Skip to content

ForecasterRecursiveMultiSeries

skforecast.recursive._forecaster_recursive_multiseries.ForecasterRecursiveMultiSeries

ForecasterRecursiveMultiSeries(
    regressor,
    lags=None,
    window_features=None,
    encoding="ordinal",
    transformer_series=None,
    transformer_exog=None,
    weight_func=None,
    series_weights=None,
    differentiation=None,
    dropna_from_series=False,
    fit_kwargs=None,
    forecaster_id=None,
)

Bases: ForecasterBase

This class turns any regressor compatible with the scikit-learn API into a recursive autoregressive (multi-step) forecaster for multiple series.

Parameters:

Name Type Description Default
regressor regressor or pipeline compatible with the scikit-learn API

An instance of a regressor or pipeline compatible with the scikit-learn API.

required
lags int, list, numpy ndarray, range

Lags used as predictors. Index starts at 1, so lag 1 is equal to t-1.

  • int: include lags from 1 to lags (included).
  • list, 1d numpy ndarray or range: include only lags present in lags, all elements must be int.
  • None: no lags are included as predictors.
`None`
window_features (object, list)

Instance or list of instances used to create window features. Window features are created from the original time series and are included as predictors.

`None`
encoding (str, None)

Encoding used to identify the different series.

  • If 'ordinal', a single column is created with integer values from 0 to n_series - 1.
  • If 'ordinal_category', a single column is created with integer values from 0 to n_series - 1 and the column is transformed into pandas.category dtype so that it can be used as a categorical variable.
  • If 'onehot', a binary column is created for each series.
  • If None, no column is created to identify the series. Internally, the series are identified as an integer from 0 to n_series - 1, but no column is created in the training matrices. Changed to 'ordinal' in version 0.14.0
`'ordinal'`
transformer_series (transformer(preprocessor), dict)

An instance of a transformer (preprocessor) compatible with the scikit-learn preprocessing API with methods: fit, transform, fit_transform and inverse_transform. Transformation is applied to each series before training the forecaster. ColumnTransformers are not allowed since they do not have inverse_transform method.

  • If single transformer: it is cloned and applied to all series.
  • If dict of transformers: a different transformer can be used for each series.
`None`
transformer_exog transformer

An instance of a transformer (preprocessor) compatible with the scikit-learn preprocessing API. The transformation is applied to exog before training the forecaster. inverse_transform is not available when using ColumnTransformers.

`None`
weight_func (Callable, dict)

Function that defines the individual weights for each sample based on the index. For example, a function that assigns a lower weight to certain dates. Ignored if regressor does not have the argument sample_weight in its fit method. See Notes section for more details on the use of the weights.

  • If single function: it is applied to all series.
  • If dict {'series_column_name' : Callable}: a different function can be used for each series, a weight of 1 is given to all series not present in weight_func.
`None`
series_weights dict

Weights associated with each series {'series_column_name' : float}. It is only applied if the regressor used accepts sample_weight in its fit method. See Notes section for more details on the use of the weights.

  • If a dict is provided, a weight of 1 is given to all series not present in series_weights.
  • If None, all levels have the same weight.
`None`
differentiation int

Order of differencing applied to the time series before training the forecaster. If None, no differencing is applied. The order of differentiation is the number of times the differencing operation is applied to a time series. Differencing involves computing the differences between consecutive data points in the series. Differentiation is reversed in the output of predict() and predict_interval(). WARNING: This argument is newly introduced and requires special attention. It is still experimental and may undergo changes.

`None`
dropna_from_series bool

Determine whether NaN detected in the training matrices will be dropped.

  • If True, drop NaNs in X_train and same rows in y_train.
  • If False, leave NaNs in X_train and warn the user. New in version 0.12.0
`False`
fit_kwargs dict

Additional arguments to be passed to the fit method of the regressor.

`None`
forecaster_id (str, int)

Name used as an identifier of the forecaster.

`None`

Attributes:

Name Type Description
regressor regressor or pipeline compatible with the scikit-learn API

An instance of a regressor or pipeline compatible with the scikit-learn API.

lags numpy ndarray

Lags used as predictors.

lags_names list

Names of the lags used as predictors.

max_lag int

Maximum lag included in lags.

window_features list

Class or list of classes used to create window features.

window_features_names list

Names of the window features to be included in the X_train matrix.

window_features_class_names list

Names of the classes used to create the window features.

max_size_window_features int

Maximum window size required by the window features.

window_size int

The window size needed to create the predictors. It is calculated as the maximum value between max_lag and max_size_window_features. If differentiation is used, window_size is increased by n units equal to the order of differentiation so that predictors can be generated correctly.

encoding str

Encoding used to identify the different series.

  • If 'ordinal', a single column is created with integer values from 0 to n_series - 1.
  • If 'ordinal_category', a single column is created with integer values from 0 to n_series - 1 and the column is transformed into pandas.category dtype so that it can be used as a categorical variable.
  • If 'onehot', a binary column is created for each series.
  • If None, no column is created to identify the series. Internally, the series are identified as an integer from 0 to n_series - 1, but no column is created in the training matrices. Changed to 'ordinal' in version 0.14.0
encoder preprocessing

Scikit-learn preprocessing encoder used to encode the series. New in version 0.12.0

encoding_mapping_ dict

Mapping of the encoding used to identify the different series.

transformer_series (transformer(preprocessor), dict)

An instance of a transformer (preprocessor) compatible with the scikit-learn preprocessing API with methods: fit, transform, fit_transform and inverse_transform. Transformation is applied to each series before training the forecaster. ColumnTransformers are not allowed since they do not have inverse_transform method.

  • If single transformer: it is cloned and applied to all series.
  • If dict of transformers: a different transformer can be used for each series.
transformer_series_ dict

Dictionary with the transformer for each series. It is created cloning the objects in transformer_series and is used internally to avoid overwriting.

transformer_exog transformer(preprocessor)

An instance of a transformer (preprocessor) compatible with the scikit-learn preprocessing API. The transformation is applied to exog before training the forecaster. inverse_transform is not available when using ColumnTransformers.

weight_func (Callable, dict)

Function that defines the individual weights for each sample based on the index. For example, a function that assigns a lower weight to certain dates. Ignored if regressor does not have the argument sample_weight in its fit method. See Notes section for more details on the use of the weights.

  • If single function: it is applied to all series.
  • If dict {'series_column_name' : Callable}: a different function can be used for each series, a weight of 1 is given to all series not present in weight_func.
weight_func_ dict

Dictionary with the weight_func for each series. It is created cloning the objects in weight_func and is used internally to avoid overwriting.

source_code_weight_func (str, dict)

Source code of the custom function(s) used to create weights.

series_weights dict

Weights associated with each series {'series_column_name' : float}. It is only applied if the regressor used accepts sample_weight in its fit method. See Notes section for more details on the use of the weights.

  • If a dict is provided, a weight of 1 is given to all series not present in series_weights.
  • If None, all levels have the same weight.
series_weights_ dict

Weights associated with each series.It is created as a clone of series_weights and is used internally to avoid overwriting.

differentiation int

Order of differencing applied to the time series before training the forecaster.

differentiator TimeSeriesDifferentiator

Skforecast object used to differentiate the time series.

differentiator_ dict

Dictionary with the differentiator for each series. It is created cloning the objects in differentiator and is used internally to avoid overwriting.

dropna_from_series bool

Determine whether NaN detected in the training matrices will be dropped.

last_window_ dict

Last window of training data for each series. It stores the values needed to predict the next step immediately after the training data. These values are stored in the original scale of the time series before undergoing any transformations or differentiation. When differentiation parameter is specified, the dimensions of the last_window_ are expanded as many values as the order of differentiation. For example, if lags = 7 and differentiation = 1, last_window_ will have 8 values.

index_type_ type

Type of index of the input used in training.

index_freq_ str

Frequency of Index of the input used in training.

training_range_ dict

First and last values of index of the data used during training for each series.

series_names_in_ list

Names of the series (levels) provided by the user during training.

exog_in_ bool

If the forecaster has been trained using exogenous variable/s.

exog_names_in_ list

Names of the exogenous variables used during training.

exog_type_in_ type

Type of exogenous data (pandas Series, DataFrame or dict) used in training.

exog_dtypes_in_ dict

Type of each exogenous variable/s used in training. If transformer_exog is used, the dtypes are calculated before the transformation.

X_train_series_names_in_ list

Names of the series (levels) included in the matrix X_train created internally for training. It can be different from series_names_in_ if some series are dropped during the training process because of NaNs or because they are not present in the training period.

X_train_window_features_names_out_ list

Names of the window features included in the matrix X_train created internally for training.

X_train_exog_names_out_ list

Names of the exogenous variables included in the matrix X_train created internally for training. It can be different from exog_names_in_ if some exogenous variables are transformed during the training process.

X_train_features_names_out_ list

Names of columns of the matrix created internally for training.

fit_kwargs dict

Additional arguments to be passed to the fit method of the regressor.

in_sample_residuals_ dict

Residuals of the model when predicting training data. Only stored up to 1000 values in the form {level: residuals}. If transformer_series is not None, residuals are stored in the transformed scale.

out_sample_residuals_ dict

Residuals of the model when predicting non-training data. Only stored up to 1000 values in the form {level: residuals}. If transformer_series is not None, residuals are assumed to be in the transformed scale. Use set_out_sample_residuals() method to set values.

creation_date str

Date of creation.

is_fitted bool

Tag to identify if the regressor has been fitted (trained).

fit_date str

Date of last fit.

skforecast_version str

Version of skforecast library used to create the forecaster.

python_version str

Version of python used to create the forecaster.

forecaster_id (str, int)

Name used as an identifier of the forecaster.

Notes

The weights are used to control the influence that each observation has on the training of the model. ForecasterRecursiveMultiSeries accepts two types of weights. If the two types of weights are indicated, they are multiplied to create the final weights. The resulting sample_weight cannot have negative values.

  • series_weights : controls the relative importance of each series. If a series has twice as much weight as the others, the observations of that series influence the training twice as much. The higher the weight of a series relative to the others, the more the model will focus on trying to learn that series.
  • weight_func : controls the relative importance of each observation according to its index value. For example, a function that assigns a lower weight to certain dates.
Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
def __init__(
    self,
    regressor: object,
    lags: Optional[Union[int, list, np.ndarray, range]] = None,
    window_features: Optional[Union[object, list]] = None,
    encoding: Optional[str] = 'ordinal',
    transformer_series: Optional[Union[object, dict]] = None,
    transformer_exog: Optional[object] = None,
    weight_func: Optional[Union[Callable, dict]] = None,
    series_weights: Optional[dict] = None,
    differentiation: Optional[int] = None,
    dropna_from_series: bool = False,
    fit_kwargs: Optional[dict] = None,
    forecaster_id: Optional[Union[str, int]] = None
) -> None:

    self.regressor                          = copy(regressor)
    self.encoding                           = encoding
    self.encoder                            = None
    self.encoding_mapping_                  = {}
    self.transformer_series                 = transformer_series
    self.transformer_series_                = None
    self.transformer_exog                   = transformer_exog
    self.weight_func                        = weight_func
    self.weight_func_                       = None
    self.source_code_weight_func            = None
    self.series_weights                     = series_weights
    self.series_weights_                    = None
    self.differentiation                    = differentiation
    self.differentiator                     = None
    self.differentiator_                    = None
    self.dropna_from_series                 = dropna_from_series
    self.last_window_                       = None
    self.index_type_                        = None
    self.index_freq_                        = None
    self.training_range_                    = None
    self.series_names_in_                   = None
    self.exog_in_                           = False
    self.exog_names_in_                     = None
    self.exog_type_in_                      = None
    self.exog_dtypes_in_                    = None 
    self.X_train_series_names_in_           = None
    self.X_train_window_features_names_out_ = None
    self.X_train_exog_names_out_            = None
    self.X_train_features_names_out_        = None
    self.in_sample_residuals_               = None
    self.out_sample_residuals_              = None
    self.creation_date                      = pd.Timestamp.today().strftime('%Y-%m-%d %H:%M:%S')
    self.is_fitted                          = False
    self.fit_date                           = None
    self.skforecast_version                 = skforecast.__version__
    self.python_version                     = sys.version.split(" ")[0]
    self.forecaster_id                      = forecaster_id

    self.lags, self.lags_names, self.max_lag = initialize_lags(type(self).__name__, lags)
    self.window_features, self.window_features_names, self.max_size_window_features = (
        initialize_window_features(window_features)
    )
    if self.window_features is None and self.lags is None:
        raise ValueError(
            "At least one of the arguments `lags` or `window_features` "
            "must be different from None. This is required to create the "
            "predictors used in training the forecaster."
        )

    self.window_size = max(
        [ws for ws in [self.max_lag, self.max_size_window_features] 
         if ws is not None]
    )
    self.window_features_class_names = None
    if window_features is not None:
        self.window_features_class_names = [
            type(wf).__name__ for wf in self.window_features
        ] 

    self.weight_func, self.source_code_weight_func, self.series_weights = (
        initialize_weights(
            forecaster_name = type(self).__name__,
            regressor       = regressor,
            weight_func     = weight_func,
            series_weights  = series_weights,
        )
    )

    if self.differentiation is not None:
        if not isinstance(differentiation, int) or differentiation < 1:
            raise ValueError(
                f"Argument `differentiation` must be an integer equal to or "
                f"greater than 1. Got {differentiation}."
            )
        self.window_size += self.differentiation
        self.differentiator = TimeSeriesDifferentiator(
            order=self.differentiation, window_size=self.window_size
        )

    self.fit_kwargs = check_select_fit_kwargs(
                          regressor  = regressor,
                          fit_kwargs = fit_kwargs
                      )

    if self.encoding not in ['ordinal', 'ordinal_category', 'onehot', None]:
        raise ValueError(
            f"Argument `encoding` must be one of the following values: 'ordinal', "
            f"'ordinal_category', 'onehot' or None. Got '{self.encoding}'."
        )

    if self.encoding == 'onehot':
        self.encoder = OneHotEncoder(
                           categories    = 'auto',
                           sparse_output = False,
                           drop          = None,
                           dtype         = int
                       ).set_output(transform='pandas')
    else:
        self.encoder = OrdinalEncoder(
                           categories = 'auto',
                           dtype      = int
                       ).set_output(transform='pandas')

    scaling_regressors = tuple(
        member[1]
        for member in inspect.getmembers(sklearn.linear_model, inspect.isclass)
        + inspect.getmembers(sklearn.svm, inspect.isclass)
    )

    if self.transformer_series is None and isinstance(regressor, scaling_regressors):
        warnings.warn(
            "When using a linear model, it is recommended to use a transformer_series "
            "to ensure all series are in the same scale. You can use, for example, a "
            "`StandardScaler` from sklearn.preprocessing."
        )

    if isinstance(self.transformer_series, dict):
        if self.encoding is None:
            raise TypeError(
                "When `encoding` is None, `transformer_series` must be a single "
                "transformer (not `dict`) as it is applied to all series."
            )
        if '_unknown_level' not in self.transformer_series.keys():
            raise ValueError(
                "If `transformer_series` is a `dict`, a transformer must be "
                "provided to transform series that do not exist during training. "
                "Add the key '_unknown_level' to `transformer_series`. "
                "For example: {'_unknown_level': your_transformer}."
            )

_repr_html_

_repr_html_()

HTML representation of the object. The "General Information" section is expanded by default.

Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
def _repr_html_(self):
    """
    HTML representation of the object.
    The "General Information" section is expanded by default.
    """

    (
        params,
        training_range_,
        series_names_in_,
        exog_names_in_,
        transformer_series,
    ) = self._preprocess_repr(
            regressor          = self.regressor,
            training_range_    = self.training_range_,
            series_names_in_   = self.series_names_in_,
            exog_names_in_     = self.exog_names_in_,
            transformer_series = self.transformer_series,
        )

    style, unique_id = self._get_style_repr_html(self.is_fitted)

    content = f"""
    <div class="container-{unique_id}">
        <h2>{type(self).__name__}</h2>
        <details open>
            <summary>General Information</summary>
            <ul>
                <li><strong>Regressor:</strong> {type(self.regressor).__name__}</li>
                <li><strong>Lags:</strong> {self.lags}</li>
                <li><strong>Window features:</strong> {self.window_features_names}</li>
                <li><strong>Window size:</strong> {self.window_size}</li>
                <li><strong>Series encoding:</strong> {self.encoding}</li>
                <li><strong>Exogenous included:</strong> {self.exog_in_}</li>
                <li><strong>Weight function included:</strong> {self.weight_func is not None}</li>
                <li><strong>Series weights:</strong> {self.series_weights}</li>
                <li><strong>Differentiation order:</strong> {self.differentiation}</li>
                <li><strong>Creation date:</strong> {self.creation_date}</li>
                <li><strong>Last fit date:</strong> {self.fit_date}</li>
                <li><strong>Skforecast version:</strong> {self.skforecast_version}</li>
                <li><strong>Python version:</strong> {self.python_version}</li>
                <li><strong>Forecaster id:</strong> {self.forecaster_id}</li>
            </ul>
        </details>
        <details>
            <summary>Exogenous Variables</summary>
            <ul>
                {exog_names_in_}
            </ul>
        </details>
        <details>
            <summary>Data Transformations</summary>
            <ul>
                <li><strong>Transformer for series:</strong> {transformer_series}</li>
                <li><strong>Transformer for exog:</strong> {self.transformer_exog}</li>
            </ul>
        </details>
        <details>
            <summary>Training Information</summary>
            <ul>
                <li><strong>Series names (levels):</strong> {series_names_in_}</li>
                <li><strong>Training range:</strong> {training_range_}</li>
                <li><strong>Training index type:</strong> {str(self.index_type_).split('.')[-1][:-2] if self.is_fitted else 'Not fitted'}</li>
                <li><strong>Training index frequency:</strong> {self.index_freq_ if self.is_fitted else 'Not fitted'}</li>
            </ul>
        </details>
        <details>
            <summary>Regressor Parameters</summary>
            <ul>
                {params}
            </ul>
        </details>
        <details>
            <summary>Fit Kwargs</summary>
            <ul>
                {self.fit_kwargs}
            </ul>
        </details>
        <p>
            <a href="https://skforecast.org/{skforecast.__version__}/api/forecasterrecursivemultiseries.html">&#128712 <strong>API Reference</strong></a>
            &nbsp;&nbsp;
            <a href="https://skforecast.org/{skforecast.__version__}/user_guides/independent-multi-time-series-forecasting.html">&#128462 <strong>User Guide</strong></a>
        </p>
    </div>
    """

    # Return the combined style and content
    return style + content

_create_lags

_create_lags(y, X_as_pandas=False, train_index=None)

Create the lagged values and their target variable from a time series.

Note that the returned matrix X_data contains the lag 1 in the first column, the lag 2 in the in the second column and so on.

Parameters:

Name Type Description Default
y numpy ndarray

Training time series values.

required
X_as_pandas bool

If True, the returned matrix X_data is a pandas DataFrame.

`False`
train_index pandas Index

Index of the training data. It is used to create the pandas DataFrame X_data when X_as_pandas is True.

`None`

Returns:

Name Type Description
X_data numpy ndarray, pandas DataFrame, None

Lagged values (predictors).

y_data numpy ndarray

Values of the time series related to each row of X_data.

Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
def _create_lags(
    self,
    y: np.ndarray,
    X_as_pandas: bool = False,
    train_index: Optional[pd.Index] = None
) -> Tuple[Optional[Union[np.ndarray, pd.DataFrame]], np.ndarray]:
    """
    Create the lagged values and their target variable from a time series.

    Note that the returned matrix `X_data` contains the lag 1 in the first 
    column, the lag 2 in the in the second column and so on.

    Parameters
    ----------
    y : numpy ndarray
        Training time series values.
    X_as_pandas : bool, default `False`
        If `True`, the returned matrix `X_data` is a pandas DataFrame.
    train_index : pandas Index, default `None`
        Index of the training data. It is used to create the pandas DataFrame
        `X_data` when `X_as_pandas` is `True`.

    Returns
    -------
    X_data : numpy ndarray, pandas DataFrame, None
        Lagged values (predictors).
    y_data : numpy ndarray
        Values of the time series related to each row of `X_data`.

    """

    X_data = None
    if self.lags is not None:
        n_rows = len(y) - self.window_size
        X_data = np.full(
            shape=(n_rows, len(self.lags)), fill_value=np.nan, order='F', dtype=float
        )
        for i, lag in enumerate(self.lags):
            X_data[:, i] = y[self.window_size - lag: -lag]

        if X_as_pandas:
            X_data = pd.DataFrame(
                         data    = X_data,
                         columns = self.lags_names,
                         index   = train_index
                     )

    y_data = y[self.window_size:]

    return X_data, y_data

_create_window_features

_create_window_features(y, train_index, X_as_pandas=False)

Parameters:

Name Type Description Default
y pandas Series

Training time series.

required
train_index pandas Index

Index of the training data. It is used to create the pandas DataFrame X_train_window_features when X_as_pandas is True.

required
X_as_pandas bool

If True, the returned matrix X_train_window_features is a pandas DataFrame.

`False`

Returns:

Name Type Description
X_train_window_features list

List of numpy ndarrays or pandas DataFrames with the window features.

X_train_window_features_names_out_ list

Names of the window features.

Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
def _create_window_features(
    self, 
    y: pd.Series,
    train_index: pd.Index,
    X_as_pandas: bool = False,
) -> Tuple[list, list]:
    """

    Parameters
    ----------
    y : pandas Series
        Training time series.
    train_index : pandas Index
        Index of the training data. It is used to create the pandas DataFrame
        `X_train_window_features` when `X_as_pandas` is `True`.
    X_as_pandas : bool, default `False`
        If `True`, the returned matrix `X_train_window_features` is a 
        pandas DataFrame.

    Returns
    -------
    X_train_window_features : list
        List of numpy ndarrays or pandas DataFrames with the window features.
    X_train_window_features_names_out_ : list
        Names of the window features.

    """

    len_train_index = len(train_index)
    X_train_window_features = []
    X_train_window_features_names_out_ = []
    for wf in self.window_features:
        X_train_wf = wf.transform_batch(y)
        if not isinstance(X_train_wf, pd.DataFrame):
            raise TypeError(
                (f"The method `transform_batch` of {type(wf).__name__} "
                 f"must return a pandas DataFrame.")
            )
        X_train_wf = X_train_wf.iloc[-len_train_index:]
        if not len(X_train_wf) == len_train_index:
            raise ValueError(
                (f"The method `transform_batch` of {type(wf).__name__} "
                 f"must return a DataFrame with the same number of rows as "
                 f"the input time series - `window_size`: {len_train_index}.")
            )
        if not (X_train_wf.index == train_index).all():
            raise ValueError(
                (f"The method `transform_batch` of {type(wf).__name__} "
                 f"must return a DataFrame with the same index as "
                 f"the input time series - `window_size`.")
            )

        X_train_window_features_names_out_.extend(X_train_wf.columns)
        if not X_as_pandas:
            X_train_wf = X_train_wf.to_numpy()     
        X_train_window_features.append(X_train_wf)

    return X_train_window_features, X_train_window_features_names_out_

_create_train_X_y_single_series

_create_train_X_y_single_series(y, ignore_exog, exog=None)

Create training matrices from univariate time series and exogenous variables. This method does not transform the exog variables.

Parameters:

Name Type Description Default
y pandas Series

Training time series.

required
ignore_exog bool

If True, exog is ignored.

required
exog pandas DataFrame

Exogenous variable/s included as predictor/s.

`None`

Returns:

Name Type Description
X_train_lags pandas DataFrame

Training values of lags. Shape: (len(y) - self.max_lag, len(self.lags))

X_train_window_features_names_out_ list

Names of the window features.

X_train_exog pandas DataFrame

Training values of exogenous variables. Shape: (len(y) - self.max_lag, len(exog.columns))

y_train pandas Series

Values (target) of the time series related to each row of X_train. Shape: (len(y) - self.max_lag, )

Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
def _create_train_X_y_single_series(
    self,
    y: pd.Series,
    ignore_exog: bool,
    exog: Optional[pd.DataFrame] = None
) -> Tuple[pd.DataFrame, list, pd.DataFrame, pd.Series]:
    """
    Create training matrices from univariate time series and exogenous
    variables. This method does not transform the exog variables.

    Parameters
    ----------
    y : pandas Series
        Training time series.
    ignore_exog : bool
        If `True`, `exog` is ignored.
    exog : pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s.

    Returns
    -------
    X_train_lags : pandas DataFrame
        Training values of lags.
        Shape: (len(y) - self.max_lag, len(self.lags))
    X_train_window_features_names_out_ : list
        Names of the window features.
    X_train_exog : pandas DataFrame
        Training values of exogenous variables.
        Shape: (len(y) - self.max_lag, len(exog.columns))
    y_train : pandas Series
        Values (target) of the time series related to each row of `X_train`.
        Shape: (len(y) - self.max_lag, )

    """

    series_name = y.name
    if len(y) <= self.window_size:
        raise ValueError(
            f"Length of '{series_name}' must be greater than the maximum window size "
            f"needed by the forecaster.\n"
            f"    Length '{series_name}': {len(y)}.\n"
            f"    Max window size: {self.window_size}.\n"
            f"    Lags window size: {self.max_lag}.\n"
            f"    Window features window size: {self.max_size_window_features}."
        )

    if self.encoding is None:
        fit_transformer = False
        transformer_series = self.transformer_series_['_unknown_level']
    else:
        fit_transformer = False if self.is_fitted else True
        transformer_series = self.transformer_series_[series_name]

    y = transform_series(
            series            = y,
            transformer       = transformer_series,
            fit               = fit_transformer,
            inverse_transform = False
        )

    y_values = y.to_numpy()
    y_index = y.index

    if self.differentiation is not None:
        if not self.is_fitted:
            y_values = self.differentiator_[series_name].fit_transform(y_values)
        else:
            differentiator = copy(self.differentiator_[series_name])
            y_values = differentiator.fit_transform(y_values)

    X_train_autoreg = []
    train_index = y_index[self.window_size:]

    X_train_lags, y_train = self._create_lags(
        y=y_values, X_as_pandas=True, train_index=train_index
    )
    if X_train_lags is not None:
        X_train_autoreg.append(X_train_lags)

    X_train_window_features_names_out_ = None
    if self.window_features is not None:
        n_diff = 0 if self.differentiation is None else self.differentiation
        y_window_features = pd.Series(y_values[n_diff:], index=y_index[n_diff:])
        X_train_window_features, X_train_window_features_names_out_ = (
            self._create_window_features(
                y=y_window_features, X_as_pandas=True, train_index=train_index
            )
        )
        X_train_autoreg.extend(X_train_window_features)

    if len(X_train_autoreg) == 1:
        X_train_autoreg = X_train_autoreg[0]
    else:
        X_train_autoreg = pd.concat(X_train_autoreg, axis=1)

    X_train_autoreg['_level_skforecast'] = series_name

    if ignore_exog:
        X_train_exog = None
    else:
        if exog is not None:
            # The first `self.window_size` positions have to be removed from exog
            # since they are not in X_train_autoreg.
            X_train_exog = exog.iloc[self.window_size:, ]
        else:
            X_train_exog = pd.DataFrame(
                               data    = np.nan,
                               columns = ['_dummy_exog_col_to_keep_shape'],
                               index   = train_index
                           )

    y_train = pd.Series(
                  data  = y_train,
                  index = train_index,
                  name  = 'y'
              )

    return X_train_autoreg, X_train_window_features_names_out_, X_train_exog, y_train

_create_train_X_y

_create_train_X_y(
    series, exog=None, store_last_window=True
)

Create training matrices from multiple time series and exogenous variables. See Notes section for more details depending on the type of series and exog.

Parameters:

Name Type Description Default
series pandas DataFrame, dict

Training time series.

required
exog pandas Series, pandas DataFrame, dict

Exogenous variable/s included as predictor/s.

`None`
store_last_window (bool, list)

Whether or not to store the last window (last_window_) of training data.

  • If True, last window is stored for all series.
  • If list, last window is stored for the series present in the list.
  • If False, last window is not stored.
`True`

Returns:

Name Type Description
X_train pandas DataFrame

Training values (predictors).

y_train pandas Series

Values of the time series related to each row of X_train.

series_indexes dict

Dictionary with the index of each series.

series_names_in_ list

Names of the series (levels) provided by the user during training.

X_train_series_names_in_ list

Names of the series (levels) included in the matrix X_train created internally for training. It can be different from series_names_in_ if some series are dropped during the training process because of NaNs or because they are not present in the training period.

exog_names_in_ list

Names of the exogenous variables used during training.

X_train_window_features_names_out_ list

Names of the window features included in the matrix X_train created internally for training.

X_train_exog_names_out_ list

Names of the exogenous variables included in the matrix X_train created internally for training. It can be different from exog_names_in_ if some exogenous variables are transformed during the training process.

exog_dtypes_in_ dict

Type of each exogenous variable/s used in training. If transformer_exog is used, the dtypes are calculated before the transformation.

last_window_ dict

Last window of training data for each series. It stores the values needed to predict the next step immediately after the training data.

