default `['weighted_average', 'average', 'pooling']`
        Aggregation method/s used to combine the metric/s of all levels (series)
        when multiple levels are predicted. If list, the first aggregation method
        is used to select the best parameters.

        - 'average': the average (arithmetic mean) of all levels.
        - 'weighted_average': the average of the metrics weighted by the number of
        predicted values of each level.
        - 'pooling': the values of all levels are pooled and then the metric is
        calculated.
    levels : str, list, default `None`
        level (`str`) or levels (`list`) at which the forecaster is optimized. 
        If `None`, all levels are taken into account.
    exog : pandas Series, pandas DataFrame, dict, default `None`
        Exogenous variables.
    n_trials : int, default `10`
        Number of parameter settings that are sampled in each lag configuration.
    random_state : int, default `123`
        Sets a seed to the sampling for reproducible output.
    return_best : bool, default `True`
        Refit the `forecaster` using the best found parameters on the whole data.
    n_jobs : int, 'auto', default `'auto'`
        The number of jobs to run in parallel. If `-1`, then the number of jobs is 
        set to the number of cores. If 'auto', `n_jobs` is set using the function
        skforecast.utils.select_n_jobs_backtesting.
    verbose : bool, default `True`
        Print number of folds used for cv or backtesting.
    show_progress : bool, default `True`
        Whether to show a progress bar.
    suppress_warnings: bool, default `False`
        If `True`, skforecast warnings will be suppressed during the hyperparameter
        search. See skforecast.exceptions.warn_skforecast_categories for more
        information.
    output_file : str, default `None`
        Specifies the filename or full path where the results should be saved. 
        The results will be saved in a tab-separated values (TSV) format. If 
        `None`, the results will not be saved to a file.
        **New in version 0.12.0**
    kwargs_create_study : dict, default `{}`
        Keyword arguments (key, value mappings) to pass to optuna.create_study().
        If default, the direction is set to 'minimize' and a TPESampler(seed=123) 
        sampler is used during optimization.
    kwargs_study_optimize : dict, default `{}`
        Other keyword arguments (key, value mappings) to pass to study.optimize().

    Returns
    -------
    results : pandas DataFrame
        Results for each combination of parameters.

        - column levels: levels configuration for each iteration.
        - column lags: lags configuration for each iteration.
        - column params: parameters configuration for each iteration.
        - column metric: metric value estimated for each iteration. The resulting 
        metric will be the average of the optimization of all levels.
        - additional n columns with param = value.
    best_trial : optuna object
        The best optimization result returned as a FrozenTrial optuna object.

    """

    if return_best and exog is not None and (len(exog) != len(series)):
        raise ValueError(
            (f"`exog` must have same number of samples as `series`. "
             f"length `exog`: ({len(exog)}), length `series`: ({len(series)})")
        )

    results, best_trial = _bayesian_search_optuna_multiseries(
                              forecaster            = forecaster,
                              series                = series,
                              cv                    = cv,
                              exog                  = exog,
                              levels                = levels, 
                              search_space          = search_space,
                              metric                = metric,
                              aggregate_metric      = aggregate_metric,
                              n_trials              = n_trials,
                              random_state          = random_state,
                              return_best           = return_best,
                              n_jobs                = n_jobs,
                              verbose               = verbose,
                              show_progress         = show_progress,
                              suppress_warnings     = suppress_warnings,
                              output_file           = output_file,
                              kwargs_create_study   = kwargs_create_study,
                              kwargs_study_optimize = kwargs_study_optimize
                          )

    return results, best_trial

skforecast.model_selection._validation.backtesting_sarimax

backtesting_sarimax(
    forecaster,
    y,
    cv,
    metric,
    exog=None,
    alpha=None,
    interval=None,
    n_jobs="auto",
    verbose=False,
    suppress_warnings_fit=False,
    show_progress=True,
)

Backtesting of ForecasterSarimax.

A copy of the original forecaster is created so that it is not modified during the process.

Parameters:

Name Type Description Default
forecaster ForecasterSarimax

Forecaster model.

required
y pandas Series

Training time series.

required
cv TimeSeriesFold

TimeSeriesFold object with the information needed to split the data into folds. New in version 0.14.0

required
metric (str, Callable, list)

Metric used to quantify the goodness of fit of the model.

  • If string: {'mean_squared_error', 'mean_absolute_error', 'mean_absolute_percentage_error', 'mean_squared_log_error', 'mean_absolute_scaled_error', 'root_mean_squared_scaled_error'}
  • If Callable: Function with arguments y_true, y_pred and y_train (Optional) that returns a float.
  • If list: List containing multiple strings and/or Callables.
required
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s. Must have the same number of observations as y and should be aligned so that y[i] is regressed on exog[i].

`None`
alpha float

The confidence intervals for the forecasts are (1 - alpha) %. If both, alpha and interval are provided, alpha will be used.

`0.05`
interval list

Confidence of the prediction interval estimated. The values must be symmetric. Sequence of percentiles to compute, which must be between 0 and 100 inclusive. For example, interval of 95% should be as interval = [2.5, 97.5]. If both, alpha and interval are provided, alpha will be used.

`None`
n_jobs (int, auto)

The number of jobs to run in parallel. If -1, then the number of jobs is set to the number of cores. If 'auto', n_jobs is set using the function skforecast.utils.select_n_jobs_backtesting.

`'auto'`
verbose bool

Print number of folds and index of training and validation sets used for backtesting.

`False`
suppress_warnings_fit bool

If True, warnings generated during fitting will be ignored.

`False`
show_progress bool

Whether to show a progress bar.

`True`

Returns:

Name Type Description
metric_values pandas DataFrame

Value(s) of the metric(s).

backtest_predictions pandas DataFrame

Value of predictions and their estimated interval if interval is not None.

  • column pred: predictions.
  • column lower_bound: lower bound of the interval.
  • column upper_bound: upper bound of the interval.
Source code in skforecast/model_selection/_validation.py
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
def backtesting_sarimax(
    forecaster: object,
    y: pd.Series,
    cv: TimeSeriesFold,
    metric: Union[str, Callable, list],
    exog: Optional[Union[pd.Series, pd.DataFrame]] = None,
    alpha: Optional[float] = None,
    interval: Optional[list] = None,
    n_jobs: Union[int, str] = 'auto',
    verbose: bool = False,
    suppress_warnings_fit: bool = False,
    show_progress: bool = True
) -> Tuple[pd.DataFrame, pd.DataFrame]:
    """
    Backtesting of ForecasterSarimax.

    A copy of the original forecaster is created so that it is not modified during 
    the process.

    Parameters
    ----------
    forecaster : ForecasterSarimax
        Forecaster model.
    y : pandas Series
        Training time series.
    cv : TimeSeriesFold
        TimeSeriesFold object with the information needed to split the data into folds.
        **New in version 0.14.0**
    metric : str, Callable, list
        Metric used to quantify the goodness of fit of the model.

        - If `string`: {'mean_squared_error', 'mean_absolute_error',
        'mean_absolute_percentage_error', 'mean_squared_log_error',
        'mean_absolute_scaled_error', 'root_mean_squared_scaled_error'}
        - If `Callable`: Function with arguments `y_true`, `y_pred` and `y_train`
        (Optional) that returns a float.
        - If `list`: List containing multiple strings and/or Callables.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s. Must have the same
        number of observations as `y` and should be aligned so that y[i] is
        regressed on exog[i].
    alpha : float, default `0.05`
        The confidence intervals for the forecasts are (1 - alpha) %.
        If both, `alpha` and `interval` are provided, `alpha` will be used.
    interval : list, default `None`
        Confidence of the prediction interval estimated. The values must be
        symmetric. Sequence of percentiles to compute, which must be between 
        0 and 100 inclusive. For example, interval of 95% should be as 
        `interval = [2.5, 97.5]`. If both, `alpha` and `interval` are 
        provided, `alpha` will be used.
    n_jobs : int, 'auto', default `'auto'`
        The number of jobs to run in parallel. If `-1`, then the number of jobs is 
        set to the number of cores. If 'auto', `n_jobs` is set using the function
        skforecast.utils.select_n_jobs_backtesting. 
    verbose : bool, default `False`
        Print number of folds and index of training and validation sets used 
        for backtesting.
    suppress_warnings_fit : bool, default `False`
        If `True`, warnings generated during fitting will be ignored.
    show_progress : bool, default `True`
        Whether to show a progress bar.

    Returns
    -------
    metric_values : pandas DataFrame
        Value(s) of the metric(s).
    backtest_predictions : pandas DataFrame
        Value of predictions and their estimated interval if `interval` is not `None`.

        - column pred: predictions.
        - column lower_bound: lower bound of the interval.
        - column upper_bound: upper bound of the interval.

    """

    if type(forecaster).__name__ not in ['ForecasterSarimax']:
        raise TypeError(
            ("`forecaster` must be of type `ForecasterSarimax`, for all other "
             "types of forecasters use the functions available in the other "
             "`model_selection` modules.")
        )

    check_backtesting_input(
        forecaster            = forecaster,
        cv                    = cv,
        y                     = y,
        metric                = metric,
        interval              = interval,
        alpha                 = alpha,
        n_jobs                = n_jobs,
        show_progress         = show_progress,
        suppress_warnings_fit = suppress_warnings_fit
    )

    metric_values, backtest_predictions = _backtesting_sarimax(
        forecaster            = forecaster,
        y                     = y,
        cv                    = cv,
        metric                = metric,
        exog                  = exog,
        alpha                 = alpha,
        interval              = interval,
        n_jobs                = n_jobs,
        verbose               = verbose,
        suppress_warnings_fit = suppress_warnings_fit,
        show_progress         = show_progress
    )

    return metric_values, backtest_predictions

skforecast.model_selection._search.grid_search_sarimax

grid_search_sarimax(
    forecaster,
    y,
    cv,
    param_grid,
    metric,
    exog=None,
    return_best=True,
    n_jobs="auto",
    verbose=True,
    suppress_warnings_fit=False,
    show_progress=True,
    output_file=None,
)

Exhaustive search over specified parameter values for a ForecasterSarimax object. Validation is done using time series backtesting.

