ForecasterEquivalentDate
¶
skforecast.recursive._forecaster_equivalent_date.ForecasterEquivalentDate ¶
ForecasterEquivalentDate(
offset,
n_offsets=1,
agg_func=np.mean,
forecaster_id=None,
)
This forecaster predicts future values based on the most recent equivalent date. It also allows to aggregate multiple past values of the equivalent date using a function (e.g. mean, median, max, min, etc.). The equivalent date is calculated by moving back in time a specified number of steps (offset). The offset can be defined as an integer or as a pandas DateOffset. This approach is useful as a baseline, but it is a simplistic method and may not capture complex underlying patterns.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
offset |
(int, DateOffset)
|
Number of steps to go back in time to find the most recent equivalent
date to the target period.
If |
required |
n_offsets |
int
|
Number of equivalent dates (multiple of offset) used in the prediction.
If |
`1`
|
agg_func |
Callable
|
Function used to aggregate the values of the equivalent dates when the
number of equivalent dates ( |
`np.mean`
|
forecaster_id |
(str, int)
|
Name used as an identifier of the forecaster. |
`None`
|
Attributes:
Name | Type | Description |
---|---|---|
offset |
(int, DateOffset)
|
Number of steps to go back in time to find the most recent equivalent
date to the target period.
If |
n_offsets |
int
|
Number of equivalent dates (multiple of offset) used in the prediction.
If |
agg_func |
Callable
|
Function used to aggregate the values of the equivalent dates when the
number of equivalent dates ( |
window_size |
int
|
Number of past values needed to include the last equivalent dates according
to the |
last_window_ |
pandas Series
|
This window represents the most recent data observed by the predictor
during its training phase. It contains the past values needed to include
the last equivalent date according the |
index_type_ |
type
|
Type of index of the input used in training. |
index_freq_ |
str
|
Frequency of Index of the input used in training. |
training_range_ |
pandas Index
|
First and last values of index of the data used during training. |
creation_date |
str
|
Date of creation. |
is_fitted |
bool
|
Tag to identify if the regressor has been fitted (trained). |
fit_date |
str
|
Date of last fit. |
skforecast_version |
str
|
Version of skforecast library used to create the forecaster. |
python_version |
str
|
Version of python used to create the forecaster. |
forecaster_id |
(str, int)
|
Name used as an identifier of the forecaster. |
regressor |
Ignored
|
Not used, present here for API consistency by convention. |
differentiation |
Ignored
|
Not used, present here for API consistency by convention. |
Source code in skforecast\recursive\_forecaster_equivalent_date.py
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
|
fit ¶
fit(y, exog=None, store_in_sample_residuals=None)
Training Forecaster.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y |
pandas Series
|
Training time series. |
required |
exog |
Ignored
|
Not used, present here for API consistency by convention. |
None
|
store_in_sample_residuals |
Ignored
|
Not used, present here for API consistency by convention. |
None
|
Returns:
Type | Description |
---|---|
None
|
|
Source code in skforecast\recursive\_forecaster_equivalent_date.py
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
|
predict ¶
predict(steps, last_window=None, exog=None)
Predict n steps ahead.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
steps |
int
|
Number of future steps predicted. |
required |
last_window |
pandas Series
|
Past values needed to select the last equivalent dates according to
the offset. If |
`None`
|
exog |
Ignored
|
Not used, present here for API consistency by convention. |
None
|
Returns:
Name | Type | Description |
---|---|---|
predictions |
pandas Series
|
Predicted values. |
Source code in skforecast\recursive\_forecaster_equivalent_date.py
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
|
summary ¶
summary()
Show forecaster information.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
self |
|
required |
Returns:
Type | Description |
---|---|
None
|
|
Source code in skforecast\recursive\_forecaster_equivalent_date.py
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
|