Notes
  • If series is a pandas DataFrame and exog is a pandas Series or DataFrame, each exog is duplicated for each series. Exog must have the same index as series (type, length and frequency).
  • If series is a pandas DataFrame and exog is a dict of pandas Series or DataFrames. Each key in exog must be a column in series and the values are the exog for each series. Exog must have the same index as series (type, length and frequency).
  • If series is a dict of pandas Series, exog must be a dict of pandas Series or DataFrames. The keys in series and exog must be the same. All series and exog must have a pandas DatetimeIndex with the same frequency.
Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
def _create_train_X_y(
    self,
    series: Union[pd.DataFrame, dict],
    exog: Optional[Union[pd.Series, pd.DataFrame, dict]] = None,
    store_last_window: Union[bool, list] = True,
) -> Tuple[pd.DataFrame, pd.Series, dict, list, list, list, list, list, dict, dict]:
    """
    Create training matrices from multiple time series and exogenous
    variables. See Notes section for more details depending on the type of
    `series` and `exog`.

    Parameters
    ----------
    series : pandas DataFrame, dict
        Training time series.
    exog : pandas Series, pandas DataFrame, dict, default `None`
        Exogenous variable/s included as predictor/s.
    store_last_window : bool, list, default `True`
        Whether or not to store the last window (`last_window_`) of training data.

        - If `True`, last window is stored for all series. 
        - If `list`, last window is stored for the series present in the list.
        - If `False`, last window is not stored.

    Returns
    -------
    X_train : pandas DataFrame
        Training values (predictors).
    y_train : pandas Series
        Values of the time series related to each row of `X_train`.
    series_indexes : dict
        Dictionary with the index of each series.
    series_names_in_ : list
        Names of the series (levels) provided by the user during training.
    X_train_series_names_in_ : list
        Names of the series (levels) included in the matrix `X_train` created
        internally for training. It can be different from `series_names_in_` if
        some series are dropped during the training process because of NaNs or
        because they are not present in the training period.
    exog_names_in_ : list
        Names of the exogenous variables used during training.
    X_train_window_features_names_out_ : list
        Names of the window features included in the matrix `X_train` created
        internally for training.
    X_train_exog_names_out_ : list
        Names of the exogenous variables included in the matrix `X_train` created
        internally for training. It can be different from `exog_names_in_` if
        some exogenous variables are transformed during the training process.
    exog_dtypes_in_ : dict
        Type of each exogenous variable/s used in training. If `transformer_exog` 
        is used, the dtypes are calculated before the transformation.
    last_window_ : dict
        Last window of training data for each series. It stores the values 
        needed to predict the next `step` immediately after the training data.

    Notes
    -----
    - If `series` is a pandas DataFrame and `exog` is a pandas Series or 
    DataFrame, each exog is duplicated for each series. Exog must have the
    same index as `series` (type, length and frequency).
    - If `series` is a pandas DataFrame and `exog` is a dict of pandas Series 
    or DataFrames. Each key in `exog` must be a column in `series` and the 
    values are the exog for each series. Exog must have the same index as 
    `series` (type, length and frequency).
    - If `series` is a dict of pandas Series, `exog` must be a dict of pandas
    Series or DataFrames. The keys in `series` and `exog` must be the same.
    All series and exog must have a pandas DatetimeIndex with the same 
    frequency.

    """

    series_dict, series_indexes = check_preprocess_series(series=series)
    input_series_is_dict = isinstance(series, dict)
    series_names_in_ = list(series_dict.keys())

    if self.is_fitted and not set(series_names_in_).issubset(set(self.series_names_in_)):
        raise ValueError(
            (f"Once the Forecaster has been trained, `series` must contain "
             f"the same series names as those used during training:\n"
             f" Got      : {series_names_in_}\n"
             f" Expected : {self.series_names_in_}")
        )

    exog_dict = {serie: None for serie in series_names_in_}
    exog_names_in_ = None
    X_train_exog_names_out_ = None
    if exog is not None:
        exog_dict, exog_names_in_ = check_preprocess_exog_multiseries(
                                        input_series_is_dict = input_series_is_dict,
                                        series_indexes       = series_indexes,
                                        series_names_in_     = series_names_in_,
                                        exog                 = exog,
                                        exog_dict            = exog_dict
                                    )

        if self.is_fitted:
            if self.exog_names_in_ is None:
                raise ValueError(
                    ("Once the Forecaster has been trained, `exog` must be `None` "
                     "because no exogenous variables were added during training.")
                )
            else:
                if not set(exog_names_in_) == set(self.exog_names_in_):
                    raise ValueError(
                        (f"Once the Forecaster has been trained, `exog` must contain "
                         f"the same exogenous variables as those used during training:\n"
                         f" Got      : {exog_names_in_}\n"
                         f" Expected : {self.exog_names_in_}")
                    )

    if not self.is_fitted:
        self.transformer_series_ = initialize_transformer_series(
                                       forecaster_name    = type(self).__name__,
                                       series_names_in_   = series_names_in_,
                                       encoding           = self.encoding,
                                       transformer_series = self.transformer_series
                                   )

    if self.differentiation is None:
        self.differentiator_ = {serie: None for serie in series_names_in_}
    else:
        if not self.is_fitted:
            self.differentiator_ = {
                serie: copy(self.differentiator) for serie in series_names_in_
            }

    series_dict, exog_dict = align_series_and_exog_multiseries(
                                 series_dict          = series_dict,
                                 input_series_is_dict = input_series_is_dict,
                                 exog_dict            = exog_dict
                             )

    if not self.is_fitted and self.transformer_series_['_unknown_level'] is not None:
        self.transformer_series_['_unknown_level'].fit(
            np.concatenate(list(series_dict.values())).reshape(-1, 1)
        )

    ignore_exog = True if exog is None else False
    input_matrices = [
        [series_dict[k], exog_dict[k], ignore_exog]
         for k in series_dict.keys()
    ]

    X_train_autoreg_buffer = []
    X_train_exog_buffer = []
    y_train_buffer = []
    for matrices in input_matrices:

        (
            X_train_autoreg,
            X_train_window_features_names_out_,
            X_train_exog,
            y_train
        ) = self._create_train_X_y_single_series(
            y           = matrices[0],
            exog        = matrices[1],
            ignore_exog = matrices[2],
        )

        X_train_autoreg_buffer.append(X_train_autoreg)
        X_train_exog_buffer.append(X_train_exog)
        y_train_buffer.append(y_train)

    X_train = pd.concat(X_train_autoreg_buffer, axis=0)
    y_train = pd.concat(y_train_buffer, axis=0)

    if self.is_fitted:
        encoded_values = self.encoder.transform(X_train[['_level_skforecast']])
    else:
        encoded_values = self.encoder.fit_transform(X_train[['_level_skforecast']])
        for i, code in enumerate(self.encoder.categories_[0]):
            self.encoding_mapping_[code] = i

    X_train = pd.concat([
                  X_train.drop(columns='_level_skforecast'),
                  encoded_values
              ], axis=1)

    if self.encoding == 'onehot':
        X_train.columns = X_train.columns.str.replace('_level_skforecast_', '')
    elif self.encoding == 'ordinal_category':
        X_train['_level_skforecast'] = (
            X_train['_level_skforecast'].astype('category')
        )

    del encoded_values

    exog_dtypes_in_ = None
    if exog is not None:

        X_train_exog = pd.concat(X_train_exog_buffer, axis=0)
        if '_dummy_exog_col_to_keep_shape' in X_train_exog.columns:
            X_train_exog = (
                X_train_exog.drop(columns=['_dummy_exog_col_to_keep_shape'])
            )

        exog_names_in_ = X_train_exog.columns.to_list()
        exog_dtypes_in_ = get_exog_dtypes(exog=X_train_exog)

        fit_transformer = False if self.is_fitted else True
        X_train_exog = transform_dataframe(
                           df                = X_train_exog,
                           transformer       = self.transformer_exog,
                           fit               = fit_transformer,
                           inverse_transform = False
                       )

        check_exog_dtypes(X_train_exog, call_check_exog=False)
        if not (X_train_exog.index == X_train.index).all():
            raise ValueError(
                ("Different index for `series` and `exog` after transformation. "
                 "They must be equal to ensure the correct alignment of values.")
            )

        X_train_exog_names_out_ = X_train_exog.columns.to_list()
        X_train = pd.concat([X_train, X_train_exog], axis=1)

    if y_train.isnull().any():
        mask = y_train.notna().to_numpy()
        y_train = y_train.iloc[mask]
        X_train = X_train.iloc[mask,]
        warnings.warn(
            ("NaNs detected in `y_train`. They have been dropped because the "
             "target variable cannot have NaN values. Same rows have been "
             "dropped from `X_train` to maintain alignment. This is caused by "
             "series with interspersed NaNs."),
             MissingValuesWarning
        )

    if self.dropna_from_series:
        if np.any(X_train.isnull().to_numpy()):
            mask = X_train.notna().all(axis=1).to_numpy()
            X_train = X_train.iloc[mask, ]
            y_train = y_train.iloc[mask]
            warnings.warn(
                ("NaNs detected in `X_train`. They have been dropped. If "
                 "you want to keep them, set `forecaster.dropna_from_series = False`. "
                 "Same rows have been removed from `y_train` to maintain alignment. "
                 "This caused by series with interspersed NaNs."),
                 MissingValuesWarning
            )
    else:
        if np.any(X_train.isnull().to_numpy()):
            warnings.warn(
                ("NaNs detected in `X_train`. Some regressors do not allow "
                 "NaN values during training. If you want to drop them, "
                 "set `forecaster.dropna_from_series = True`."),
                 MissingValuesWarning
            )

    if X_train.empty:
        raise ValueError(
            ("All samples have been removed due to NaNs. Set "
             "`forecaster.dropna_from_series = False` or review `exog` values.")
        )

    if self.encoding == 'onehot':
        X_train_series_names_in_ = [
            col for col in series_names_in_ if X_train[col].sum() > 0
        ]
    else:
        unique_levels = X_train['_level_skforecast'].unique()
        X_train_series_names_in_ = [
            k for k, v in self.encoding_mapping_.items()
            if v in unique_levels
        ]

    # The last time window of training data is stored so that lags needed as
    # predictors in the first iteration of `predict()` can be calculated.
    last_window_ = None
    if store_last_window:

        series_to_store = (
            X_train_series_names_in_ if store_last_window is True else store_last_window
        )

        series_not_in_series_dict = set(series_to_store) - set(X_train_series_names_in_)
        if series_not_in_series_dict:
            warnings.warn(
                (f"Series {series_not_in_series_dict} are not present in "
                 f"`series`. No last window is stored for them."),
                IgnoredArgumentWarning
            )
            series_to_store = [s for s in series_to_store 
                               if s not in series_not_in_series_dict]

        if series_to_store:
            last_window_ = {
                k: v.iloc[-self.window_size:].copy()
                for k, v in series_dict.items()
                if k in series_to_store
            }

    return (
        X_train,
        y_train,
        series_indexes,
        series_names_in_,
        X_train_series_names_in_,
        exog_names_in_,
        X_train_window_features_names_out_,
        X_train_exog_names_out_,
        exog_dtypes_in_,
        last_window_
    )

create_train_X_y

create_train_X_y(
    series, exog=None, suppress_warnings=False
)

Create training matrices from multiple time series and exogenous variables. See Notes section for more details depending on the type of series and exog.

Parameters:

Name Type Description Default
series pandas DataFrame, dict

Training time series.

required
exog pandas Series, pandas DataFrame, dict

Exogenous variable/s included as predictor/s.

`None`
suppress_warnings bool

If True, skforecast warnings will be suppressed during the creation of the training matrices. See skforecast.exceptions.warn_skforecast_categories for more information.

`False`

Returns:

Name Type Description
X_train pandas DataFrame

Training values (predictors).

y_train pandas Series

Values (target) of the time series related to each row of X_train.

Notes
  • If series is a pandas DataFrame and exog is a pandas Series or DataFrame, each exog is duplicated for each series. Exog must have the same index as series (type, length and frequency).
  • If series is a pandas DataFrame and exog is a dict of pandas Series or DataFrames. Each key in exog must be a column in series and the values are the exog for each series. Exog must have the same index as series (type, length and frequency).
  • If series is a dict of pandas Series, exogmust be a dict of pandas Series or DataFrames. The keys in series and exog must be the same. All series and exog must have a pandas DatetimeIndex with the same frequency.
Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
def create_train_X_y(
    self,
    series: Union[pd.DataFrame, dict],
    exog: Optional[Union[pd.Series, pd.DataFrame, dict]] = None,
    suppress_warnings: bool = False
) -> Tuple[pd.DataFrame, pd.Series]:
    """
    Create training matrices from multiple time series and exogenous
    variables. See Notes section for more details depending on the type of
    `series` and `exog`.

    Parameters
    ----------
    series : pandas DataFrame, dict
        Training time series.
    exog : pandas Series, pandas DataFrame, dict, default `None`
        Exogenous variable/s included as predictor/s.
    suppress_warnings : bool, default `False`
        If `True`, skforecast warnings will be suppressed during the creation
        of the training matrices. See skforecast.exceptions.warn_skforecast_categories 
        for more information.

    Returns
    -------
    X_train : pandas DataFrame
        Training values (predictors).
    y_train : pandas Series
        Values (target) of the time series related to each row of `X_train`.

    Notes
    -----
    - If `series` is a pandas DataFrame and `exog` is a pandas Series or 
    DataFrame, each exog is duplicated for each series. Exog must have the
    same index as `series` (type, length and frequency).
    - If `series` is a pandas DataFrame and `exog` is a dict of pandas Series 
    or DataFrames. Each key in `exog` must be a column in `series` and the 
    values are the exog for each series. Exog must have the same index as 
    `series` (type, length and frequency).
    - If `series` is a dict of pandas Series, `exog`must be a dict of pandas
    Series or DataFrames. The keys in `series` and `exog` must be the same.
    All series and exog must have a pandas DatetimeIndex with the same 
    frequency.

    """

    set_skforecast_warnings(suppress_warnings, action='ignore')

    output = self._create_train_X_y(
                 series            = series, 
                 exog              = exog, 
                 store_last_window = False
             )

    X_train = output[0]
    y_train = output[1]

    if self.encoding is None:
        X_train = X_train.drop(columns='_level_skforecast')

    set_skforecast_warnings(suppress_warnings, action='default')

    return X_train, y_train

_train_test_split_one_step_ahead

_train_test_split_one_step_ahead(
    series, initial_train_size, exog=None
)

Create matrices needed to train and test the forecaster for one-step-ahead predictions.