Parameters:

Name Type Description Default
forecaster ForecasterSarimax

Forecaster model.

required
y pandas Series

Training time series.

required
cv TimeSeriesFold

TimeSeriesFold object with the information needed to split the data into folds. New in version 0.14.0

required
param_grid dict

Dictionary with parameters names (str) as keys and lists of parameter settings to try as values.

required
metric (str, Callable, list)

Metric used to quantify the goodness of fit of the model.

  • If string: {'mean_squared_error', 'mean_absolute_error', 'mean_absolute_percentage_error', 'mean_squared_log_error', 'mean_absolute_scaled_error', 'root_mean_squared_scaled_error'}
  • If Callable: Function with arguments y_true, y_pred and y_train (Optional) that returns a float.
  • If list: List containing multiple strings and/or Callables.
required
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s. Must have the same number of observations as y and should be aligned so that y[i] is regressed on exog[i].

`None`
return_best bool

Refit the forecaster using the best found parameters on the whole data.

`True`
n_jobs (int, auto)

The number of jobs to run in parallel. If -1, then the number of jobs is set to the number of cores. If 'auto', n_jobs is set using the function skforecast.utils.select_n_jobs_backtesting.

`'auto'`
verbose bool

Print number of folds used for cv or backtesting.

`True`
suppress_warnings_fit bool

If True, warnings generated during fitting will be ignored.

`False`
show_progress bool

Whether to show a progress bar.

`True`
output_file str

Specifies the filename or full path where the results should be saved. The results will be saved in a tab-separated values (TSV) format. If None, the results will not be saved to a file. New in version 0.12.0

`None`

Returns:

Name Type Description
results pandas DataFrame

Results for each combination of parameters.

  • column params: parameters configuration for each iteration.
  • column metric: metric value estimated for each iteration.
  • additional n columns with param = value.
Source code in skforecast/model_selection/_search.py
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
def grid_search_sarimax(
    forecaster: object,
    y: pd.Series,
    cv: TimeSeriesFold,
    param_grid: dict,
    metric: Union[str, Callable, list],
    exog: Optional[Union[pd.Series, pd.DataFrame]] = None,
    return_best: bool = True,
    n_jobs: Union[int, str] = 'auto',
    verbose: bool = True,
    suppress_warnings_fit: bool = False,
    show_progress: bool = True,
    output_file: Optional[str] = None
) -> pd.DataFrame:
    """
    Exhaustive search over specified parameter values for a ForecasterSarimax object.
    Validation is done using time series backtesting.

    Parameters
    ----------
    forecaster : ForecasterSarimax
        Forecaster model.
    y : pandas Series
        Training time series. 
    cv : TimeSeriesFold
        TimeSeriesFold object with the information needed to split the data into folds.
        **New in version 0.14.0**
    param_grid : dict
        Dictionary with parameters names (`str`) as keys and lists of parameter
        settings to try as values.
    metric : str, Callable, list
        Metric used to quantify the goodness of fit of the model.

        - If `string`: {'mean_squared_error', 'mean_absolute_error',
        'mean_absolute_percentage_error', 'mean_squared_log_error',
        'mean_absolute_scaled_error', 'root_mean_squared_scaled_error'}
        - If `Callable`: Function with arguments `y_true`, `y_pred` and `y_train`
        (Optional) that returns a float.
        - If `list`: List containing multiple strings and/or Callables.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s. Must have the same
        number of observations as `y` and should be aligned so that y[i] is
        regressed on exog[i].
    return_best : bool, default `True`
        Refit the `forecaster` using the best found parameters on the whole data.
    n_jobs : int, 'auto', default `'auto'`
        The number of jobs to run in parallel. If `-1`, then the number of jobs is 
        set to the number of cores. If 'auto', `n_jobs` is set using the function
        skforecast.utils.select_n_jobs_backtesting.
    verbose : bool, default `True`
        Print number of folds used for cv or backtesting.
    suppress_warnings_fit : bool, default `False`
        If `True`, warnings generated during fitting will be ignored.
    show_progress : bool, default `True`
        Whether to show a progress bar.
    output_file : str, default `None`
        Specifies the filename or full path where the results should be saved. 
        The results will be saved in a tab-separated values (TSV) format. If 
        `None`, the results will not be saved to a file.
        **New in version 0.12.0**

    Returns
    -------
    results : pandas DataFrame
        Results for each combination of parameters.

        - column params: parameters configuration for each iteration.
        - column metric: metric value estimated for each iteration.
        - additional n columns with param = value.

    """

    param_grid = list(ParameterGrid(param_grid))

    results = _evaluate_grid_hyperparameters_sarimax(
        forecaster            = forecaster,
        y                     = y,
        cv                    = cv,
        param_grid            = param_grid,
        metric                = metric,
        exog                  = exog,
        return_best           = return_best,
        n_jobs                = n_jobs,
        verbose               = verbose,
        suppress_warnings_fit = suppress_warnings_fit,
        show_progress         = show_progress,
        output_file           = output_file
    )

    return results

skforecast.model_selection._search.random_search_sarimax

random_search_sarimax(
    forecaster,
    y,
    cv,
    param_distributions,
    metric,
    exog=None,
    n_iter=10,
    random_state=123,
    return_best=True,
    n_jobs="auto",
    verbose=True,
    suppress_warnings_fit=False,
    show_progress=True,
    output_file=None,
)

Random search over specified parameter values or distributions for a Forecaster object. Validation is done using time series backtesting.

Parameters:

Name Type Description Default
forecaster ForecasterSarimax

Forecaster model.

required
y pandas Series

Training time series.

required
cv TimeSeriesFold

TimeSeriesFold object with the information needed to split the data into folds. New in version 0.14.0

required
param_distributions dict

Dictionary with parameters names (str) as keys and distributions or lists of parameters to try.

required
metric (str, Callable, list)

Metric used to quantify the goodness of fit of the model.

  • If string: {'mean_squared_error', 'mean_absolute_error', 'mean_absolute_percentage_error', 'mean_squared_log_error', 'mean_absolute_scaled_error', 'root_mean_squared_scaled_error'}
  • If Callable: Function with arguments y_true, y_pred and y_train (Optional) that returns a float.
  • If list: List containing multiple strings and/or Callables.
required
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s. Must have the same number of observations as y and should be aligned so that y[i] is regressed on exog[i].

`None`
n_iter int

Number of parameter settings that are sampled. n_iter trades off runtime vs quality of the solution.

`10`
random_state int

Sets a seed to the random sampling for reproducible output.

`123`
return_best bool

Refit the forecaster using the best found parameters on the whole data.

`True`
n_jobs (int, auto)

The number of jobs to run in parallel. If -1, then the number of jobs is set to the number of cores. If 'auto', n_jobs is set using the function skforecast.utils.select_n_jobs_backtesting.

`'auto'`
verbose bool

Print number of folds used for cv or backtesting.

`True`
suppress_warnings_fit bool

If True, warnings generated during fitting will be ignored.

`False`
show_progress bool

Whether to show a progress bar.

`True`
output_file str

Specifies the filename or full path where the results should be saved. The results will be saved in a tab-separated values (TSV) format. If None, the results will not be saved to a file. New in version 0.12.0

`None`

Returns:

Name Type Description
results pandas DataFrame

Results for each combination of parameters.

  • column params: parameters configuration for each iteration.
  • column metric: metric value estimated for each iteration.
  • additional n columns with param = value.
Source code in skforecast/model_selection/_search.py
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
def random_search_sarimax(
    forecaster: object,
    y: pd.Series,
    cv: TimeSeriesFold,
    param_distributions: dict,
    metric: Union[str, Callable, list],
    exog: Optional[Union[pd.Series, pd.DataFrame]] = None,
    n_iter: int = 10,
    random_state: int = 123,
    return_best: bool = True,
    n_jobs: Union[int, str] = 'auto',
    verbose: bool = True,
    suppress_warnings_fit: bool = False,
    show_progress: bool = True,
    output_file: Optional[str] = None
) -> pd.DataFrame:
    """
    Random search over specified parameter values or distributions for a Forecaster 
    object. Validation is done using time series backtesting.

    Parameters
    ----------
    forecaster : ForecasterSarimax
        Forecaster model.
    y : pandas Series
        Training time series. 
    cv : TimeSeriesFold
        TimeSeriesFold object with the information needed to split the data into folds.
        **New in version 0.14.0**
    param_distributions : dict
        Dictionary with parameters names (`str`) as keys and 
        distributions or lists of parameters to try.
    metric : str, Callable, list
        Metric used to quantify the goodness of fit of the model.

