Metrics
¶
skforecast.metrics.mean_absolute_scaled_error ¶
mean_absolute_scaled_error(y_true, y_pred, y_train)
Mean Absolute Scaled Error (MASE)
MASE is a scale-independent error metric that measures the accuracy of a forecast. It is the mean absolute error of the forecast divided by the mean absolute error of a naive forecast in the training set. The naive forecast is the one obtained by shifting the time series by one period. If y_train is a list of numpy arrays or pandas Series, it is considered that each element is the true value of the target variable in the training set for each time series. In this case, the naive forecast is calculated for each time series separately.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_true |
pandas Series, numpy ndarray
|
True values of the target variable. |
required |
y_pred |
pandas Series, numpy ndarray
|
Predicted values of the target variable. |
required |
y_train |
list, pandas Series, numpy ndarray
|
True values of the target variable in the training set. If |
required |
Returns:
Name | Type | Description |
---|---|---|
mase |
float
|
MASE value. |
Source code in skforecast/metrics/metrics.py
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
|
skforecast.metrics.root_mean_squared_scaled_error ¶
root_mean_squared_scaled_error(y_true, y_pred, y_train)
Root Mean Squared Scaled Error (RMSSE)
RMSSE is a scale-independent error metric that measures the accuracy of a forecast. It is the root mean squared error of the forecast divided by the root mean squared error of a naive forecast in the training set. The naive forecast is the one obtained by shifting the time series by one period. If y_train is a list of numpy arrays or pandas Series, it is considered that each element is the true value of the target variable in the training set for each time series. In this case, the naive forecast is calculated for each time series separately.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_true |
pandas Series, numpy ndarray
|
True values of the target variable. |
required |
y_pred |
pandas Series, numpy ndarray
|
Predicted values of the target variable. |
required |
y_train |
list, pandas Series, numpy ndarray
|
True values of the target variable in the training set. If list, it is consider that each element is the true value of the target variable in the training set for each time series. |
required |
Returns:
Name | Type | Description |
---|---|---|
rmsse |
float
|
RMSSE value. |
Source code in skforecast/metrics/metrics.py
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
|
skforecast.metrics.add_y_train_argument ¶
add_y_train_argument(func)
Add y_train
argument to a function if it is not already present.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
func |
callable
|
Function to which the argument is added. |
required |
Returns:
Name | Type | Description |
---|---|---|
wrapper |
callable
|
Function with |
Source code in skforecast/metrics/metrics.py
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
|