Parameters:

Name Type Description Default
series pandas DataFrame, dict

Training time series.

required
initial_train_size int

Initial size of the training set. It is the number of observations used to train the forecaster before making the first prediction.

required
exog pandas Series, pandas DataFrame, dict

Exogenous variable/s included as predictor/s.

`None`

Returns:

Name Type Description
X_train pandas DataFrame

Predictor values used to train the model.

y_train pandas Series

Target values related to each row of X_train.

X_test pandas DataFrame

Predictor values used to test the model.

y_test pandas Series

Target values related to each row of X_test.

X_train_encoding pandas Series

Series identifiers for each row of X_train.

X_test_encoding pandas Series

Series identifiers for each row of X_test.

Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
def _train_test_split_one_step_ahead(
    self,
    series: Union[pd.DataFrame, dict],
    initial_train_size: int,
    exog: Optional[Union[pd.Series, pd.DataFrame, dict]] = None
) -> Tuple[pd.DataFrame, pd.Series, pd.DataFrame, pd.Series, pd.Series, pd.Series]:
    """
    Create matrices needed to train and test the forecaster for one-step-ahead
    predictions.

    Parameters
    ----------
    series : pandas DataFrame, dict
        Training time series.
    initial_train_size : int
        Initial size of the training set. It is the number of observations used
        to train the forecaster before making the first prediction.
    exog : pandas Series, pandas DataFrame, dict, default `None`
        Exogenous variable/s included as predictor/s.

    Returns
    -------
    X_train : pandas DataFrame
        Predictor values used to train the model.
    y_train : pandas Series
        Target values related to each row of `X_train`.
    X_test : pandas DataFrame
        Predictor values used to test the model.
    y_test : pandas Series
        Target values related to each row of `X_test`.
    X_train_encoding : pandas Series
        Series identifiers for each row of `X_train`.
    X_test_encoding : pandas Series
        Series identifiers for each row of `X_test`.

    """

    if isinstance(series, dict):
        freqs = [s.index.freq for s in series.values() if s.index.freq is not None]
        if not freqs:
            raise ValueError("At least one series must have a frequency.")
        if not all(f == freqs[0] for f in freqs):
            raise ValueError(
                "All series with frequency must have the same frequency."
            )
        min_index = min([v.index[0] for v in series.values()])
        max_index = max([v.index[-1] for v in series.values()])
        span_index = pd.date_range(start=min_index, end=max_index, freq=freqs[0])
    else:
        span_index = series.index

    fold = [
        [0, initial_train_size],
        [initial_train_size - self.window_size, initial_train_size],
        [initial_train_size - self.window_size, len(span_index)],
        [0, 0],  # Dummy value
        True
    ]
    data_fold = _extract_data_folds_multiseries(
                    series             = series,
                    folds              = [fold],
                    span_index         = span_index,
                    window_size        = self.window_size,
                    exog               = exog,
                    dropna_last_window = self.dropna_from_series,
                    externally_fitted  = False
                )
    series_train, _, levels_last_window, exog_train, exog_test, _ = next(data_fold)

    start_test_idx = initial_train_size - self.window_size
    if isinstance(series, pd.DataFrame):
        series_test = series.iloc[start_test_idx:, :]
        series_test = series_test.loc[:, levels_last_window]
        series_test = series_test.dropna(axis=1, how='all')
    elif isinstance(series, dict):
        start_test_date = span_index[start_test_idx]
        series_test = {
            k: v.loc[v.index >= start_test_date]
            for k, v in series.items()
            if k in levels_last_window and not v.empty and not v.isna().all()
        }

    _is_fitted = self.is_fitted
    _series_names_in_ = self.series_names_in_
    _exog_names_in_ = self.exog_names_in_

    self.is_fitted = False
    X_train, y_train, _, series_names_in_, _, exog_names_in_, *_ = (
        self._create_train_X_y(
            series            = series_train,
            exog              = exog_train,
            store_last_window = False
        )
    )

    self.series_names_in_ = series_names_in_
    if exog is not None:
        self.exog_names_in_ = exog_names_in_
    self.is_fitted = True

    X_test, y_test, *_ = self._create_train_X_y(
                             series            = series_test,
                             exog              = exog_test,
                             store_last_window = False
                         )
    self.is_fitted = _is_fitted
    self.series_names_in_ = _series_names_in_
    self.exog_names_in_ = _exog_names_in_

    if self.encoding in ["ordinal", "ordinal_category"]:
        X_train_encoding = self.encoder.inverse_transform(
            X_train[["_level_skforecast"]]
        ).ravel()
        X_test_encoding = self.encoder.inverse_transform(
            X_test[["_level_skforecast"]]
        ).ravel()
    elif self.encoding == 'onehot':
        X_train_encoding = self.encoder.inverse_transform(
            X_train.loc[:, self.encoding_mapping_.keys()]
        ).ravel()
        X_test_encoding = self.encoder.inverse_transform(
            X_test.loc[:, self.encoding_mapping_.keys()]
        ).ravel()
    else:
        X_train_encoding = self.encoder.inverse_transform(
            X_train[["_level_skforecast"]]
        ).ravel()
        X_test_encoding = self.encoder.inverse_transform(
            X_test[["_level_skforecast"]]
        ).ravel()
        X_train = X_train.drop(columns="_level_skforecast")
        X_test = X_test.drop(columns="_level_skforecast")

    X_train_encoding = pd.Series(
        data=X_train_encoding, index=X_train.index
    ).fillna("_unknown_level")
    X_test_encoding = pd.Series(
        data=X_test_encoding, index=X_test.index
    ).fillna("_unknown_level")

    return X_train, y_train, X_test, y_test, X_train_encoding, X_test_encoding

create_sample_weights

create_sample_weights(series_names_in_, X_train)

Crate weights for each observation according to the forecaster's attributes series_weights and weight_func. The resulting weights are product of both types of weights.

Parameters:

Name Type Description Default
series_names_in_ list

Names of the series (levels) used during training.

required
X_train pandas DataFrame

Dataframe created with the create_train_X_y method, first return.

required

Returns:

Name Type Description
weights numpy ndarray

Weights to use in fit method.

Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
def create_sample_weights(
    self,
    series_names_in_: list,
    X_train: pd.DataFrame
) -> np.ndarray:
    """
    Crate weights for each observation according to the forecaster's attributes
    `series_weights` and `weight_func`. The resulting weights are product of both
    types of weights.

    Parameters
    ----------
    series_names_in_ : list
        Names of the series (levels) used during training.
    X_train : pandas DataFrame
        Dataframe created with the `create_train_X_y` method, first return.

    Returns
    -------
    weights : numpy ndarray
        Weights to use in `fit` method.

    """

    weights = None
    weights_samples = None
    weights_series = None

    if self.series_weights is not None:
        # Series not present in series_weights have a weight of 1 in all their samples.
        # Keys in series_weights not present in series are ignored.
        series_not_in_series_weights = (
            set(series_names_in_) - set(self.series_weights.keys())
        )
        if series_not_in_series_weights:
            warnings.warn(
                (f"{series_not_in_series_weights} not present in `series_weights`. "
                 f"A weight of 1 is given to all their samples."),
                 IgnoredArgumentWarning
            )
        self.series_weights_ = {col: 1. for col in series_names_in_}
        self.series_weights_.update(
            (k, v)
            for k, v in self.series_weights.items()
            if k in self.series_weights_
        )

        if self.encoding == "onehot":
            weights_series = [
                np.repeat(self.series_weights_[serie], sum(X_train[serie]))
                for serie in series_names_in_
            ]
        else:
            weights_series = [
                np.repeat(
                    self.series_weights_[serie],
                    sum(X_train["_level_skforecast"] == self.encoding_mapping_[serie]),
                )
                for serie in series_names_in_
            ]

        weights_series = np.concatenate(weights_series)

    if self.weight_func is not None:
        if isinstance(self.weight_func, Callable):
            self.weight_func_ = {col: copy(self.weight_func)
                                 for col in series_names_in_}
        else:
            # Series not present in weight_func have a weight of 1 in all their samples
            series_not_in_weight_func = (
                set(series_names_in_) - set(self.weight_func.keys())
            )
            if series_not_in_weight_func:
                warnings.warn(
                    (f"{series_not_in_weight_func} not present in `weight_func`. "
                     f"A weight of 1 is given to all their samples."),
                     IgnoredArgumentWarning
                )
            self.weight_func_ = {col: lambda x: np.ones_like(x, dtype=float) 
                                 for col in series_names_in_}
            self.weight_func_.update(
                (k, v)
                for k, v in self.weight_func.items()
                if k in self.weight_func_
            )

        weights_samples = []
        for key in self.weight_func_.keys():
            if self.encoding == "onehot":
                idx = X_train.index[X_train[key] == 1.0]
            else:
                idx = X_train.index[
                        X_train["_level_skforecast"] == self.encoding_mapping_[key]
                     ]
            weights_samples.append(self.weight_func_[key](idx))
        weights_samples = np.concatenate(weights_samples)

    if weights_series is not None:
        weights = weights_series
        if weights_samples is not None:
            weights = weights * weights_samples
    else:
        if weights_samples is not None:
            weights = weights_samples

    if weights is not None:
        if np.isnan(weights).any():
            raise ValueError(
                "The resulting `weights` cannot have NaN values."
            )
        if np.any(weights < 0):
            raise ValueError(
                "The resulting `weights` cannot have negative values."
            )
        if np.sum(weights) == 0:
            raise ValueError(
                ("The resulting `weights` cannot be normalized because "
                 "the sum of the weights is zero.")
            )

    return weights

fit

fit(
    series,
    exog=None,
    store_last_window=True,
    store_in_sample_residuals=True,
    suppress_warnings=False,
)

Training Forecaster. See Notes section for more details depending on the type of series and exog.

Additional arguments to be passed to the fit method of the regressor can be added with the fit_kwargs argument when initializing the forecaster.

Parameters:

Name Type Description Default
series pandas DataFrame, dict

Training time series.

required
exog pandas Series, pandas DataFrame, dict

Exogenous variable/s included as predictor/s.

`None`
store_last_window (bool, list)

Whether or not to store the last window (last_window_) of training data.

  • If True, last window is stored for all series.
  • If list, last window is stored for the series present in the list.
  • If False, last window is not stored.
`True`
store_in_sample_residuals bool

If True, in-sample residuals will be stored in the forecaster object after fitting (in_sample_residuals_ attribute).

`True`
suppress_warnings bool

If True, skforecast warnings will be suppressed during the training process. See skforecast.exceptions.warn_skforecast_categories for more information.

`False`

Returns:

Type Description
None
Notes
  • If series is a pandas DataFrame and exog is a pandas Series or DataFrame, each exog is duplicated for each series. Exog must have the same index as series (type, length and frequency).
  • If series is a pandas DataFrame and exog is a dict of pandas Series or DataFrames. Each key in exog must be a column in series and the values are the exog for each series. Exog must have the same index as series (type, length and frequency).
  • If series is a dict of pandas Series, exogmust be a dict of pandas Series or DataFrames. The keys in series and exog must be the same. All series and exog must have a pandas DatetimeIndex with the same frequency.
Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
def fit(
    self,
    series: Union[pd.DataFrame, dict],
    exog: Optional[Union[pd.Series, pd.DataFrame, dict]] = None,
    store_last_window: Union[bool, list] = True,
    store_in_sample_residuals: bool = True,
    suppress_warnings: bool = False
) -> None:
    """
    Training Forecaster. See Notes section for more details depending on 
    the type of `series` and `exog`.

    Additional arguments to be passed to the `fit` method of the regressor 
    can be added with the `fit_kwargs` argument when initializing the forecaster.

    Parameters
    ----------
    series : pandas DataFrame, dict
        Training time series.
    exog : pandas Series, pandas DataFrame, dict, default `None`
        Exogenous variable/s included as predictor/s.
    store_last_window : bool, list, default `True`
        Whether or not to store the last window (`last_window_`) of training data.

        - If `True`, last window is stored for all series. 
        - If `list`, last window is stored for the series present in the list.
        - If `False`, last window is not stored.
    store_in_sample_residuals : bool, default `True`
        If `True`, in-sample residuals will be stored in the forecaster object
        after fitting (`in_sample_residuals_` attribute).
    suppress_warnings : bool, default `False`
        If `True`, skforecast warnings will be suppressed during the training 
        process. See skforecast.exceptions.warn_skforecast_categories for more
        information.

    Returns
    -------
    None

    Notes
    -----
    - If `series` is a pandas DataFrame and `exog` is a pandas Series or 
    DataFrame, each exog is duplicated for each series. Exog must have the
    same index as `series` (type, length and frequency).
    - If `series` is a pandas DataFrame and `exog` is a dict of pandas Series 
    or DataFrames. Each key in `exog` must be a column in `series` and the 
    values are the exog for each series. Exog must have the same index as 
    `series` (type, length and frequency).
    - If `series` is a dict of pandas Series, `exog`must be a dict of pandas
    Series or DataFrames. The keys in `series` and `exog` must be the same.
    All series and exog must have a pandas DatetimeIndex with the same 
    frequency.