        - If `string`: {'mean_squared_error', 'mean_absolute_error',
        'mean_absolute_percentage_error', 'mean_squared_log_error',
        'mean_absolute_scaled_error', 'root_mean_squared_scaled_error'}
        - If `Callable`: Function with arguments `y_true`, `y_pred` and `y_train`
        (Optional) that returns a float.
        - If `list`: List containing multiple strings and/or Callables.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s. Must have the same
        number of observations as `y` and should be aligned so that y[i] is
        regressed on exog[i].
    n_iter : int, default `10`
        Number of parameter settings that are sampled. 
        n_iter trades off runtime vs quality of the solution.
    random_state : int, default `123`
        Sets a seed to the random sampling for reproducible output.
    return_best : bool, default `True`
        Refit the `forecaster` using the best found parameters on the whole data.
    n_jobs : int, 'auto', default `'auto'`
        The number of jobs to run in parallel. If `-1`, then the number of jobs is 
        set to the number of cores. If 'auto', `n_jobs` is set using the function
        skforecast.utils.select_n_jobs_backtesting.
    verbose : bool, default `True`
        Print number of folds used for cv or backtesting.
    suppress_warnings_fit : bool, default `False`
        If `True`, warnings generated during fitting will be ignored.
    show_progress : bool, default `True`
        Whether to show a progress bar.
    output_file : str, default `None`
        Specifies the filename or full path where the results should be saved. 
        The results will be saved in a tab-separated values (TSV) format. If 
        `None`, the results will not be saved to a file.
        **New in version 0.12.0**

    Returns
    -------
    results : pandas DataFrame
        Results for each combination of parameters.

        - column params: parameters configuration for each iteration.
        - column metric: metric value estimated for each iteration.
        - additional n columns with param = value.

    """

    param_grid = list(ParameterSampler(param_distributions, n_iter=n_iter, random_state=random_state))

    results = _evaluate_grid_hyperparameters_sarimax(
        forecaster            = forecaster,
        y                     = y,
        cv                    = cv,
        param_grid            = param_grid,
        metric                = metric,
        exog                  = exog,
        return_best           = return_best,
        n_jobs                = n_jobs,
        verbose               = verbose,
        suppress_warnings_fit = suppress_warnings_fit,
        show_progress         = show_progress,
        output_file           = output_file
    )

    return results

skforecast.model_selection._split.BaseFold

BaseFold(
    steps=None,
    initial_train_size=None,
    window_size=None,
    differentiation=None,
    refit=False,
    fixed_train_size=True,
    gap=0,
    skip_folds=None,
    allow_incomplete_fold=True,
    return_all_indexes=False,
    verbose=True,
)

Base class for all Fold classes in skforecast. All fold classes should specify all the parameters that can be set at the class level in their __init__.

Parameters:

Name Type Description Default
steps int

Number of observations used to be predicted in each fold. This is also commonly referred to as the forecast horizon or test size.

`None`
initial_train_size int

Number of observations used for initial training.

`None`
window_size int

Number of observations needed to generate the autoregressive predictors.

`None`
differentiation int

Number of observations to use for differentiation. This is used to extend the last_window as many observations as the differentiation order.

`None`
refit (bool, int)

Whether to refit the forecaster in each fold.

  • If True, the forecaster is refitted in each fold.
  • If False, the forecaster is trained only in the first fold.
  • If an integer, the forecaster is trained in the first fold and then refitted every refit folds.
`False`
fixed_train_size bool

Whether the training size is fixed or increases in each fold.

`True`
gap int

Number of observations between the end of the training set and the start of the test set.

`0`
skip_folds (int, list)

Number of folds to skip.

  • If an integer, every 'skip_folds'-th is returned.
  • If a list, the indexes of the folds to skip.

For example, if skip_folds=3 and there are 10 folds, the returned folds are 0, 3, 6, and 9. If skip_folds=[1, 2, 3], the returned folds are 0, 4, 5, 6, 7, 8, and 9.

`None`
allow_incomplete_fold bool

Whether to allow the last fold to include fewer observations than steps. If False, the last fold is excluded if it is incomplete.

`True`
return_all_indexes bool

Whether to return all indexes or only the start and end indexes of each fold.

`False`
verbose bool

Whether to print information about generated folds.

`True`

Attributes:

Name Type Description
steps int

Number of observations used to be predicted in each fold. This is also commonly referred to as the forecast horizon or test size.

initial_train_size int

Number of observations used for initial training.

window_size int

Number of observations needed to generate the autoregressive predictors.

differentiation int

Number of observations to use for differentiation. This is used to extend the last_window as many observations as the differentiation order.

refit (bool, int)

Whether to refit the forecaster in each fold.

fixed_train_size bool

Whether the training size is fixed or increases in each fold.

gap int

Number of observations between the end of the training set and the start of the test set.

skip_folds (int, list)

Number of folds to skip.

allow_incomplete_fold bool

Whether to allow the last fold to include fewer observations than steps.

return_all_indexes bool

Whether to return all indexes or only the start and end indexes of each fold.

verbose bool

Whether to print information about generated folds.

Source code in skforecast/model_selection/_split.py
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
def __init__(
    self,
    steps: Optional[int] = None,
    initial_train_size: Optional[int] = None,
    window_size: Optional[int] = None,
    differentiation: Optional[int] = None,
    refit: Union[bool, int] = False,
    fixed_train_size: bool = True,
    gap: int = 0,
    skip_folds: Optional[Union[int, list]] = None,
    allow_incomplete_fold: bool = True,
    return_all_indexes: bool = False,
    verbose: bool = True
) -> None:

    self._validate_params(
        cv_name               = type(self).__name__,
        steps                 = steps,
        initial_train_size    = initial_train_size,
        window_size           = window_size,
        differentiation       = differentiation,
        refit                 = refit,
        fixed_train_size      = fixed_train_size,
        gap                   = gap,
        skip_folds            = skip_folds,
        allow_incomplete_fold = allow_incomplete_fold,
        return_all_indexes    = return_all_indexes,
        verbose               = verbose
    )

    self.steps                 = steps
    self.initial_train_size    = initial_train_size
    self.window_size           = window_size
    self.differentiation       = differentiation
    self.refit                 = refit
    self.fixed_train_size      = fixed_train_size
    self.gap                   = gap
    self.skip_folds            = skip_folds
    self.allow_incomplete_fold = allow_incomplete_fold
    self.return_all_indexes    = return_all_indexes
    self.verbose               = verbose

_validate_params

_validate_params(
    cv_name,
    steps=None,
    initial_train_size=None,
    window_size=None,
    differentiation=None,
    refit=False,
    fixed_train_size=True,
    gap=0,
    skip_folds=None,
    allow_incomplete_fold=True,
    return_all_indexes=False,
    verbose=True,
)

Validate all input parameters to ensure correctness.

Source code in skforecast/model_selection/_split.py
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
def _validate_params(
    self,
    cv_name: str,
    steps: Optional[int] = None,
    initial_train_size: Optional[int] = None,
    window_size: Optional[int] = None,
    differentiation: Optional[int] = None,
    refit: Union[bool, int] = False,
    fixed_train_size: bool = True,
    gap: int = 0,
    skip_folds: Optional[Union[int, list]] = None,
    allow_incomplete_fold: bool = True,
    return_all_indexes: bool = False,
    verbose: bool = True
) -> None: 
    """
    Validate all input parameters to ensure correctness.
    """

    if cv_name == "TimeSeriesFold":
        if not isinstance(steps, (int, np.integer)) or steps < 1:
            raise ValueError(
                f"`steps` must be an integer greater than 0. Got {steps}."
            )
        if not isinstance(initial_train_size, (int, np.integer, type(None))):
            raise ValueError(
                f"`initial_train_size` must be an integer greater than 0 or None. "
                f"Got {initial_train_size}."
            )
        if initial_train_size is not None and initial_train_size < 1:
            raise ValueError(
                f"`initial_train_size` must be an integer greater than 0 or None. "
                f"Got {initial_train_size}."
            )
        if not isinstance(refit, (bool, int, np.integer)):
            raise TypeError(
                f"`refit` must be a boolean or an integer equal or greater than 0. "
                f"Got {refit}."
            )
        if isinstance(refit, (int, np.integer)) and not isinstance(refit, bool) and refit < 0:
            raise TypeError(
                f"`refit` must be a boolean or an integer equal or greater than 0. "
                f"Got {refit}."
            )
        if not isinstance(fixed_train_size, bool):
            raise TypeError(
                f"`fixed_train_size` must be a boolean: `True`, `False`. "
                f"Got {fixed_train_size}."
            )
        if not isinstance(gap, (int, np.integer)) or gap < 0:
            raise ValueError(
                f"`gap` must be an integer greater than or equal to 0. Got {gap}."
            )
        if skip_folds is not None:
            if not isinstance(skip_folds, (int, np.integer, list, type(None))):
                raise TypeError(
                    f"`skip_folds` must be an integer greater than 0, a list of "
                    f"integers or `None`. Got {skip_folds}."
                )
            if isinstance(skip_folds, (int, np.integer)) and skip_folds < 1:
                raise ValueError(
                    f"`skip_folds` must be an integer greater than 0, a list of "
                    f"integers or `None`. Got {skip_folds}."
                )
            if isinstance(skip_folds, list) and any([x < 1 for x in skip_folds]):
                raise ValueError(
                    f"`skip_folds` list must contain integers greater than or "
                    f"equal to 1. The first fold is always needed to train the "
                    f"forecaster. Got {skip_folds}."
                ) 
        if not isinstance(allow_incomplete_fold, bool):
            raise TypeError(
                f"`allow_incomplete_fold` must be a boolean: `True`, `False`. "
                f"Got {allow_incomplete_fold}."
            )

    if cv_name == "OneStepAheadFold":
        if (
            not isinstance(initial_train_size, (int, np.integer))
            or initial_train_size < 1
        ):
            raise ValueError(
                f"`initial_train_size` must be an integer greater than 0. "
                f"Got {initial_train_size}."
            )

    if (
        not isinstance(window_size, (int, np.integer, pd.DateOffset, type(None)))
        or isinstance(window_size, (int, np.integer))
        and window_size < 1
    ):
        raise ValueError(
            f"`window_size` must be an integer greater than 0. Got {window_size}."
        )

    if not isinstance(return_all_indexes, bool):
        raise TypeError(
            f"`return_all_indexes` must be a boolean: `True`, `False`. "
            f"Got {return_all_indexes}."
        )
    if differentiation is not None:
        if not isinstance(differentiation, (int, np.integer)) or differentiation < 0:
            raise ValueError(
                f"`differentiation` must be None or an integer greater than or "
                f"equal to 0. Got {differentiation}."
            )
    if not isinstance(verbose, bool):
        raise TypeError(
            f"`verbose` must be a boolean: `True`, `False`. "
            f"Got {verbose}."
        )

_extract_index

_extract_index(X)

Extracts and returns the index from the input data X.