    """

    set_skforecast_warnings(suppress_warnings, action='ignore')

    # Reset values in case the forecaster has already been fitted.
    self.last_window_                       = None
    self.index_type_                        = None
    self.index_freq_                        = None
    self.training_range_                    = None
    self.series_names_in_                   = None
    self.exog_in_                           = False
    self.exog_names_in_                     = None
    self.exog_type_in_                      = None
    self.exog_dtypes_in_                    = None
    self.X_train_series_names_in_           = None
    self.X_train_window_features_names_out_ = None
    self.X_train_exog_names_out_            = None
    self.X_train_features_names_out_        = None
    self.in_sample_residuals_               = None
    self.is_fitted                          = False
    self.fit_date                           = None

    (
        X_train,
        y_train,
        series_indexes,
        series_names_in_,
        X_train_series_names_in_,
        exog_names_in_,
        X_train_window_features_names_out_,
        X_train_exog_names_out_,
        exog_dtypes_in_,
        last_window_
    ) = self._create_train_X_y(
            series=series, exog=exog, store_last_window=store_last_window
        )

    sample_weight = self.create_sample_weights(
                        series_names_in_ = series_names_in_,
                        X_train          = X_train
                    )

    X_train_regressor = (
        X_train
        if self.encoding is not None
        else X_train.drop(columns="_level_skforecast")
    )
    if sample_weight is not None:
        self.regressor.fit(
            X             = X_train_regressor,
            y             = y_train,
            sample_weight = sample_weight,
            **self.fit_kwargs
        )
    else:
        self.regressor.fit(X=X_train_regressor, y=y_train, **self.fit_kwargs)

    self.series_names_in_ = series_names_in_
    self.X_train_series_names_in_ = X_train_series_names_in_
    self.X_train_window_features_names_out_ = X_train_window_features_names_out_
    self.X_train_features_names_out_ = X_train_regressor.columns.to_list()

    self.is_fitted = True
    self.fit_date = pd.Timestamp.today().strftime('%Y-%m-%d %H:%M:%S')
    self.training_range_ = {k: v[[0, -1]] for k, v in series_indexes.items()}
    self.index_type_ = type(series_indexes[series_names_in_[0]])
    if isinstance(series_indexes[series_names_in_[0]], pd.DatetimeIndex):
        self.index_freq_ = series_indexes[series_names_in_[0]].freqstr
    else:
        self.index_freq_ = series_indexes[series_names_in_[0]].step

    if exog is not None:
        self.exog_in_ = True
        self.exog_names_in_ = exog_names_in_
        self.exog_type_in_ = type(exog)
        self.exog_dtypes_in_ = exog_dtypes_in_
        self.X_train_exog_names_out_ = X_train_exog_names_out_

    in_sample_residuals_ = {}
    if store_in_sample_residuals:

        residuals = (y_train - self.regressor.predict(X_train_regressor)).to_numpy()

        rng = np.random.default_rng(seed=123)
        if self.encoding is not None:
            for col in X_train_series_names_in_:
                if self.encoding == 'onehot':
                    mask = X_train[col].to_numpy() == 1.
                else:
                    encoded_value = self.encoding_mapping_[col]
                    mask = X_train['_level_skforecast'].to_numpy() == encoded_value

                residuals_col = residuals[mask]
                if len(residuals_col) > 1000:
                    residuals_col = rng.choice(
                                        a       = residuals_col,
                                        size    = 1000,
                                        replace = False
                                    )
                in_sample_residuals_[col] = residuals_col

        if len(residuals) > 1000:
            in_sample_residuals_['_unknown_level'] = rng.choice(
                                                        a       = residuals,
                                                        size    = 1000,
                                                        replace = False
                                                    )
        else:
            in_sample_residuals_['_unknown_level'] = residuals
    else:
        if self.encoding is not None:
            for col in X_train_series_names_in_:
                in_sample_residuals_[col] = None
        in_sample_residuals_['_unknown_level'] = None

    self.in_sample_residuals_ = in_sample_residuals_

    if store_last_window:
        self.last_window_ = last_window_

    set_skforecast_warnings(suppress_warnings, action='default')

_create_predict_inputs

_create_predict_inputs(
    steps,
    levels=None,
    last_window=None,
    exog=None,
    predict_boot=False,
    use_in_sample_residuals=True,
    check_inputs=True,
)

Create the inputs needed for the first iteration of the prediction process. As this is a recursive process, the last window is updated at each iteration of the prediction process.

Parameters:

Name Type Description Default
steps int

Number of future steps predicted.

required
levels (str, list)

Time series to be predicted. If None all levels whose last window ends at the same datetime index will be predicted together.

`None`
last_window pandas DataFrame

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1). If last_window = None, the values stored in self.last_window_ are used to calculate the initial predictors, and the predictions start right after training data.

`None`
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s.

`None`
predict_boot bool

If True, residuals are returned to generate bootstrapping predictions.

`False`
use_in_sample_residuals bool

If True, residuals from the training data are used as proxy of prediction error to create predictions. If False, out of sample residuals are used. In the latter case, the user should have calculated and stored the residuals within the forecaster (see set_out_sample_residuals()).

`True`
check_inputs bool

If True, the input is checked for possible warnings and errors with the check_predict_input function. This argument is created for internal use and is not recommended to be changed.

`True`

Returns:

Name Type Description
last_window pandas DataFrame

Series values used to create the predictors needed in the first iteration of the prediction (t + 1).

exog_values_dict (dict, None)

Exogenous variable/s included as predictor/s for each series in each step. The keys are the steps and the values are numpy arrays where each column is an exog and each row a series (level).

levels list

Names of the series (levels) to be predicted.

prediction_index pandas Index

Index of the predictions.

residuals (dict, None)

Residuals used to generate bootstrapping predictions for each level in the form {level: residuals}. If predict_boot = False, residuals is None.

Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
def _create_predict_inputs(
    self,
    steps: int,
    levels: Optional[Union[str, list]] = None,
    last_window: Optional[pd.DataFrame] = None,
    exog: Optional[Union[pd.Series, pd.DataFrame, dict]] = None,
    predict_boot: bool = False,
    use_in_sample_residuals: bool = True,
    check_inputs: bool = True
) -> Tuple[pd.DataFrame, Optional[dict], list, pd.Index, Optional[dict]]:
    """
    Create the inputs needed for the first iteration of the prediction 
    process. As this is a recursive process, the last window is updated at 
    each iteration of the prediction process.

    Parameters
    ----------
    steps : int
        Number of future steps predicted.
    levels : str, list, default `None`
        Time series to be predicted. If `None` all levels whose last window
        ends at the same datetime index will be predicted together.
    last_window : pandas DataFrame, default `None`
        Series values used to create the predictors (lags) needed in the 
        first iteration of the prediction (t + 1).
        If `last_window = None`, the values stored in `self.last_window_` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s.
    predict_boot : bool, default `False`
        If `True`, residuals are returned to generate bootstrapping predictions.
    use_in_sample_residuals : bool, default `True`
        If `True`, residuals from the training data are used as proxy of
        prediction error to create predictions. If `False`, out of sample 
        residuals are used. In the latter case, the user should have
        calculated and stored the residuals within the forecaster (see
        `set_out_sample_residuals()`).
    check_inputs : bool, default `True`
        If `True`, the input is checked for possible warnings and errors 
        with the `check_predict_input` function. This argument is created 
        for internal use and is not recommended to be changed.

    Returns
    -------
    last_window : pandas DataFrame
        Series values used to create the predictors needed in the first 
        iteration of the prediction (t + 1).
    exog_values_dict : dict, None
        Exogenous variable/s included as predictor/s for each series in 
        each step. The keys are the steps and the values are numpy arrays
        where each column is an exog and each row a series (level).
    levels : list
        Names of the series (levels) to be predicted.
    prediction_index : pandas Index
        Index of the predictions.
    residuals : dict, None
        Residuals used to generate bootstrapping predictions for each level 
        in the form `{level: residuals}`. If `predict_boot = False`, 
        `residuals` is `None`.

    """

    levels, input_levels_is_list = prepare_levels_multiseries(
        X_train_series_names_in_=self.X_train_series_names_in_, levels=levels
    )

    if self.is_fitted and last_window is None:
        levels, last_window = preprocess_levels_self_last_window_multiseries(
                                  levels               = levels,
                                  input_levels_is_list = input_levels_is_list,
                                  last_window_         = self.last_window_
                              )

    if self.is_fitted and predict_boot:
        residuals = prepare_residuals_multiseries(
                        levels                  = levels,
                        use_in_sample_residuals = use_in_sample_residuals,
                        encoding                = self.encoding,
                        in_sample_residuals_    = self.in_sample_residuals_,
                        out_sample_residuals_   = self.out_sample_residuals_
                    )
    else:
        residuals = None

    if check_inputs:
        check_predict_input(
            forecaster_name  = type(self).__name__,
            steps            = steps,
            is_fitted        = self.is_fitted,
            exog_in_         = self.exog_in_,
            index_type_      = self.index_type_,
            index_freq_      = self.index_freq_,
            window_size      = self.window_size,
            last_window      = last_window,
            exog             = exog,
            exog_type_in_    = self.exog_type_in_,
            exog_names_in_   = self.exog_names_in_,
            interval         = None,
            levels           = levels,
            series_names_in_ = self.series_names_in_,
            encoding         = self.encoding
        )

    last_window = last_window.iloc[
        -self.window_size :, last_window.columns.get_indexer(levels)
    ].copy()
    _, last_window_index = preprocess_last_window(
                               last_window   = last_window,
                               return_values = False
                           )
    prediction_index = expand_index(
                           index = last_window_index,
                           steps = steps
                       )

    if exog is not None:
        if isinstance(exog, dict):
            # Empty dataframe to be filled with the exog values of each level
            empty_exog = pd.DataFrame(
                             data  = {col: pd.Series(dtype=dtype)
                                      for col, dtype in self.exog_dtypes_in_.items()},
                             index = prediction_index
                         )
        else:
            if isinstance(exog, pd.Series):
                exog = exog.to_frame()

            exog = transform_dataframe(
                       df                = exog,
                       transformer       = self.transformer_exog,
                       fit               = False,
                       inverse_transform = False
                   )
            check_exog_dtypes(exog=exog)
            exog_values = exog.to_numpy()[:steps]
    else:
        exog_values = None

    exog_values_all_levels = []
    for level in levels:
        last_window_level = last_window[level].to_numpy()
        last_window_level = transform_numpy(
            array             = last_window_level,
            transformer       = self.transformer_series_.get(level, self.transformer_series_['_unknown_level']),
            fit               = False,
            inverse_transform = False
        )

        if self.differentiation is not None:
            if level not in self.differentiator_.keys():
                self.differentiator_[level] = copy(self.differentiator)
            last_window_level = (
                self.differentiator_[level].fit_transform(last_window_level)
            )

        last_window[level] = last_window_level

        if isinstance(exog, dict):
            # Fill the empty dataframe with the exog values of each level
            # and transform them if necessary
            exog_values = exog.get(level, None)
            if exog_values is not None:
                if isinstance(exog_values, pd.Series):
                    exog_values = exog_values.to_frame()

                exog_values = empty_exog.fillna(exog_values)
                exog_values = transform_dataframe(
                                  df                = exog_values,
                                  transformer       = self.transformer_exog,
                                  fit               = False,
                                  inverse_transform = False
                              )

                check_exog_dtypes(
                    exog      = exog_values,
                    series_id = f"`exog` for series '{level}'"
                )
                exog_values = exog_values.to_numpy()
            else:
                exog_values = empty_exog.to_numpy(copy=True)

        exog_values_all_levels.append(exog_values)

    if exog is not None:
        # Exog is transformed into a dict where each key is a step and each value
        # is a numpy array where each column is an exog and each row a series
        exog_values_all_levels = np.concatenate(exog_values_all_levels)
        exog_values_dict = {}
        for i in range(steps):
            exog_values_dict[i + 1] = exog_values_all_levels[i::steps, :]
    else:
        exog_values_dict = None

    return last_window, exog_values_dict, levels, prediction_index, residuals

_recursive_predict

_recursive_predict(
    steps,
    levels,
    last_window,
    exog_values_dict=None,
    residuals=None,
)

Predict n steps for one or multiple levels. It is an iterative process in which, each prediction, is used as a predictor for the next step.

Parameters:

Name Type Description Default
steps int

Number of future steps predicted.

required
levels list

Time series to be predicted.

required
last_window pandas DataFrame

Series values used to create the predictors needed in the first iteration of the prediction (t + 1).

required
exog_values_dict dict

Exogenous variable/s included as predictor/s for each series in each step. The keys are the steps and the values are numpy arrays where each column is an exog and each row a series (level).

`None`
residuals numpy ndarray

Residuals used to generate bootstrapping predictions in the form (steps, levels).

`None`

Returns:

Name Type Description
predictions numpy ndarray

Predicted values.

Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
def _recursive_predict(
    self,
    steps: int,
    levels: list,
    last_window: pd.DataFrame,
    exog_values_dict: Optional[dict] = None,
    residuals: Optional[np.ndarray] = None
) -> np.ndarray:
    """
    Predict n steps for one or multiple levels. It is an iterative process
    in which, each prediction, is used as a predictor for the next step.

    Parameters
    ----------
    steps : int
        Number of future steps predicted.
    levels : list
        Time series to be predicted.
    last_window : pandas DataFrame
        Series values used to create the predictors needed in the first 
        iteration of the prediction (t + 1).
    exog_values_dict : dict, default `None`
        Exogenous variable/s included as predictor/s for each series in 
        each step. The keys are the steps and the values are numpy arrays
        where each column is an exog and each row a series (level).
    residuals : numpy ndarray, default `None`
        Residuals used to generate bootstrapping predictions in the form
        (steps, levels).

    Returns
    -------
    predictions : numpy ndarray
        Predicted values.

    """

    n_levels = len(levels)
    n_lags = len(self.lags) if self.lags is not None else 0
    n_window_features = (
        len(self.X_train_window_features_names_out_)
        if self.window_features is not None
        else 0
    )
    n_autoreg = n_lags + n_window_features
    n_exog = len(self.X_train_exog_names_out_) if exog_values_dict is not None else 0

    if self.encoding is not None:
        if self.encoding == "onehot":
            levels_encoded = np.zeros(
                (n_levels, len(self.X_train_series_names_in_)), dtype=float
            )
            for i, level in enumerate(levels):
                if level in self.X_train_series_names_in_:
                    levels_encoded[i, self.X_train_series_names_in_.index(level)] = 1.
        else:
            levels_encoded = np.array(
                [self.encoding_mapping_.get(level, None) for level in levels],
                dtype="float64"
            ).reshape(-1, 1)
        levels_encoded_shape = levels_encoded.shape[1]
    else:
        levels_encoded_shape = 0

    features_shape = n_autoreg + levels_encoded_shape + n_exog
    features = np.full(
        shape=(n_levels, features_shape), fill_value=np.nan, order='F', dtype=float
    )
    if self.encoding is not None:
        features[:, n_autoreg: n_autoreg + levels_encoded_shape] = levels_encoded

    predictions = np.full(
        shape=(steps, n_levels), fill_value=np.nan, order='C', dtype=float
    )
    last_window = np.concatenate((last_window.to_numpy(), predictions), axis=0)

    for i in range(steps):

        if self.lags is not None:
            features[:, :n_lags] = last_window[
                -self.lags - (steps - i), :
            ].transpose()
        if self.window_features is not None:
            features[:, n_lags:n_autoreg] = np.concatenate(
                [
                    wf.transform(last_window[i:-(steps - i), :]) 
                    for wf in self.window_features
                ],
                axis=1
            )
        if exog_values_dict is not None:
            features[:, -n_exog:] = exog_values_dict[i + 1]

        pred = self.regressor.predict(features)

        if residuals is not None:
            pred += residuals[i, :]

        predictions[i, :] = pred 

        # Update `last_window` values. The first position is discarded and 
        # the new prediction is added at the end.
        last_window[-(steps - i), :] = pred

    return predictions

create_predict_X

create_predict_X(
    steps,
    levels=None,
    last_window=None,
    exog=None,
    suppress_warnings=False,
)

Create the predictors needed to predict steps ahead. As it is a recursive process, the predictors are created at each iteration of the prediction process.

Parameters:

Name Type Description Default
steps int

Number of future steps predicted.

required
levels (str, list)

Time series to be predicted. If None all levels whose last window ends at the same datetime index will be predicted together.

`None`
last_window pandas DataFrame

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1). If last_window = None, the values stored in self.last_window_ are used to calculate the initial predictors, and the predictions start right after training data.

`None`
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s.

`None`
suppress_warnings bool

If True, skforecast warnings will be suppressed during the prediction process. See skforecast.exceptions.warn_skforecast_categories for more information.

`False`

Returns:

Name Type Description
X_predict_dict dict

Dict in the form {level: X_predict} with the predictors for each step and series. The index is the same as the prediction index.

Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
def create_predict_X(
    self,
    steps: int,
    levels: Optional[Union[str, list]] = None,
    last_window: Optional[pd.DataFrame] = None,
    exog: Optional[Union[pd.Series, pd.DataFrame, dict]] = None,
    suppress_warnings: bool = False
) -> dict:
    """
    Create the predictors needed to predict `steps` ahead. As it is a recursive
    process, the predictors are created at each iteration of the prediction 
    process.

    Parameters
    ----------
    steps : int
        Number of future steps predicted.
    levels : str, list, default `None`
        Time series to be predicted. If `None` all levels whose last window
        ends at the same datetime index will be predicted together.
    last_window : pandas DataFrame, default `None`
        Series values used to create the predictors (lags) needed in the 
        first iteration of the prediction (t + 1).
        If `last_window = None`, the values stored in `self.last_window_` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s.
    suppress_warnings : bool, default `False`
        If `True`, skforecast warnings will be suppressed during the prediction 
        process. See skforecast.exceptions.warn_skforecast_categories for more
        information.

    Returns
    -------
    X_predict_dict : dict
        Dict in the form `{level: X_predict}` with the predictors for each 
        step and series. The index is the same as the prediction index.

    """

    set_skforecast_warnings(suppress_warnings, action='ignore')

    (
        last_window,
        exog_values_dict,
        levels,
        prediction_index,
        _
    ) = self._create_predict_inputs(
        steps        = steps,
        levels       = levels,
        last_window  = last_window,
        exog         = exog
    )

    with warnings.catch_warnings():
        warnings.filterwarnings(
            "ignore", 
            message="X does not have valid feature names", 
            category=UserWarning
        )
        predictions = self._recursive_predict(
                          steps            = steps,
                          levels           = levels,
                          last_window      = last_window,
                          exog_values_dict = exog_values_dict
                      )

    X_predict_dict = {}
    if self.lags is not None:
        idx_lags = np.arange(-steps, 0)[:, None] - self.lags
    len_X_train_series_names_in_ = len(self.X_train_series_names_in_)
    exog_shape = len(self.X_train_exog_names_out_) if exog is not None else 0

    for i, level in enumerate(levels):

        X_predict_level = []
        full_predictors_level = np.concatenate(
            (last_window[level].to_numpy(), predictions[:, i])
        )

        if self.lags is not None:
            X_predict_level.append(
                full_predictors_level[idx_lags + len(full_predictors_level)]
            )

        if self.window_features is not None:
            X_window_features = np.full(
                shape      = (steps, len(self.X_train_window_features_names_out_)), 
                fill_value = np.nan, 
                order      = 'C',
                dtype      = float
            )
            for j in range(steps):
                X_window_features[j, :] = np.concatenate(
                    [
                        wf.transform(full_predictors_level[j:-(steps - j)]) 
                        for wf in self.window_features
                    ]
                )
            X_predict_level.append(X_window_features)

        if self.encoding is not None:
            if self.encoding == 'onehot':
                level_encoded = np.zeros(
                                    shape = (1, len_X_train_series_names_in_),
                                    dtype = float
                                )
                level_encoded[0][self.X_train_series_names_in_.index(level)] = 1.
            else:
                level_encoded = np.array(
                                    [self.encoding_mapping_.get(level, None)],
                                    dtype = 'float64'
                                )

            level_encoded = np.tile(level_encoded, (steps, 1))
            X_predict_level.append(level_encoded)

        if exog is not None:
            exog_cols = np.full(
                shape=(steps, exog_shape), fill_value=np.nan, order='C', dtype=float
            )
            for j in range(steps):
                exog_cols[j, :] = exog_values_dict[j + 1][i, :]
            X_predict_level.append(exog_cols)

        X_predict_dict[level] = pd.DataFrame(
                                    data    = np.concatenate(X_predict_level, axis=1),
                                    columns = self.X_train_features_names_out_,
                                    index   = prediction_index
                                )

    if self.transformer_series is not None or self.differentiation is not None:
        warnings.warn(
            "The output matrix is in the transformed scale due to the "
            "inclusion of transformations or differentiation in the Forecaster. "
            "As a result, any predictions generated using this matrix will also "
            "be in the transformed scale. Please refer to the documentation "
            "for more details: "
            "https://skforecast.org/latest/user_guides/training-and-prediction-matrices.html",
            DataTransformationWarning
        )

    set_skforecast_warnings(suppress_warnings, action='default')

    return X_predict_dict

predict

predict(
    steps,
    levels=None,
    last_window=None,
    exog=None,
    suppress_warnings=False,
    check_inputs=True,
)

Predict n steps ahead. It is an recursive process in which, each prediction, is used as a predictor for the next step. Only levels whose last window ends at the same datetime index can be predicted together.

Parameters:

Name Type Description Default
steps int

Number of future steps predicted.

required
levels (str, list)

Time series to be predicted. If None all levels whose last window ends at the same datetime index will be predicted together.

`None`
last_window pandas DataFrame

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1). If last_window = None, the values stored in self.last_window_ are used to calculate the initial predictors, and the predictions start right after training data.

`None`
exog pandas Series, pandas DataFrame, dict

Exogenous variable/s included as predictor/s.

`None`
suppress_warnings bool

If True, skforecast warnings will be suppressed during the prediction process. See skforecast.exceptions.warn_skforecast_categories for more information.

`False`
check_inputs bool

If True, the input is checked for possible warnings and errors with the check_predict_input function. This argument is created for internal use and is not recommended to be changed.

`True`

Returns:

Name Type Description
predictions pandas DataFrame

Predicted values, one column for each level.

Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
def predict(
    self,
    steps: int,
    levels: Optional[Union[str, list]] = None,
    last_window: Optional[pd.DataFrame] = None,
    exog: Optional[Union[pd.Series, pd.DataFrame, dict]] = None,
    suppress_warnings: bool = False,
    check_inputs: bool = True
) -> pd.DataFrame:
    """
    Predict n steps ahead. It is an recursive process in which, each prediction,
    is used as a predictor for the next step. Only levels whose last window
    ends at the same datetime index can be predicted together.

    Parameters
    ----------
    steps : int
        Number of future steps predicted.
    levels : str, list, default `None`
        Time series to be predicted. If `None` all levels whose last window
        ends at the same datetime index will be predicted together.
    last_window : pandas DataFrame, default `None`
        Series values used to create the predictors (lags) needed in the 
        first iteration of the prediction (t + 1).
        If `last_window = None`, the values stored in `self.last_window_` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : pandas Series, pandas DataFrame, dict, default `None`
        Exogenous variable/s included as predictor/s.
    suppress_warnings : bool, default `False`
        If `True`, skforecast warnings will be suppressed during the prediction 
        process. See skforecast.exceptions.warn_skforecast_categories for more
        information.
    check_inputs : bool, default `True`
        If `True`, the input is checked for possible warnings and errors 
        with the `check_predict_input` function. This argument is created 
        for internal use and is not recommended to be changed.

    Returns
    -------
    predictions : pandas DataFrame
        Predicted values, one column for each level.

    """

    set_skforecast_warnings(suppress_warnings, action='ignore')

    (
        last_window,
        exog_values_dict,
        levels,
        prediction_index,
        _
    ) = self._create_predict_inputs(
        steps        = steps,
        levels       = levels,
        last_window  = last_window,
        exog         = exog,
        check_inputs = check_inputs
    )

    with warnings.catch_warnings():
        warnings.filterwarnings(
            "ignore", 
            message="X does not have valid feature names", 
            category=UserWarning
        )
        predictions = self._recursive_predict(
                          steps            = steps,
                          levels           = levels,
                          last_window      = last_window,
                          exog_values_dict = exog_values_dict
                      )

    for i, level in enumerate(levels):
        if self.differentiation is not None:
            predictions[:, i] = (
                self
                .differentiator_[level]
                .inverse_transform_next_window(predictions[:, i])
            )

        predictions[:, i] = transform_numpy(
            array             = predictions[:, i],
            transformer       = self.transformer_series_.get(level, self.transformer_series_['_unknown_level']),
            fit               = False,
            inverse_transform = True
        )

    predictions = pd.DataFrame(
                      data    = predictions,
                      index   = prediction_index,
                      columns = levels
                  )

    set_skforecast_warnings(suppress_warnings, action='default')

    return predictions

predict_bootstrapping

predict_bootstrapping(
    steps,
    levels=None,
    last_window=None,
    exog=None,
    n_boot=250,
    random_state=123,
    use_in_sample_residuals=True,
    suppress_warnings=False,
)

Generate multiple forecasting predictions using a bootstrapping process. By sampling from a collection of past observed errors (the residuals), each iteration of bootstrapping generates a different set of predictions. Only levels whose last window ends at the same datetime index can be predicted together. See the Notes section for more information.

Parameters:

Name Type Description Default
steps int

Number of future steps predicted.

required
levels (str, list)

Time series to be predicted. If None all levels whose last window ends at the same datetime index will be predicted together.

`None`
last_window pandas DataFrame

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1). If last_window = None, the values stored in self.last_window_ are used to calculate the initial predictors, and the predictions start right after training data.

`None`
exog pandas Series, pandas DataFrame, dict

Exogenous variable/s included as predictor/s.

`None`
n_boot int

Number of bootstrapping iterations used to estimate predictions.

`250`
random_state int

Sets a seed to the random generator, so that boot predictions are always deterministic.

`123`
use_in_sample_residuals bool

If True, residuals from the training data are used as proxy of prediction error to create predictions. If False, out of sample residuals are used. In the latter case, the user should have calculated and stored the residuals within the forecaster (see set_out_sample_residuals()).

`True`
suppress_warnings bool

If True, skforecast warnings will be suppressed during the prediction process. See skforecast.exceptions.warn_skforecast_categories for more information.

`False`

Returns:

Name Type Description
boot_predictions dict

Predictions generated by bootstrapping for each level.

Notes

More information about prediction intervals in forecasting: https://otexts.com/fpp3/prediction-intervals.html#prediction-intervals-from-bootstrapped-residuals Forecasting: Principles and Practice (3nd ed) Rob J Hyndman and George Athanasopoulos.

Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
def predict_bootstrapping(
    self,
    steps: int,
    levels: Optional[Union[str, list]] = None,
    last_window: Optional[pd.DataFrame] = None,
    exog: Optional[Union[pd.Series, pd.DataFrame, dict]] = None,
    n_boot: int = 250,
    random_state: int = 123,
    use_in_sample_residuals: bool = True,
    suppress_warnings: bool = False
) -> dict:
    """
    Generate multiple forecasting predictions using a bootstrapping process. 
    By sampling from a collection of past observed errors (the residuals),
    each iteration of bootstrapping generates a different set of predictions. 
    Only levels whose last window ends at the same datetime index can be 
    predicted together. See the Notes section for more information. 

    Parameters
    ----------
    steps : int
        Number of future steps predicted.
    levels : str, list, default `None`
        Time series to be predicted. If `None` all levels whose last window
        ends at the same datetime index will be predicted together.
    last_window : pandas DataFrame, default `None`
        Series values used to create the predictors (lags) needed in the 
        first iteration of the prediction (t + 1).
        If `last_window = None`, the values stored in `self.last_window_` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : pandas Series, pandas DataFrame, dict, default `None`
        Exogenous variable/s included as predictor/s.
    n_boot : int, default `250`
        Number of bootstrapping iterations used to estimate predictions.
    random_state : int, default `123`
        Sets a seed to the random generator, so that boot predictions are always 
        deterministic.
    use_in_sample_residuals : bool, default `True`
        If `True`, residuals from the training data are used as proxy of
        prediction error to create predictions. If `False`, out of sample 
        residuals are used. In the latter case, the user should have
        calculated and stored the residuals within the forecaster (see
        `set_out_sample_residuals()`).
    suppress_warnings : bool, default `False`
        If `True`, skforecast warnings will be suppressed during the prediction 
        process. See skforecast.exceptions.warn_skforecast_categories for more
        information.

    Returns
    -------
    boot_predictions : dict
        Predictions generated by bootstrapping for each level.
        {level: pandas DataFrame, shape (steps, n_boot)}

    Notes
    -----
    More information about prediction intervals in forecasting:
    https://otexts.com/fpp3/prediction-intervals.html#prediction-intervals-from-bootstrapped-residuals
    Forecasting: Principles and Practice (3nd ed) Rob J Hyndman and George Athanasopoulos.

    """

    set_skforecast_warnings(suppress_warnings, action='ignore')

    (
        last_window,
        exog_values_dict,
        levels,
        prediction_index,
        residuals
    ) = self._create_predict_inputs(
        steps                   = steps,
        levels                  = levels,
        last_window             = last_window,
        exog                    = exog,
        predict_boot            = True,
        use_in_sample_residuals = use_in_sample_residuals
    )

    n_levels = len(levels)
    rng = np.random.default_rng(seed=random_state)
    sample_residuals = np.full(
                           shape      = (steps, n_boot, n_levels),
                           fill_value = np.nan,
                           order      = 'F',
                           dtype      = float
                       )
    for i, level in enumerate(levels):
        sample_residuals[:, :, i] = rng.choice(
                                        a       = residuals[level],
                                        size    = (steps, n_boot),
                                        replace = True
                                    )

    boot_columns = []
    boot_predictions_full = np.full(
                                shape      = (steps, n_levels, n_boot),
                                fill_value = np.nan,
                                order      = 'F',
                                dtype      = float
                            )

    with warnings.catch_warnings():
        warnings.filterwarnings(
            "ignore", 
            message="X does not have valid feature names", 
            category=UserWarning
        )
        for i in range(n_boot):

            boot_columns.append(f"pred_boot_{i}")
            boot_predictions_full[:, :, i] = self._recursive_predict(
                steps            = steps,
                levels           = levels,
                last_window      = last_window,
                exog_values_dict = exog_values_dict,
                residuals        = sample_residuals[:, i, :]
            )

    boot_predictions = {}
    for i, level in enumerate(levels):

        if self.differentiation is not None:
            boot_predictions_full[:, i, :] = (
                self.differentiator_[level]
                .inverse_transform_next_window(boot_predictions_full[:, i, :])
            )

        transformer_level = self.transformer_series_.get(
                                level,
                                self.transformer_series_['_unknown_level']
                            )
        if transformer_level is not None:
            boot_predictions_full[:, i, :] = np.apply_along_axis(
                func1d            = transform_numpy,
                axis              = 0,
                arr               = boot_predictions_full[:, i, :],
                transformer       = transformer_level,
                fit               = False,
                inverse_transform = True
            )

        boot_predictions[level] = pd.DataFrame(
                                      data    = boot_predictions_full[:, i, :],
                                      index   = prediction_index,
                                      columns = boot_columns
                                  )

    set_skforecast_warnings(suppress_warnings, action='default')

    return boot_predictions

predict_interval

predict_interval(
    steps,
    levels=None,
    last_window=None,
    exog=None,
    interval=[5, 95],
    n_boot=250,
    random_state=123,
    use_in_sample_residuals=True,
    suppress_warnings=False,
)

Iterative process in which, each prediction, is used as a predictor for the next step and bootstrapping is used to estimate prediction intervals. Both predictions and intervals are returned.