Parameters:

Name Type Description Default
X pandas Series, pandas DataFrame, pandas Index, dict

Time series data or index to split.

required

Returns:

Name Type Description
idx pandas Index

Index extracted from the input data.

Source code in skforecast/model_selection/_split.py
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
def _extract_index(
    self,
    X: Union[pd.Series, pd.DataFrame, pd.Index, dict]
) -> pd.Index:
    """
    Extracts and returns the index from the input data X.

    Parameters
    ----------
    X : pandas Series, pandas DataFrame, pandas Index, dict
        Time series data or index to split.

    Returns
    -------
    idx : pandas Index
        Index extracted from the input data.

    """

    if isinstance(X, (pd.Series, pd.DataFrame)):
        idx = X.index
    elif isinstance(X, dict):
        freqs = [s.index.freq for s in X.values() if s.index.freq is not None]
        if not freqs:
            raise ValueError("At least one series must have a frequency.")
        if not all(f == freqs[0] for f in freqs):
            raise ValueError(
                "All series with frequency must have the same frequency."
            )
        min_idx = min([v.index[0] for v in X.values()])
        max_idx = max([v.index[-1] for v in X.values()])
        idx = pd.date_range(start=min_idx, end=max_idx, freq=freqs[0])
    else:
        idx = X

    return idx

set_params

set_params(params)

Set the parameters of the Fold object. Before overwriting the current parameters, the input parameters are validated to ensure correctness.

Parameters:

Name Type Description Default
params dict

Dictionary with the parameters to set.

required

Returns:

Type Description
None
Source code in skforecast/model_selection/_split.py
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
def set_params(
    self, 
    params: dict
) -> None:
    """
    Set the parameters of the Fold object. Before overwriting the current 
    parameters, the input parameters are validated to ensure correctness.

    Parameters
    ----------
    params : dict
        Dictionary with the parameters to set.

    Returns
    -------
    None

    """

    if not isinstance(params, dict):
        raise TypeError(
            f"`params` must be a dictionary. Got {type(params)}."
        )

    current_params = deepcopy(vars(self))
    unknown_params = set(params.keys()) - set(current_params.keys())
    if unknown_params:
        warnings.warn(
            f"Unknown parameters: {unknown_params}. They have been ignored.",
            IgnoredArgumentWarning
        )

    filtered_params = {k: v for k, v in params.items() if k in current_params}
    updated_params = {'cv_name': type(self).__name__, **current_params, **filtered_params}

    self._validate_params(**updated_params)
    for key, value in updated_params.items():
        setattr(self, key, value)

skforecast.model_selection._split.TimeSeriesFold

TimeSeriesFold(
    steps,
    initial_train_size=None,
    window_size=None,
    differentiation=None,
    refit=False,
    fixed_train_size=True,
    gap=0,
    skip_folds=None,
    allow_incomplete_fold=True,
    return_all_indexes=False,
    verbose=True,
)

Bases: BaseFold

Class to split time series data into train and test folds. When used within a backtesting or hyperparameter search, the arguments 'initial_train_size', 'window_size' and 'differentiation' are not required as they are automatically set by the backtesting or hyperparameter search functions.

Parameters:

Name Type Description Default
steps int

Number of observations used to be predicted in each fold. This is also commonly referred to as the forecast horizon or test size.

required
initial_train_size int

Number of observations used for initial training. If None or 0, the initial forecaster is not trained in the first fold.

`None`
window_size int

Number of observations needed to generate the autoregressive predictors.

`None`
differentiation int

Number of observations to use for differentiation. This is used to extend the last_window as many observations as the differentiation order.

`None`
refit (bool, int)

Whether to refit the forecaster in each fold.

  • If True, the forecaster is refitted in each fold.
  • If False, the forecaster is trained only in the first fold.
  • If an integer, the forecaster is trained in the first fold and then refitted every refit folds.
`False`
fixed_train_size bool

Whether the training size is fixed or increases in each fold.

`True`
gap int

Number of observations between the end of the training set and the start of the test set.

`0`
skip_folds (int, list)

Number of folds to skip.

  • If an integer, every 'skip_folds'-th is returned.
  • If a list, the indexes of the folds to skip.

For example, if skip_folds=3 and there are 10 folds, the returned folds are 0, 3, 6, and 9. If skip_folds=[1, 2, 3], the returned folds are 0, 4, 5, 6, 7, 8, and 9.

`None`
allow_incomplete_fold bool

Whether to allow the last fold to include fewer observations than steps. If False, the last fold is excluded if it is incomplete.

`True`
return_all_indexes bool

Whether to return all indexes or only the start and end indexes of each fold.

`False`
verbose bool

Whether to print information about generated folds.

`True`

Attributes:

Name Type Description
steps int

Number of observations used to be predicted in each fold. This is also commonly referred to as the forecast horizon or test size.

initial_train_size int

Number of observations used for initial training. If None or 0, the initial forecaster is not trained in the first fold.

window_size int

Number of observations needed to generate the autoregressive predictors.

differentiation int

Number of observations to use for differentiation. This is used to extend the last_window as many observations as the differentiation order.

refit (bool, int)

Whether to refit the forecaster in each fold.

fixed_train_size bool

Whether the training size is fixed or increases in each fold.

gap int

Number of observations between the end of the training set and the start of the test set.

skip_folds (int, list)

Number of folds to skip.

allow_incomplete_fold bool

Whether to allow the last fold to include fewer observations than steps.

return_all_indexes bool

Whether to return all indexes or only the start and end indexes of each fold.

verbose bool

Whether to print information about generated folds.

Notes

Returned values are the positions of the observations and not the actual values of the index, so they can be used to slice the data directly using iloc. For example, if the input series is X = [10, 11, 12, 13, 14, 15, 16, 17, 18, 19], the initial_train_size = 3, window_size = 2, steps = 4, and gap = 1, the output of the first fold will: [[0, 3], [1, 3], [3, 8], [4, 8], True].

The first list [0, 3] indicates that the training set goes from the first to the third observation. The second list [1, 3] indicates that the last window seen by the forecaster during training goes from the second to the third observation. The third list [3, 8] indicates that the test set goes from the fourth to the eighth observation. The fourth list [4, 8] indicates that the test set including the gap goes from the fifth to the eighth observation. The boolean False indicates that the forecaster should not be trained in this fold.

Following the python convention, the start index is inclusive and the end index is exclusive. This means that the last index is not included in the slice.

Source code in skforecast/model_selection/_split.py
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
def __init__(
    self,
    steps: int,
    initial_train_size: Optional[int] = None,
    window_size: Optional[int] = None,
    differentiation: Optional[int] = None,
    refit: Union[bool, int] = False,
    fixed_train_size: bool = True,
    gap: int = 0,
    skip_folds: Optional[Union[int, list]] = None,
    allow_incomplete_fold: bool = True,
    return_all_indexes: bool = False,
    verbose: bool = True
) -> None:

    super().__init__(
        steps                 = steps,
        initial_train_size    = initial_train_size,
        window_size           = window_size,
        differentiation       = differentiation,
        refit                 = refit,
        fixed_train_size      = fixed_train_size,
        gap                   = gap,
        skip_folds            = skip_folds,
        allow_incomplete_fold = allow_incomplete_fold,
        return_all_indexes    = return_all_indexes,
        verbose               = verbose
    )

split

split(X, as_pandas=False)

Split the time series data into train and test folds.

Parameters:

Name Type Description Default
X pandas Series, pandas DataFrame, pandas Index, dict

Time series data or index to split.

required
as_pandas bool

If True, the folds are returned as a DataFrame. This is useful to visualize the folds in a more interpretable way.

`False`

Returns:

Name Type Description
folds list, pandas DataFrame

A list of lists containing the indices (position) for for each fold. Each list contains 4 lists and a boolean with the following information:

  • [train_start, train_end]: list with the start and end positions of the training set.
  • [last_window_start, last_window_end]: list with the start and end positions of the last window seen by the forecaster during training. The last window is used to generate the lags use as predictors. If differentiation is included, the interval is extended as many observations as the differentiation order. If the argument window_size is None, this list is empty.
  • [test_start, test_end]: list with the start and end positions of the test set. These are the observations used to evaluate the forecaster.
  • [test_start_with_gap, test_end_with_gap]: list with the start and end positions of the test set including the gap. The gap is the number of observations between the end of the training set and the start of the test set.
  • fit_forecaster: boolean indicating whether the forecaster should be fitted in this fold.

It is important to note that the returned values are the positions of the observations and not the actual values of the index, so they can be used to slice the data directly using iloc.

If as_pandas is True, the folds are returned as a DataFrame with the following columns: 'fold', 'train_start', 'train_end', 'last_window_start', 'last_window_end', 'test_start', 'test_end', 'test_start_with_gap', 'test_end_with_gap', 'fit_forecaster'.

Following the python convention, the start index is inclusive and the end index is exclusive. This means that the last index is not included in the slice.

Source code in skforecast/model_selection/_split.py
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
def split(
    self,
    X: Union[pd.Series, pd.DataFrame, pd.Index, dict],
    as_pandas: bool = False
) -> Union[list, pd.DataFrame]:
    """
    Split the time series data into train and test folds.

    Parameters
    ----------
    X : pandas Series, pandas DataFrame, pandas Index, dict
        Time series data or index to split.
    as_pandas : bool, default `False`
        If True, the folds are returned as a DataFrame. This is useful to visualize
        the folds in a more interpretable way.

    Returns
    -------
    folds : list, pandas DataFrame
        A list of lists containing the indices (position) for for each fold. Each list
        contains 4 lists and a boolean with the following information:

        - [train_start, train_end]: list with the start and end positions of the
        training set.
        - [last_window_start, last_window_end]: list with the start and end positions
        of the last window seen by the forecaster during training. The last window
        is used to generate the lags use as predictors. If `differentiation` is
        included, the interval is extended as many observations as the
        differentiation order. If the argument `window_size` is `None`, this list is
        empty.
        - [test_start, test_end]: list with the start and end positions of the test
        set. These are the observations used to evaluate the forecaster.
        - [test_start_with_gap, test_end_with_gap]: list with the start and end
        positions of the test set including the gap. The gap is the number of
        observations between the end of the training set and the start of the test
        set.
        - fit_forecaster: boolean indicating whether the forecaster should be fitted
        in this fold.

        It is important to note that the returned values are the positions of the
        observations and not the actual values of the index, so they can be used to
        slice the data directly using iloc.

        If `as_pandas` is `True`, the folds are returned as a DataFrame with the
        following columns: 'fold', 'train_start', 'train_end', 'last_window_start',
        'last_window_end', 'test_start', 'test_end', 'test_start_with_gap',
        'test_end_with_gap', 'fit_forecaster'.

        Following the python convention, the start index is inclusive and the end
        index is exclusive. This means that the last index is not included in the
        slice.

    """

    if not isinstance(X, (pd.Series, pd.DataFrame, pd.Index, dict)):
        raise TypeError(
            f"X must be a pandas Series, DataFrame, Index or a dictionary. "
            f"Got {type(X)}."
        )

    if isinstance(self.window_size, pd.tseries.offsets.DateOffset):
        # Calculate the window_size in steps. This is not a exact calculation
        # because the offset follows the calendar rules and the distance between
        # two dates may not be constant.
        first_valid_index = X.index[-1] - self.window_size
        try:
            window_size_idx_start = X.index.get_loc(first_valid_index)
            window_size_idx_end = X.index.get_loc(X.index[-1])
            self.window_size = window_size_idx_end - window_size_idx_start
        except KeyError:
            raise ValueError(
                f"The length of `X` ({len(X)}), must be greater than or equal "
                f"to the window size ({self.window_size}). Try to decrease the "
                f"size of the offset (forecaster.offset), or increase the "
                f"size of `y`."
            )

    if self.initial_train_size is None:
        if self.window_size is None:
            raise ValueError(
                "To use split method when `initial_train_size` is None, "
                "`window_size` must be an integer greater than 0. "
                "Although no initial training is done and all data is used to "
                "evaluate the model, the first `window_size` observations are "
                "needed to create the initial predictors. Got `window_size` = None."
            )
        if self.refit:
            raise ValueError(
                "`refit` is only allowed when `initial_train_size` is not `None`. "
                "Set `refit` to `False` if you want to use `initial_train_size = None`."
            )
        externally_fitted = True
        self.initial_train_size = self.window_size  # Reset to None later
    else:
        if self.window_size is None:
            warnings.warn(
                "Last window cannot be calculated because `window_size` is None."
            )
        externally_fitted = False

    index = self._extract_index(X)
    idx = range(len(index))
    folds = []
    i = 0
    last_fold_excluded = False

    if len(index) < self.initial_train_size + self.steps:
        raise ValueError(
            f"The time series must have at least `initial_train_size + steps` "
            f"observations. Got {len(index)} observations."
        )

    while self.initial_train_size + (i * self.steps) + self.gap < len(index):

        if self.refit:
            # If `fixed_train_size` the train size doesn't increase but moves by 
            # `steps` positions in each iteration. If `False`, the train size
            # increases by `steps` in each iteration.
            train_iloc_start = i * (self.steps) if self.fixed_train_size else 0
            train_iloc_end = self.initial_train_size + i * (self.steps)
            test_iloc_start = train_iloc_end
        else:
            # The train size doesn't increase and doesn't move.
            train_iloc_start = 0
            train_iloc_end = self.initial_train_size
            test_iloc_start = self.initial_train_size + i * (self.steps)

        if self.window_size is not None:
            last_window_iloc_start = test_iloc_start - self.window_size
        test_iloc_end = test_iloc_start + self.gap + self.steps

        partitions = [
            idx[train_iloc_start : train_iloc_end],
            idx[last_window_iloc_start : test_iloc_start] if self.window_size is not None else [],
            idx[test_iloc_start : test_iloc_end],
            idx[test_iloc_start + self.gap : test_iloc_end]
        ]
        folds.append(partitions)
        i += 1

    if not self.allow_incomplete_fold and len(folds[-1][3]) < self.steps:
        folds = folds[:-1]
        last_fold_excluded = True

    # Replace partitions inside folds with length 0 with `None`
    folds = [
        [partition if len(partition) > 0 else None for partition in fold] 
         for fold in folds
    ]

    # Create a flag to know whether to train the forecaster
    if self.refit == 0:
        self.refit = False

    if isinstance(self.refit, bool):
        fit_forecaster = [self.refit] * len(folds)
        fit_forecaster[0] = True
    else:
        fit_forecaster = [False] * len(folds)
        for i in range(0, len(fit_forecaster), self.refit): 
            fit_forecaster[i] = True

    for i in range(len(folds)): 
        folds[i].append(fit_forecaster[i])
        if fit_forecaster[i] is False:
            folds[i][0] = folds[i - 1][0]

    index_to_skip = []
    if self.skip_folds is not None:
        if isinstance(self.skip_folds, (int, np.integer)) and self.skip_folds > 0:
            index_to_keep = np.arange(0, len(folds), self.skip_folds)
            index_to_skip = np.setdiff1d(np.arange(0, len(folds)), index_to_keep, assume_unique=True)
            index_to_skip = [int(x) for x in index_to_skip]  # Required since numpy 2.0
        if isinstance(self.skip_folds, list):
            index_to_skip = [i for i in self.skip_folds if i < len(folds)]        

    if self.verbose:
        self._print_info(
            index              = index,
            folds              = folds,
            externally_fitted  = externally_fitted,
            last_fold_excluded = last_fold_excluded,
            index_to_skip      = index_to_skip
        )

    folds = [fold for i, fold in enumerate(folds) if i not in index_to_skip]
    if not self.return_all_indexes:
        # +1 to prevent iloc pandas from deleting the last observation
        folds = [
            [[fold[0][0], fold[0][-1] + 1], 
             [fold[1][0], fold[1][-1] + 1] if self.window_size is not None else [],
             [fold[2][0], fold[2][-1] + 1],
             [fold[3][0], fold[3][-1] + 1],
             fold[4]] 
            for fold in folds
        ]

    if externally_fitted:
        self.initial_train_size = None
        folds[0][4] = False

    if as_pandas:
        if self.window_size is None:
            for fold in folds:
                fold[1] = [None, None]

        if not self.return_all_indexes:
            folds = pd.DataFrame(
                data = [list(itertools.chain(*fold[:-1])) + [fold[-1]] for fold in folds],
                columns = [
                    'train_start',
                    'train_end',
                    'last_window_start',
                    'last_window_end',
                    'test_start',
                    'test_end',
                    'test_start_with_gap',
                    'test_end_with_gap',
                    'fit_forecaster'
                ],
            )
        else:
            folds = pd.DataFrame(
                data = folds,
                columns = [
                    'train_index',
                    'last_window_index',
                    'test_index',
                    'test_index_with_gap',
                    'fit_forecaster'
                ],
            )
        folds.insert(0, 'fold', range(len(folds)))

    return folds

_print_info

_print_info(
    index,
    folds,
    externally_fitted,
    last_fold_excluded,
    index_to_skip,
)

Print information about folds.