Parameters:

Name Type Description Default
steps int

Number of future steps predicted.

required
levels (str, list)

Time series to be predicted. If None all levels whose last window ends at the same datetime index will be predicted together.

`None`
last_window pandas DataFrame

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1). If last_window = None, the values stored in self.last_window_ are used to calculate the initial predictors, and the predictions start right after training data.

`None`
exog pandas Series, pandas DataFrame, dict

Exogenous variable/s included as predictor/s.

`None`
interval list

Confidence of the prediction interval estimated. Sequence of percentiles to compute, which must be between 0 and 100 inclusive. For example, interval of 95% should be as interval = [2.5, 97.5].

`[5, 95]`
n_boot int

Number of bootstrapping iterations used to estimate prediction intervals.

`250`
random_state int

Sets a seed to the random generator, so that boot predictions are always deterministic.

`123`
use_in_sample_residuals bool

If True, residuals from the training data are used as proxy of prediction error to create predictions. If False, out of sample residuals are used. In the latter case, the user should have calculated and stored the residuals within the forecaster (see set_out_sample_residuals()).

`True`
suppress_warnings bool

If True, skforecast warnings will be suppressed during the prediction process. See skforecast.exceptions.warn_skforecast_categories for more information.

`False`

Returns:

Name Type Description
predictions pandas DataFrame

Values predicted by the forecaster and their estimated interval.

  • level: predictions.
  • level_lower_bound: lower bound of the interval.
  • level_upper_bound: upper bound of the interval.
Notes

More information about prediction intervals in forecasting: https://otexts.com/fpp2/prediction-intervals.html Forecasting: Principles and Practice (2nd ed) Rob J Hyndman and George Athanasopoulos.

Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
def predict_interval(
    self,
    steps: int,
    levels: Optional[Union[str, list]] = None,
    last_window: Optional[pd.DataFrame] = None,
    exog: Optional[Union[pd.Series, pd.DataFrame, dict]] = None,
    interval: list = [5, 95],
    n_boot: int = 250,
    random_state: int = 123,
    use_in_sample_residuals: bool = True,
    suppress_warnings: bool = False
) -> pd.DataFrame:
    """
    Iterative process in which, each prediction, is used as a predictor
    for the next step and bootstrapping is used to estimate prediction
    intervals. Both predictions and intervals are returned.

    Parameters
    ----------
    steps : int
        Number of future steps predicted.
    levels : str, list, default `None`
        Time series to be predicted. If `None` all levels whose last window
        ends at the same datetime index will be predicted together.
    last_window : pandas DataFrame, default `None`
        Series values used to create the predictors (lags) needed in the 
        first iteration of the prediction (t + 1).
        If `last_window = None`, the values stored in `self.last_window_` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : pandas Series, pandas DataFrame, dict, default `None`
        Exogenous variable/s included as predictor/s.
    interval : list, default `[5, 95]`
        Confidence of the prediction interval estimated. Sequence of 
        percentiles to compute, which must be between 0 and 100 inclusive. 
        For example, interval of 95% should be as `interval = [2.5, 97.5]`.
    n_boot : int, default `250`
        Number of bootstrapping iterations used to estimate prediction 
        intervals.
    random_state : int, default `123`
        Sets a seed to the random generator, so that boot predictions are always 
        deterministic.
    use_in_sample_residuals : bool, default `True`
        If `True`, residuals from the training data are used as proxy of
        prediction error to create predictions. If `False`, out of sample 
        residuals are used. In the latter case, the user should have
        calculated and stored the residuals within the forecaster (see
        `set_out_sample_residuals()`).
    suppress_warnings : bool, default `False`
        If `True`, skforecast warnings will be suppressed during the prediction 
        process. See skforecast.exceptions.warn_skforecast_categories for more
        information.

    Returns
    -------
    predictions : pandas DataFrame
        Values predicted by the forecaster and their estimated interval.

        - level: predictions.
        - level_lower_bound: lower bound of the interval.
        - level_upper_bound: upper bound of the interval.

    Notes
    -----
    More information about prediction intervals in forecasting:
    https://otexts.com/fpp2/prediction-intervals.html
    Forecasting: Principles and Practice (2nd ed) Rob J Hyndman and
    George Athanasopoulos.

    """

    set_skforecast_warnings(suppress_warnings, action='ignore')

    check_interval(interval=interval)

    boot_predictions = self.predict_bootstrapping(
                           steps                   = steps,
                           levels                  = levels,
                           last_window             = last_window,
                           exog                    = exog,
                           n_boot                  = n_boot,
                           random_state            = random_state,
                           use_in_sample_residuals = use_in_sample_residuals,
                           suppress_warnings       = suppress_warnings
                       )

    preds = self.predict(
                steps             = steps,
                levels            = levels,
                last_window       = last_window,
                exog              = exog,
                suppress_warnings = suppress_warnings,
                check_inputs      = False
            )

    interval = np.array(interval) / 100
    predictions = []

    for level in preds.columns:
        preds_interval = boot_predictions[level].quantile(q=interval, axis=1).transpose()
        preds_interval.columns = [f'{level}_lower_bound', f'{level}_upper_bound']
        predictions.append(preds[level])
        predictions.append(preds_interval)

    predictions = pd.concat(predictions, axis=1)

    set_skforecast_warnings(suppress_warnings, action='default')

    return predictions

predict_quantiles

predict_quantiles(
    steps,
    levels=None,
    last_window=None,
    exog=None,
    quantiles=[0.05, 0.5, 0.95],
    n_boot=250,
    random_state=123,
    use_in_sample_residuals=True,
    suppress_warnings=False,
)

Calculate the specified quantiles for each step. After generating multiple forecasting predictions through a bootstrapping process, each quantile is calculated for each step.

Parameters:

Name Type Description Default
steps int

Number of future steps predicted.

required
levels (str, list)

Time series to be predicted. If None all levels whose last window ends at the same datetime index will be predicted together.

`None`
last_window pandas DataFrame

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1). If last_window = None, the values stored in self.last_window_ are used to calculate the initial predictors, and the predictions start right after training data.

`None`
exog pandas Series, pandas DataFrame, dict

Exogenous variable/s included as predictor/s.

`None`
quantiles list

Sequence of quantiles to compute, which must be between 0 and 1 inclusive. For example, quantiles of 0.05, 0.5 and 0.95 should be as quantiles = [0.05, 0.5, 0.95].

`[0.05, 0.5, 0.95]`
n_boot int

Number of bootstrapping iterations used to estimate quantiles.

`250`
random_state int

Sets a seed to the random generator, so that boot quantiles are always deterministic.

`123`
use_in_sample_residuals bool

If True, residuals from the training data are used as proxy of prediction error to create quantiles. If False, out of sample residuals are used. In the latter case, the user should have calculated and stored the residuals within the forecaster (see set_out_sample_residuals()).

`True`
suppress_warnings bool

If True, skforecast warnings will be suppressed during the prediction process. See skforecast.exceptions.warn_skforecast_categories for more information.

`False`

Returns:

Name Type Description
predictions pandas DataFrame

Quantiles predicted by the forecaster.

Notes

More information about prediction intervals in forecasting: https://otexts.com/fpp2/prediction-intervals.html Forecasting: Principles and Practice (2nd ed) Rob J Hyndman and George Athanasopoulos.

Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
def predict_quantiles(
    self,
    steps: int,
    levels: Optional[Union[str, list]] = None,
    last_window: Optional[pd.DataFrame] = None,
    exog: Optional[Union[pd.Series, pd.DataFrame, dict]] = None,
    quantiles: list = [0.05, 0.5, 0.95],
    n_boot: int = 250,
    random_state: int = 123,
    use_in_sample_residuals: bool = True,
    suppress_warnings: bool = False
) -> pd.DataFrame:
    """
    Calculate the specified quantiles for each step. After generating 
    multiple forecasting predictions through a bootstrapping process, each 
    quantile is calculated for each step.

    Parameters
    ----------
    steps : int
        Number of future steps predicted.
    levels : str, list, default `None`
        Time series to be predicted. If `None` all levels whose last window
        ends at the same datetime index will be predicted together.
    last_window : pandas DataFrame, default `None`
        Series values used to create the predictors (lags) needed in the 
        first iteration of the prediction (t + 1).
        If `last_window = None`, the values stored in `self.last_window_` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : pandas Series, pandas DataFrame, dict, default `None`
        Exogenous variable/s included as predictor/s.
    quantiles : list, default `[0.05, 0.5, 0.95]`
        Sequence of quantiles to compute, which must be between 0 and 1 
        inclusive. For example, quantiles of 0.05, 0.5 and 0.95 should be as 
        `quantiles = [0.05, 0.5, 0.95]`.
    n_boot : int, default `250`
        Number of bootstrapping iterations used to estimate quantiles.
    random_state : int, default `123`
        Sets a seed to the random generator, so that boot quantiles are always 
        deterministic.
    use_in_sample_residuals : bool, default `True`
        If `True`, residuals from the training data are used as proxy of
        prediction error to create quantiles. If `False`, out of sample 
        residuals are used. In the latter case, the user should have
        calculated and stored the residuals within the forecaster (see
        `set_out_sample_residuals()`).
    suppress_warnings : bool, default `False`
        If `True`, skforecast warnings will be suppressed during the prediction 
        process. See skforecast.exceptions.warn_skforecast_categories for more
        information.

    Returns
    -------
    predictions : pandas DataFrame
        Quantiles predicted by the forecaster.

    Notes
    -----
    More information about prediction intervals in forecasting:
    https://otexts.com/fpp2/prediction-intervals.html
    Forecasting: Principles and Practice (2nd ed) Rob J Hyndman and
    George Athanasopoulos.

    """

    set_skforecast_warnings(suppress_warnings, action='ignore')

    check_interval(quantiles=quantiles)

    boot_predictions = self.predict_bootstrapping(
                           steps                   = steps,
                           levels                  = levels,
                           last_window             = last_window,
                           exog                    = exog,
                           n_boot                  = n_boot,
                           random_state            = random_state,
                           use_in_sample_residuals = use_in_sample_residuals,
                           suppress_warnings       = suppress_warnings
                       )

    predictions = []

    for level in boot_predictions.keys():
        preds_quantiles = (
            boot_predictions[level].quantile(q=quantiles, axis=1).transpose()
        )
        preds_quantiles.columns = [f'{level}_q_{q}' for q in quantiles]
        predictions.append(preds_quantiles)

    predictions = pd.concat(predictions, axis=1)

    set_skforecast_warnings(suppress_warnings, action='default')

    return predictions

predict_dist

predict_dist(
    steps,
    distribution,
    levels=None,
    last_window=None,
    exog=None,
    n_boot=250,
    random_state=123,
    use_in_sample_residuals=True,
    suppress_warnings=False,
)

Fit a given probability distribution for each step. After generating multiple forecasting predictions through a bootstrapping process, each step is fitted to the given distribution.

Parameters:

Name Type Description Default
steps int

Number of future steps predicted.

required
distribution Object

A distribution object from scipy.stats. For example scipy.stats.norm.

required
levels (str, list)

Time series to be predicted. If None all levels whose last window ends at the same datetime index will be predicted together.

`None`
last_window pandas DataFrame

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1). If last_window = None, the values stored in self.last_window_ are used to calculate the initial predictors, and the predictions start right after training data.

`None`
exog pandas Series, pandas DataFrame, dict

Exogenous variable/s included as predictor/s.

`None`
n_boot int

Number of bootstrapping iterations used to estimate predictions.

`250`
random_state int

Sets a seed to the random generator, so that boot predictions are always deterministic.

`123`
use_in_sample_residuals bool

If True, residuals from the training data are used as proxy of prediction error to create predictions. If False, out of sample residuals are used. In the latter case, the user should have calculated and stored the residuals within the forecaster (see set_out_sample_residuals()).

`True`
suppress_warnings bool

If True, skforecast warnings will be suppressed during the prediction process. See skforecast.exceptions.warn_skforecast_categories for more information.

`False`

Returns:

Name Type Description
predictions pandas DataFrame

Distribution parameters estimated for each step and level.

Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
def predict_dist(
    self,
    steps: int,
    distribution: object,
    levels: Optional[Union[str, list]] = None,
    last_window: Optional[pd.DataFrame] = None,
    exog: Optional[Union[pd.Series, pd.DataFrame, dict]] = None,
    n_boot: int = 250,
    random_state: int = 123,
    use_in_sample_residuals: bool = True,
    suppress_warnings: bool = False
) -> pd.DataFrame:
    """
    Fit a given probability distribution for each step. After generating 
    multiple forecasting predictions through a bootstrapping process, each 
    step is fitted to the given distribution.

    Parameters
    ----------
    steps : int
        Number of future steps predicted.
    distribution : Object
        A distribution object from scipy.stats. For example scipy.stats.norm.
    levels : str, list, default `None`
        Time series to be predicted. If `None` all levels whose last window
        ends at the same datetime index will be predicted together.
    last_window : pandas DataFrame, default `None`
        Series values used to create the predictors (lags) needed in the 
        first iteration of the prediction (t + 1).
        If `last_window = None`, the values stored in `self.last_window_` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : pandas Series, pandas DataFrame, dict, default `None`
        Exogenous variable/s included as predictor/s.
    n_boot : int, default `250`
        Number of bootstrapping iterations used to estimate predictions.
    random_state : int, default `123`
        Sets a seed to the random generator, so that boot predictions are always 
        deterministic.
    use_in_sample_residuals : bool, default `True`
        If `True`, residuals from the training data are used as proxy of
        prediction error to create predictions. If `False`, out of sample 
        residuals are used. In the latter case, the user should have
        calculated and stored the residuals within the forecaster (see
        `set_out_sample_residuals()`).
    suppress_warnings : bool, default `False`
        If `True`, skforecast warnings will be suppressed during the prediction 
        process. See skforecast.exceptions.warn_skforecast_categories for more
        information.

    Returns
    -------
    predictions : pandas DataFrame
        Distribution parameters estimated for each step and level.

    """

    set_skforecast_warnings(suppress_warnings, action='ignore')

    boot_samples = self.predict_bootstrapping(
                       steps                   = steps,
                       levels                  = levels,
                       last_window             = last_window,
                       exog                    = exog,
                       n_boot                  = n_boot,
                       random_state            = random_state,
                       use_in_sample_residuals = use_in_sample_residuals,
                       suppress_warnings       = suppress_warnings
                   )

    param_names = [
        p for p in inspect.signature(distribution._pdf).parameters if not p == "x"
    ] + ["loc", "scale"]
    predictions = []

    for level in boot_samples.keys():
        param_values = np.apply_along_axis(
            lambda x: distribution.fit(x), axis=1, arr=boot_samples[level]
        )
        level_param_names = [f'{level}_{p}' for p in param_names]

        pred_level = pd.DataFrame(
                         data    = param_values,
                         columns = level_param_names,
                         index   = boot_samples[level].index
                     )

        predictions.append(pred_level)

    predictions = pd.concat(predictions, axis=1)

    set_skforecast_warnings(suppress_warnings, action='default')

    return predictions

set_params

set_params(params)

Set new values to the parameters of the scikit learn model stored in the forecaster.

Parameters:

Name Type Description Default
params dict

Parameters values.

required

Returns:

Type Description
None
Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
def set_params(
    self, 
    params: dict
) -> None:
    """
    Set new values to the parameters of the scikit learn model stored in the
    forecaster.

    Parameters
    ----------
    params : dict
        Parameters values.

    Returns
    -------
    None

    """

    self.regressor = clone(self.regressor)
    self.regressor.set_params(**params)

set_fit_kwargs

set_fit_kwargs(fit_kwargs)

Set new values for the additional keyword arguments passed to the fit method of the regressor.

Parameters:

Name Type Description Default
fit_kwargs dict

Dict of the form {"argument": new_value}.

required

Returns:

Type Description
None
Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
def set_fit_kwargs(
    self, 
    fit_kwargs: dict
) -> None:
    """
    Set new values for the additional keyword arguments passed to the `fit` 
    method of the regressor.

    Parameters
    ----------
    fit_kwargs : dict
        Dict of the form {"argument": new_value}.

    Returns
    -------
    None

    """

    self.fit_kwargs = check_select_fit_kwargs(self.regressor, fit_kwargs=fit_kwargs)

set_lags

set_lags(lags=None)

Set new value to the attribute lags. Attributes lags_names, max_lag and window_size are also updated.

Parameters:

Name Type Description Default
lags int, list, numpy ndarray, range

Lags used as predictors. Index starts at 1, so lag 1 is equal to t-1.

  • int: include lags from 1 to lags (included).
  • list, 1d numpy ndarray or range: include only lags present in lags, all elements must be int.
  • None: no lags are included as predictors.
`None`

Returns:

Type Description
None
Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
def set_lags(
    self, 
    lags: Optional[Union[int, list, np.ndarray, range]] = None
) -> None:
    """
    Set new value to the attribute `lags`. Attributes `lags_names`, 
    `max_lag` and `window_size` are also updated.

    Parameters
    ----------
    lags : int, list, numpy ndarray, range, default `None`
        Lags used as predictors. Index starts at 1, so lag 1 is equal to t-1. 

        - `int`: include lags from 1 to `lags` (included).
        - `list`, `1d numpy ndarray` or `range`: include only lags present in 
        `lags`, all elements must be int.
        - `None`: no lags are included as predictors. 

    Returns
    -------
    None

    """

    if self.window_features is None and lags is None:
        raise ValueError(
            "At least one of the arguments `lags` or `window_features` "
            "must be different from None. This is required to create the "
            "predictors used in training the forecaster."
        )

    self.lags, self.lags_names, self.max_lag = initialize_lags(type(self).__name__, lags)
    self.window_size = max(
        [ws for ws in [self.max_lag, self.max_size_window_features] 
         if ws is not None]
    )
    if self.differentiation is not None:
        self.window_size += self.differentiation
        self.differentiator.set_params(window_size=self.window_size)

set_window_features

set_window_features(window_features=None)

Set new value to the attribute window_features. Attributes max_size_window_features, window_features_names, window_features_class_names and window_size are also updated.

Parameters:

Name Type Description Default
window_features (object, list)

Instance or list of instances used to create window features. Window features are created from the original time series and are included as predictors.

`None`

Returns:

Type Description
None
Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
def set_window_features(
    self, 
    window_features: Optional[Union[object, list]] = None
) -> None:
    """
    Set new value to the attribute `window_features`. Attributes 
    `max_size_window_features`, `window_features_names`, 
    `window_features_class_names` and `window_size` are also updated.

    Parameters
    ----------
    window_features : object, list, default `None`
        Instance or list of instances used to create window features. Window features
        are created from the original time series and are included as predictors.

    Returns
    -------
    None

    """

    if window_features is None and self.lags is None:
        raise ValueError(
            "At least one of the arguments `lags` or `window_features` "
            "must be different from None. This is required to create the "
            "predictors used in training the forecaster."
        )

    self.window_features, self.window_features_names, self.max_size_window_features = (
        initialize_window_features(window_features)
    )
    self.window_features_class_names = None
    if window_features is not None:
        self.window_features_class_names = [
            type(wf).__name__ for wf in self.window_features
        ] 
    self.window_size = max(
        [ws for ws in [self.max_lag, self.max_size_window_features] 
         if ws is not None]
    )
    if self.differentiation is not None:
        self.window_size += self.differentiation
        self.differentiator.set_params(window_size=self.window_size)

set_out_sample_residuals

set_out_sample_residuals(
    y_true, y_pred, append=True, random_state=123
)

Set new values to the attribute out_sample_residuals_. Out of sample residuals are meant to be calculated using observations that did not participate in the training process. y_true and y_pred are expected to be in the original scale of the time series. Residuals are calculated as y_true - y_pred, after applying the necessary transformations and differentiations if the forecaster includes them (self.transformer_series and self.differentiation).

A total of 10_000 residuals are stored in the attribute out_sample_residuals_. If the number of residuals is greater than 10_000, a random sample of 10_000 residuals is stored.

Parameters:

Name Type Description Default
y_true dict

Dictionary of numpy ndarrays or pandas series with the true values of the time series for each series in the form {series: y_true}.

required
y_pred dict

Dictionary of numpy ndarrays or pandas series with the predicted values of the time series for each series in the form {series: y_pred}.

required
append bool

If True, new residuals are added to the once already stored in the attribute out_sample_residuals_. If after appending the new residuals, the limit of 10_000 samples is exceeded, a random sample of 10_000 is kept.

`False`
random_state int

Sets a seed to the random sampling for reproducible output.

`123`

Returns:

Type Description
None
Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
def set_out_sample_residuals(
    self, 
    y_true: dict,
    y_pred: dict,
    append: bool = True,
    random_state: int = 123
) -> None:
    """
    Set new values to the attribute `out_sample_residuals_`. Out of sample
    residuals are meant to be calculated using observations that did not
    participate in the training process. `y_true` and `y_pred` are expected
    to be in the original scale of the time series. Residuals are calculated
    as `y_true` - `y_pred`, after applying the necessary transformations and
    differentiations if the forecaster includes them (`self.transformer_series`
    and `self.differentiation`).

    A total of 10_000 residuals are stored in the attribute `out_sample_residuals_`.
    If the number of residuals is greater than 10_000, a random sample of
    10_000 residuals is stored.

    Parameters
    ----------
    y_true : dict
        Dictionary of numpy ndarrays or pandas series with the true values of
        the time series for each series in the form {series: y_true}.
    y_pred : dict
        Dictionary of numpy ndarrays or pandas series with the predicted values
        of the time series for each series in the form {series: y_pred}.
    append : bool, default `False`
        If `True`, new residuals are added to the once already stored in the
        attribute `out_sample_residuals_`. If after appending the new residuals,
        the limit of 10_000 samples is exceeded, a random sample of 10_000 is
        kept.
    random_state : int, default `123`
        Sets a seed to the random sampling for reproducible output.

    Returns
    -------
    None

    """

    if not self.is_fitted:
        raise NotFittedError(
            "This forecaster is not fitted yet. Call `fit` with appropriate "
            "arguments before using `set_out_sample_residuals()`."
        )

    if not isinstance(y_true, dict):
        raise TypeError(
            f"`y_true` must be a dictionary of numpy ndarrays or pandas Series. "
            f"Got {type(y_true)}."
        )

    if not isinstance(y_pred, dict):
        raise TypeError(
            f"`y_pred` must be a dictionary of numpy ndarrays or pandas Series. "
            f"Got {type(y_pred)}."
        )

    if not set(y_true.keys()) == set(y_pred.keys()):
        raise ValueError(
            f"`y_true` and `y_pred` must have the same keys. "
            f"Got {set(y_true.keys())} and {set(y_pred.keys())}."
        )

    for k in y_true.keys():
        if not isinstance(y_true[k], (np.ndarray, pd.Series)):
            raise TypeError(
                f"Values of `y_true` must be numpy ndarrays or pandas Series. "
                f"Got {type(y_true[k])} for series '{k}'."
            )
        if not isinstance(y_pred[k], (np.ndarray, pd.Series)):
            raise TypeError(
                f"Values of `y_pred` must be numpy ndarrays or pandas Series. "
                f"Got {type(y_pred[k])} for series '{k}'."
            )
        if len(y_true[k]) != len(y_pred[k]):
            raise ValueError(
                f"`y_true` and `y_pred` must have the same length. "
                f"Got {len(y_true[k])} and {len(y_pred[k])} for series '{k}'."
            )
        if isinstance(y_true[k], pd.Series) and isinstance(y_pred[k], pd.Series):
            if not y_true[k].index.equals(y_pred[k].index):
                raise ValueError(
                    f"When containing pandas Series, elements in `y_true` and "
                    f"`y_pred` must have the same index. Error with series '{k}'."
                )

    levels = self.series_names_in_ + ['_unknown_level']
    if self.out_sample_residuals_ is None and self.encoding is not None:
        self.out_sample_residuals_ = {level: None for level in levels}
    elif self.out_sample_residuals_ is None:
        self.out_sample_residuals_ = {'_unknown_level': None}

    series_to_update = set(y_pred.keys()).intersection(set(levels))
    if not series_to_update:
        raise ValueError(
            "Provided keys in `y_pred` and `y_true` do not match any series "
            "seen during `fit`. Residuals cannot be updated."
        )

    residuals = {}
    rng = np.random.default_rng(seed=random_state)
    y_true = y_true.copy()
    y_pred = y_pred.copy()
    if self.differentiation is not None:
        differentiator = copy(self.differentiator)
        differentiator.set_params(window_size=None)

    for k in series_to_update:
        if isinstance(y_true[k], pd.Series):
            y_true[k] = y_true[k].to_numpy()
        if isinstance(y_pred[k], pd.Series):
            y_pred[k] = y_pred[k].to_numpy()
        if self.transformer_series:
            y_true[k] = transform_numpy(
                            array             = y_true[k],
                            transformer       = self.transformer_series_[k],
                            fit               = False,
                            inverse_transform = False
                        )
            y_pred[k] = transform_numpy(
                            array             = y_pred[k],
                            transformer       = self.transformer_series_[k],
                            fit               = False,
                            inverse_transform = False
                        )
        if self.differentiation is not None:
            y_true[k] = differentiator.fit_transform(y_true[k])[self.differentiation:]
            y_pred[k] = differentiator.fit_transform(y_pred[k])[self.differentiation:]

        residuals[k] = y_true[k] - y_pred[k]

    if '_unknown_level' not in residuals:
        residuals['_unknown_level'] = np.concatenate(list(residuals.values()))

    if self.encoding is None:
        if list(residuals.keys()) != ['_unknown_level']:
            warnings.warn(
                "As `encoding` is set to `None`, no distinction between levels "
                "is made. All residuals are stored in the '_unknown_level' key.",
                UnknownLevelWarning
            )
        residuals = {'_unknown_level': residuals['_unknown_level']}

    for key, value in residuals.items():
        if append and self.out_sample_residuals_[key] is not None:
            value = np.concatenate((
                        self.out_sample_residuals_[key],
                        value
                    ))
        if len(value) > 10000:
            value = rng.choice(value, size=10000, replace=False)
        self.out_sample_residuals_[key] = value

get_feature_importances

get_feature_importances(sort_importance=True)

Return feature importances of the regressor stored in the forecaster. Only valid when regressor stores internally the feature importances in the attribute feature_importances_ or coef_.

Parameters:

Name Type Description Default
sort_importance bool

If True, sorts the feature importances in descending order.

True

Returns:

Name Type Description
feature_importances pandas DataFrame

Feature importances associated with each predictor.

Source code in skforecast\recursive\_forecaster_recursive_multiseries.py
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
def get_feature_importances(
    self,
    sort_importance: bool = True
) -> pd.DataFrame:
    """
    Return feature importances of the regressor stored in the
    forecaster. Only valid when regressor stores internally the feature
    importances in the attribute `feature_importances_` or `coef_`.

    Parameters
    ----------
    sort_importance: bool, default `True`
        If `True`, sorts the feature importances in descending order.

    Returns
    -------
    feature_importances : pandas DataFrame
        Feature importances associated with each predictor.

    """

    if not self.is_fitted:
        raise NotFittedError(
            ("This forecaster is not fitted yet. Call `fit` with appropriate "
             "arguments before using `get_feature_importances()`.")
        )

    if isinstance(self.regressor, Pipeline):
        estimator = self.regressor[-1]
    else:
        estimator = self.regressor

    if hasattr(estimator, 'feature_importances_'):
        feature_importances = estimator.feature_importances_
    elif hasattr(estimator, 'coef_'):
        feature_importances = estimator.coef_
    else:
        warnings.warn(
            (f"Impossible to access feature importances for regressor of type "
             f"{type(estimator)}. This method is only valid when the "
             f"regressor stores internally the feature importances in the "
             f"attribute `feature_importances_` or `coef_`.")
        )
        feature_importances = None

    if feature_importances is not None:
        feature_importances = pd.DataFrame({
                                  'feature': self.X_train_features_names_out_,
                                  'importance': feature_importances
                              })
        if sort_importance:
            feature_importances = feature_importances.sort_values(
                                      by='importance', ascending=False
                                  )

    return feature_importances