Source code in skforecast/model_selection/_split.py
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
def _print_info(
    self,
    index: pd.Index,
    folds: list,
    externally_fitted: bool,
    last_fold_excluded: bool,
    index_to_skip: list,
) -> None:
    """
    Print information about folds.
    """

    print("Information of folds")
    print("--------------------")
    if externally_fitted:
        print(
            f"An already trained forecaster is to be used. Window size: "
            f"{self.window_size}"
        )
    else:
        if self.differentiation is None:
            print(
                f"Number of observations used for initial training: "
                f"{self.initial_train_size}"
            )
        else:
            print(
                f"Number of observations used for initial training: "
                f"{self.initial_train_size - self.differentiation}"
            )
            print(
                f"    First {self.differentiation} observation/s in training sets "
                f"are used for differentiation"
            )
    print(
        f"Number of observations used for backtesting: "
        f"{len(index) - self.initial_train_size}"
    )
    print(f"    Number of folds: {len(folds)}")
    print(
        f"    Number skipped folds: "
        f"{len(index_to_skip)} {index_to_skip if index_to_skip else ''}"
    )
    print(f"    Number of steps per fold: {self.steps}")
    print(
        f"    Number of steps to exclude between last observed data "
        f"(last window) and predictions (gap): {self.gap}"
    )
    if last_fold_excluded:
        print("    Last fold has been excluded because it was incomplete.")
    if len(folds[-1][3]) < self.steps:
        print(f"    Last fold only includes {len(folds[-1][3])} observations.")
    print("")

    if self.differentiation is None:
        differentiation = 0
    else:
        differentiation = self.differentiation

    for i, fold in enumerate(folds):
        is_fold_skipped   = i in index_to_skip
        has_training      = fold[-1] if i != 0 else True
        training_start    = (
            index[fold[0][0] + differentiation] if fold[0] is not None else None
        )
        training_end      = index[fold[0][-1]] if fold[0] is not None else None
        training_length   = (
            len(fold[0]) - differentiation if fold[0] is not None else 0
        )
        validation_start  = index[fold[3][0]]
        validation_end    = index[fold[3][-1]]
        validation_length = len(fold[3])

        print(f"Fold: {i}")
        if is_fold_skipped:
            print("    Fold skipped")
        elif not externally_fitted and has_training:
            print(
                f"    Training:   {training_start} -- {training_end}  "
                f"(n={training_length})"
            )
            print(
                f"    Validation: {validation_start} -- {validation_end}  "
                f"(n={validation_length})"
            )
        else:
            print("    Training:   No training in this fold")
            print(
                f"    Validation: {validation_start} -- {validation_end}  "
                f"(n={validation_length})"
            )

    print("")

skforecast.model_selection._split.OneStepAheadFold

OneStepAheadFold(
    initial_train_size,
    window_size=None,
    differentiation=None,
    return_all_indexes=False,
    verbose=True,
)

Bases: BaseFold

Class to split time series data into train and test folds for one-step-ahead forecasting.

Parameters:

Name Type Description Default
initial_train_size int

Number of observations used for initial training.

required
window_size int

Number of observations needed to generate the autoregressive predictors.

`None`
differentiation int

Number of observations to use for differentiation. This is used to extend the last_window as many observations as the differentiation order.

`None`
return_all_indexes bool

Whether to return all indexes or only the start and end indexes of each fold.

`False`
verbose bool

Whether to print information about generated folds.

`True`

Attributes:

Name Type Description
initial_train_size int

Number of observations used for initial training.

window_size int

Number of observations needed to generate the autoregressive predictors.

differentiation int

Number of observations to use for differentiation. This is used to extend the last_window as many observations as the differentiation order.

return_all_indexes bool

Whether to return all indexes or only the start and end indexes of each fold.

verbose bool

Whether to print information about generated folds.

steps Any

This attribute is not used in this class. It is included for API consistency.

fixed_train_size Any

This attribute is not used in this class. It is included for API consistency.

gap Any

This attribute is not used in this class. It is included for API consistency.

skip_folds Any

This attribute is not used in this class. It is included for API consistency.

allow_incomplete_fold Any

This attribute is not used in this class. It is included for API consistency.

refit Any

This attribute is not used in this class. It is included for API consistency.

Source code in skforecast/model_selection/_split.py
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
def __init__(
    self,
    initial_train_size: int,
    window_size: Optional[int] = None,
    differentiation: Optional[int] = None,
    return_all_indexes: bool = False,
    verbose: bool = True,
) -> None:

    super().__init__(
        initial_train_size = initial_train_size,
        window_size        = window_size,
        differentiation    = differentiation,
        return_all_indexes = return_all_indexes,
        verbose            = verbose
    )

split

split(X, as_pandas=False, externally_fitted=None)

Split the time series data into train and test folds.

Parameters:

Name Type Description Default
X pandas Series, DataFrame, Index, or dictionary

Time series data or index to split.

required
as_pandas bool

If True, the folds are returned as a DataFrame. This is useful to visualize the folds in a more interpretable way.

`False`
externally_fitted Any

This argument is not used in this class. It is included for API consistency.

None

Returns:

Name Type Description
fold list, pandas DataFrame

A list of lists containing the indices (position) for for each fold. Each list contains 2 lists the following information:

  • [train_start, train_end]: list with the start and end positions of the training set.
  • [test_start, test_end]: list with the start and end positions of the test set. These are the observations used to evaluate the forecaster.

It is important to note that the returned values are the positions of the observations and not the actual values of the index, so they can be used to slice the data directly using iloc.

If as_pandas is True, the folds are returned as a DataFrame with the following columns: 'fold', 'train_start', 'train_end', 'test_start', 'test_end'.

Following the python convention, the start index is inclusive and the end index is exclusive. This means that the last index is not included in the slice.

Source code in skforecast/model_selection/_split.py
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
def split(
    self,
    X: Union[pd.Series, pd.DataFrame, pd.Index, dict],
    as_pandas: bool = False,
    externally_fitted: Any = None
) -> Union[list, pd.DataFrame]:
    """
    Split the time series data into train and test folds.

    Parameters
    ----------
    X : pandas Series, DataFrame, Index, or dictionary
        Time series data or index to split.
    as_pandas : bool, default `False`
        If True, the folds are returned as a DataFrame. This is useful to visualize
        the folds in a more interpretable way.
    externally_fitted : Any
        This argument is not used in this class. It is included for API consistency.

    Returns
    -------
    fold : list, pandas DataFrame
        A list of lists containing the indices (position) for for each fold. Each list
        contains 2 lists the following information:

        - [train_start, train_end]: list with the start and end positions of the
        training set.
        - [test_start, test_end]: list with the start and end positions of the test
        set. These are the observations used to evaluate the forecaster.

        It is important to note that the returned values are the positions of the
        observations and not the actual values of the index, so they can be used to
        slice the data directly using iloc.

        If `as_pandas` is `True`, the folds are returned as a DataFrame with the
        following columns: 'fold', 'train_start', 'train_end', 'test_start', 'test_end'.

        Following the python convention, the start index is inclusive and the end
        index is exclusive. This means that the last index is not included in the
        slice.

    """

    if not isinstance(X, (pd.Series, pd.DataFrame, pd.Index, dict)):
        raise TypeError(
            f"X must be a pandas Series, DataFrame, Index or a dictionary. "
            f"Got {type(X)}."
        )

    index = self._extract_index(X)
    fold = [
        [0, self.initial_train_size],
        [self.initial_train_size, len(X)],
        True
    ]

    if self.verbose:
        self._print_info(
            index = index,
            fold = fold,
        )

    if self.return_all_indexes:
        fold = [
            [range(fold[0][0], fold[0][1])],
            [range(fold[1][0], fold[1][1])],
            fold[2]
        ]

    if as_pandas:
        if not self.return_all_indexes:
            fold = pd.DataFrame(
                data = [list(itertools.chain(*fold[:-1])) + [fold[-1]]],
                columns = [
                    'train_start',
                    'train_end',
                    'test_start',
                    'test_end',
                    'fit_forecaster'
                ],
            )
        else:
            fold = pd.DataFrame(
                data = [fold],
                columns = [
                    'train_index',
                    'test_index',
                    'fit_forecaster'
                ],
            )
        fold.insert(0, 'fold', range(len(fold)))

    return fold

_print_info

_print_info(index, fold)

Print information about folds.

Source code in skforecast/model_selection/_split.py
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
def _print_info(
    self,
    index: pd.Index,
    fold: list,
) -> None:
    """
    Print information about folds.
    """

    if self.differentiation is None:
        differentiation = 0
    else:
        differentiation = self.differentiation

    initial_train_size = self.initial_train_size - differentiation
    test_length = len(index) - (initial_train_size + differentiation)

    print("Information of folds")
    print("--------------------")
    print(
        f"Number of observations in train: {initial_train_size}"
    )
    if self.differentiation is not None:
        print(
            f"    First {differentiation} observation/s in training set "
            f"are used for differentiation"
        )
    print(
        f"Number of observations in test: {test_length}"
    )

    training_start = index[fold[0][0] + differentiation]
    training_end = index[fold[0][-1]]
    test_start  = index[fold[1][0]]
    test_end    = index[fold[1][-1] - 1]

    print(
        f"Training : {training_start} -- {training_end} (n={initial_train_size})"
    )
    print(
        f"Test     : {test_start} -- {test_end} (n={test_length})"
    )
    print("")

skforecast.model_selection._utils.initialize_lags_grid

initialize_lags_grid(forecaster, lags_grid=None)

Initialize lags grid and lags label for model selection.

Parameters:

Name Type Description Default
forecaster Forecaster

Forecaster model. ForecasterRecursive, ForecasterDirect, ForecasterRecursiveMultiSeries, ForecasterDirectMultiVariate.

required
lags_grid (list, dict)

Lists of lags to try, containing int, lists, numpy ndarray, or range objects. If dict, the keys are used as labels in the results DataFrame, and the values are used as the lists of lags to try.

`None`

Returns:

Name Type Description
lags_grid dict

Dictionary with lags configuration for each iteration.

lags_label str

Label for lags representation in the results object.

Source code in skforecast/model_selection/_utils.py
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
def initialize_lags_grid(
    forecaster: object, 
    lags_grid: Optional[Union[list, dict]] = None
) -> Tuple[dict, str]:
    """
    Initialize lags grid and lags label for model selection. 

    Parameters
    ----------
    forecaster : Forecaster
        Forecaster model. ForecasterRecursive, ForecasterDirect, 
        ForecasterRecursiveMultiSeries, ForecasterDirectMultiVariate.
    lags_grid : list, dict, default `None`
        Lists of lags to try, containing int, lists, numpy ndarray, or range 
        objects. If `dict`, the keys are used as labels in the `results` 
        DataFrame, and the values are used as the lists of lags to try.

    Returns
    -------
    lags_grid : dict
        Dictionary with lags configuration for each iteration.
    lags_label : str
        Label for lags representation in the results object.

    """

    if not isinstance(lags_grid, (list, dict, type(None))):
        raise TypeError(
            (f"`lags_grid` argument must be a list, dict or None. "
             f"Got {type(lags_grid)}.")
        )

    lags_label = 'values'
    if isinstance(lags_grid, list):
        lags_grid = {f'{lags}': lags for lags in lags_grid}
    elif lags_grid is None:
        lags = [int(lag) for lag in forecaster.lags]  # Required since numpy 2.0
        lags_grid = {f'{lags}': lags}
    else:
        lags_label = 'keys'

    return lags_grid, lags_label

skforecast.model_selection._utils.check_backtesting_input

check_backtesting_input(
    forecaster,
    cv,
    metric,
    add_aggregated_metric=True,
    y=None,
    series=None,
    exog=None,
    interval=None,
    alpha=None,
    n_boot=250,
    random_state=123,
    use_in_sample_residuals=True,
    use_binned_residuals=False,
    n_jobs="auto",
    show_progress=True,
    suppress_warnings=False,
    suppress_warnings_fit=False,
)

This is a helper function to check most inputs of backtesting functions in modules model_selection.

Parameters:

Name Type Description Default
forecaster Forecaster

Forecaster model.

required
cv TimeSeriesFold

TimeSeriesFold object with the information needed to split the data into folds.

required
metric (str, Callable, list)

Metric used to quantify the goodness of fit of the model.

required
add_aggregated_metric bool

If True, the aggregated metrics (average, weighted average and pooling) over all levels are also returned (only multiseries).

`True`
y pandas Series

Training time series for uni-series forecasters.

`None`
series pandas DataFrame, dict

Training time series for multi-series forecasters.

`None`
exog pandas Series, pandas DataFrame, dict

Exogenous variables.

`None`
interval list

Confidence of the prediction interval estimated. Sequence of percentiles to compute, which must be between 0 and 100 inclusive.

`None`
alpha float

The confidence intervals used in ForecasterSarimax are (1 - alpha) %.

`None`
n_boot int

Number of bootstrapping iterations used to estimate prediction intervals.

`250`
random_state int

Sets a seed to the random generator, so that boot intervals are always deterministic.

`123`
use_in_sample_residuals bool

If True, residuals from the training data are used as proxy of prediction error to create prediction intervals. If False, out_sample_residuals are used if they are already stored inside the forecaster.

`True`
use_binned_residuals bool

If True, residuals used in each bootstrapping iteration are selected conditioning on the predicted values. If False, residuals are selected randomly without conditioning on the predicted values.

`False`
n_jobs (int, auto)

The number of jobs to run in parallel. If -1, then the number of jobs is set to the number of cores. If 'auto', n_jobs is set using the fuction skforecast.utils.select_n_jobs_fit_forecaster. New in version 0.9.0

`'auto'`
show_progress bool

Whether to show a progress bar.

`True`
suppress_warnings bool

If True, skforecast warnings will be suppressed during the backtesting process. See skforecast.exceptions.warn_skforecast_categories for more information.

False
suppress_warnings_fit bool

If True, warnings generated during fitting will be ignored. Only ForecasterSarimax.

`False`

Returns:

Type Description
None
Source code in skforecast/model_selection/_utils.py
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
def check_backtesting_input(
    forecaster: object,
    cv: object,
    metric: Union[str, Callable, list],
    add_aggregated_metric: bool = True,
    y: Optional[pd.Series] = None,
    series: Optional[Union[pd.DataFrame, dict]] = None,
    exog: Optional[Union[pd.Series, pd.DataFrame, dict]] = None,
    interval: Optional[list] = None,
    alpha: Optional[float] = None,
    n_boot: int = 250,
    random_state: int = 123,
    use_in_sample_residuals: bool = True,
    use_binned_residuals: bool = False,
    n_jobs: Union[int, str] = 'auto',
    show_progress: bool = True,
    suppress_warnings: bool = False,
    suppress_warnings_fit: bool = False
) -> None:
    """
    This is a helper function to check most inputs of backtesting functions in 
    modules `model_selection`.

    Parameters
    ----------
    forecaster : Forecaster
        Forecaster model.
    cv : TimeSeriesFold
        TimeSeriesFold object with the information needed to split the data into folds.
    metric : str, Callable, list
        Metric used to quantify the goodness of fit of the model.
    add_aggregated_metric : bool, default `True`
        If `True`, the aggregated metrics (average, weighted average and pooling)
        over all levels are also returned (only multiseries).
    y : pandas Series, default `None`
        Training time series for uni-series forecasters.
    series : pandas DataFrame, dict, default `None`
        Training time series for multi-series forecasters.
    exog : pandas Series, pandas DataFrame, dict, default `None`
        Exogenous variables.
    interval : list, default `None`
        Confidence of the prediction interval estimated. Sequence of percentiles
        to compute, which must be between 0 and 100 inclusive.
    alpha : float, default `None`
        The confidence intervals used in ForecasterSarimax are (1 - alpha) %. 
    n_boot : int, default `250`
        Number of bootstrapping iterations used to estimate prediction
        intervals.
    random_state : int, default `123`
        Sets a seed to the random generator, so that boot intervals are always 
        deterministic.
    use_in_sample_residuals : bool, default `True`
        If `True`, residuals from the training data are used as proxy of prediction 
        error to create prediction intervals.  If `False`, out_sample_residuals 
        are used if they are already stored inside the forecaster.
    use_binned_residuals : bool, default `False`
        If `True`, residuals used in each bootstrapping iteration are selected
        conditioning on the predicted values. If `False`, residuals are selected
        randomly without conditioning on the predicted values.
    n_jobs : int, 'auto', default `'auto'`
        The number of jobs to run in parallel. If `-1`, then the number of jobs is 
        set to the number of cores. If 'auto', `n_jobs` is set using the fuction
        skforecast.utils.select_n_jobs_fit_forecaster.
        **New in version 0.9.0**
    show_progress : bool, default `True`
        Whether to show a progress bar.
    suppress_warnings: bool, default `False`
        If `True`, skforecast warnings will be suppressed during the backtesting 
        process. See skforecast.exceptions.warn_skforecast_categories for more
        information.
    suppress_warnings_fit : bool, default `False`
        If `True`, warnings generated during fitting will be ignored. Only 
        `ForecasterSarimax`.

    Returns
    -------
    None

    """

    forecaster_name = type(forecaster).__name__
    cv_name = type(cv).__name__

    if cv_name != "TimeSeriesFold":
        raise TypeError(f"`cv` must be a TimeSeriesFold object. Got {cv_name}.")

    steps = cv.steps
    initial_train_size = cv.initial_train_size
    gap = cv.gap
    allow_incomplete_fold = cv.allow_incomplete_fold
    refit = cv.refit

    forecasters_uni = [
        "ForecasterRecursive",
        "ForecasterDirect",
        "ForecasterSarimax",
        "ForecasterEquivalentDate",
    ]
    forecasters_multi = [
        "ForecasterDirectMultiVariate",
        "ForecasterRnn",
    ]
    forecasters_multi_dict = [
        "ForecasterRecursiveMultiSeries"
    ]

    if forecaster_name in forecasters_uni:
        if not isinstance(y, pd.Series):
            raise TypeError("`y` must be a pandas Series.")
        data_name = 'y'
        data_length = len(y)

    elif forecaster_name in forecasters_multi:
        if not isinstance(series, pd.DataFrame):
            raise TypeError("`series` must be a pandas DataFrame.")
        data_name = 'series'
        data_length = len(series)

    elif forecaster_name in forecasters_multi_dict:
        if not isinstance(series, (pd.DataFrame, dict)):
            raise TypeError(
                f"`series` must be a pandas DataFrame or a dict of DataFrames or Series. "
                f"Got {type(series)}."
            )

        data_name = 'series'
        if isinstance(series, dict):
            not_valid_series = [
                k 
                for k, v in series.items()
                if not isinstance(v, (pd.Series, pd.DataFrame))
            ]
            if not_valid_series:
                raise TypeError(
                    f"If `series` is a dictionary, all series must be a named "
                    f"pandas Series or a pandas DataFrame with a single column. "
                    f"Review series: {not_valid_series}"
                )
            not_valid_index = [
                k 
                for k, v in series.items()
                if not isinstance(v.index, pd.DatetimeIndex)
            ]
            if not_valid_index:
                raise ValueError(
                    f"If `series` is a dictionary, all series must have a Pandas "
                    f"DatetimeIndex as index with the same frequency. "
                    f"Review series: {not_valid_index}"
                )

            indexes_freq = [f'{v.index.freq}' for v in series.values()]
            indexes_freq = sorted(set(indexes_freq))
            if not len(indexes_freq) == 1:
                raise ValueError(
                    f"If `series` is a dictionary, all series must have a Pandas "
                    f"DatetimeIndex as index with the same frequency. "
                    f"Found frequencies: {indexes_freq}"
                )
            data_length = max([len(series[serie]) for serie in series])
        else:
            data_length = len(series)

    if exog is not None:
        if forecaster_name in forecasters_multi_dict:
            if not isinstance(exog, (pd.Series, pd.DataFrame, dict)):
                raise TypeError(
                    f"`exog` must be a pandas Series, DataFrame, dictionary of pandas "
                    f"Series/DataFrames or None. Got {type(exog)}."
                )
            if isinstance(exog, dict):
                not_valid_exog = [
                    k 
                    for k, v in exog.items()
                    if not isinstance(v, (pd.Series, pd.DataFrame, type(None)))
                ]
                if not_valid_exog:
                    raise TypeError(
                        f"If `exog` is a dictionary, All exog must be a named pandas "
                        f"Series, a pandas DataFrame or None. Review exog: {not_valid_exog}"
                    )
        else:
            if not isinstance(exog, (pd.Series, pd.DataFrame)):
                raise TypeError(
                    f"`exog` must be a pandas Series, DataFrame or None. Got {type(exog)}."
                )

    if hasattr(forecaster, 'differentiation'):
        if forecaster.differentiation != cv.differentiation:
            raise ValueError(
                f"The differentiation included in the forecaster "
                f"({forecaster.differentiation}) differs from the differentiation "
                f"included in the cv ({cv.differentiation}). Set the same value "
                f"for both using the `differentiation` argument."
            )

    if not isinstance(metric, (str, Callable, list)):
        raise TypeError(
            f"`metric` must be a string, a callable function, or a list containing "
            f"multiple strings and/or callables. Got {type(metric)}."
        )

    if forecaster_name == "ForecasterEquivalentDate" and isinstance(
        forecaster.offset, pd.tseries.offsets.DateOffset
    ):
        if initial_train_size is None:
            raise ValueError(
                f"`initial_train_size` must be an integer greater than "
                f"the `window_size` of the forecaster ({forecaster.window_size}) "
                f"and smaller than the length of `{data_name}` ({data_length})."
            )
    elif initial_train_size is not None:
        if initial_train_size < forecaster.window_size or initial_train_size >= data_length:
            raise ValueError(
                f"If used, `initial_train_size` must be an integer greater than "
                f"the `window_size` of the forecaster ({forecaster.window_size}) "
                f"and smaller than the length of `{data_name}` ({data_length})."
            )
        if initial_train_size + gap >= data_length:
            raise ValueError(
                f"The combination of initial_train_size {initial_train_size} and "
                f"gap {gap} cannot be greater than the length of `{data_name}` "
                f"({data_length})."
            )
    else:
        if forecaster_name in ['ForecasterSarimax', 'ForecasterEquivalentDate']:
            raise ValueError(
                f"`initial_train_size` must be an integer smaller than the "
                f"length of `{data_name}` ({data_length})."
            )
        else:
            if not forecaster.is_fitted:
                raise NotFittedError(
                    "`forecaster` must be already trained if no `initial_train_size` "
                    "is provided."
                )
            if refit:
                raise ValueError(
                    "`refit` is only allowed when `initial_train_size` is not `None`."
                )

    if forecaster_name == 'ForecasterSarimax' and cv.skip_folds is not None:
        raise ValueError(
            "`skip_folds` is not allowed for ForecasterSarimax. Set it to `None`."
        )

    if not isinstance(add_aggregated_metric, bool):
        raise TypeError("`add_aggregated_metric` must be a boolean: `True`, `False`.")
    if not isinstance(n_boot, (int, np.integer)) or n_boot < 0:
        raise TypeError(f"`n_boot` must be an integer greater than 0. Got {n_boot}.")
    if not isinstance(random_state, (int, np.integer)) or random_state < 0:
        raise TypeError(f"`random_state` must be an integer greater than 0. Got {random_state}.")
    if not isinstance(use_in_sample_residuals, bool):
        raise TypeError("`use_in_sample_residuals` must be a boolean: `True`, `False`.")
    if not isinstance(use_binned_residuals, bool):
        raise TypeError("`use_binned_residuals` must be a boolean: `True`, `False`.")
    if not isinstance(n_jobs, int) and n_jobs != 'auto':
        raise TypeError(f"`n_jobs` must be an integer or `'auto'`. Got {n_jobs}.")
    if not isinstance(show_progress, bool):
        raise TypeError("`show_progress` must be a boolean: `True`, `False`.")
    if not isinstance(suppress_warnings, bool):
        raise TypeError("`suppress_warnings` must be a boolean: `True`, `False`.")
    if not isinstance(suppress_warnings_fit, bool):
        raise TypeError("`suppress_warnings_fit` must be a boolean: `True`, `False`.")

    if interval is not None or alpha is not None:
        check_interval(interval=interval, alpha=alpha)

    if not allow_incomplete_fold and data_length - (initial_train_size + gap) < steps:
        raise ValueError(
            f"There is not enough data to evaluate {steps} steps in a single "
            f"fold. Set `allow_incomplete_fold` to `True` to allow incomplete folds.\n"
            f"    Data available for test : {data_length - (initial_train_size + gap)}\n"
            f"    Steps                   : {steps}"
        )

skforecast.model_selection._utils.select_n_jobs_backtesting

select_n_jobs_backtesting(forecaster, refit)

Select the optimal number of jobs to use in the backtesting process. This selection is based on heuristics and is not guaranteed to be optimal.

The number of jobs is chosen as follows:

  • If refit is an integer, then n_jobs = 1. This is because parallelization doesn't work with intermittent refit.
  • If forecaster is 'ForecasterRecursive' and regressor is a linear regressor, then n_jobs = 1.
  • If forecaster is 'ForecasterRecursive' and regressor is not a linear regressor then n_jobs = cpu_count() - 1.
  • If forecaster is 'ForecasterDirect' or 'ForecasterDirectMultiVariate' and refit = True, then n_jobs = cpu_count() - 1.
  • If forecaster is 'ForecasterDirect' or 'ForecasterDirectMultiVariate' and refit = False, then n_jobs = 1.
  • If forecaster is 'ForecasterRecursiveMultiSeries', then n_jobs = cpu_count() - 1.
  • If forecaster is 'ForecasterSarimax' or 'ForecasterEquivalentDate', then n_jobs = 1.
  • If regressor is a LGBMRegressor(n_jobs=1), then n_jobs = cpu_count() - 1.
  • If regressor is a LGBMRegressor with internal n_jobs != 1, then n_jobs = 1. This is because lightgbm is highly optimized for gradient boosting and parallelizes operations at a very fine-grained level, making additional parallelization unnecessary and potentially harmful due to resource contention.

Parameters:

Name Type Description Default
forecaster Forecaster

Forecaster model.

required
refit (bool, int)

If the forecaster is refitted during the backtesting process.

required

Returns:

Name Type Description
n_jobs int

The number of jobs to run in parallel.

Source code in skforecast/model_selection/_utils.py
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
def select_n_jobs_backtesting(
    forecaster: object,
    refit: Union[bool, int]
) -> int:
    """
    Select the optimal number of jobs to use in the backtesting process. This
    selection is based on heuristics and is not guaranteed to be optimal.

    The number of jobs is chosen as follows:

    - If `refit` is an integer, then `n_jobs = 1`. This is because parallelization doesn't 
    work with intermittent refit.
    - If forecaster is 'ForecasterRecursive' and regressor is a linear regressor, 
    then `n_jobs = 1`.
    - If forecaster is 'ForecasterRecursive' and regressor is not a linear 
    regressor then `n_jobs = cpu_count() - 1`.
    - If forecaster is 'ForecasterDirect' or 'ForecasterDirectMultiVariate'
    and `refit = True`, then `n_jobs = cpu_count() - 1`.
    - If forecaster is 'ForecasterDirect' or 'ForecasterDirectMultiVariate'
    and `refit = False`, then `n_jobs = 1`.
    - If forecaster is 'ForecasterRecursiveMultiSeries', then `n_jobs = cpu_count() - 1`.
    - If forecaster is 'ForecasterSarimax' or 'ForecasterEquivalentDate', 
    then `n_jobs = 1`.
    - If regressor is a `LGBMRegressor(n_jobs=1)`, then `n_jobs = cpu_count() - 1`.
    - If regressor is a `LGBMRegressor` with internal n_jobs != 1, then `n_jobs = 1`.
    This is because `lightgbm` is highly optimized for gradient boosting and
    parallelizes operations at a very fine-grained level, making additional
    parallelization unnecessary and potentially harmful due to resource contention.

    Parameters
    ----------
    forecaster : Forecaster
        Forecaster model.
    refit : bool, int
        If the forecaster is refitted during the backtesting process.

    Returns
    -------
    n_jobs : int
        The number of jobs to run in parallel.

    """

    forecaster_name = type(forecaster).__name__

    if isinstance(forecaster.regressor, Pipeline):
        regressor = forecaster.regressor[-1]
        regressor_name = type(regressor).__name__
    else:
        regressor = forecaster.regressor
        regressor_name = type(regressor).__name__

    linear_regressors = [
        regressor_name
        for regressor_name in dir(sklearn.linear_model)
        if not regressor_name.startswith('_')
    ]

    refit = False if refit == 0 else refit
    if not isinstance(refit, bool) and refit != 1:
        n_jobs = 1
    else:
        if forecaster_name in ['ForecasterRecursive']:
            if regressor_name in linear_regressors:
                n_jobs = 1
            elif regressor_name == 'LGBMRegressor':
                n_jobs = cpu_count() - 1 if regressor.n_jobs == 1 else 1
            else:
                n_jobs = cpu_count() - 1
        elif forecaster_name in ['ForecasterDirect', 'ForecasterDirectMultiVariate']:
            # Parallelization is applied during the fitting process.
            n_jobs = 1
        elif forecaster_name in ['ForecasterRecursiveMultiSeries']:
            if regressor_name == 'LGBMRegressor':
                n_jobs = cpu_count() - 1 if regressor.n_jobs == 1 else 1
            else:
                n_jobs = cpu_count() - 1
        elif forecaster_name in ['ForecasterSarimax', 'ForecasterEquivalentDate']:
            n_jobs = 1
        else:
            n_jobs = 1

    return n_jobs