ForecasterRecursive
¶
skforecast.recursive._forecaster_recursive.ForecasterRecursive ¶
ForecasterRecursive(
regressor,
lags=None,
window_features=None,
transformer_y=None,
transformer_exog=None,
weight_func=None,
differentiation=None,
fit_kwargs=None,
binner_kwargs=None,
forecaster_id=None,
)
Bases: ForecasterBase
This class turns any regressor compatible with the scikit-learn API into a recursive autoregressive (multi-step) forecaster.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
regressor |
regressor or pipeline compatible with the scikit-learn API
|
An instance of a regressor or pipeline compatible with the scikit-learn API. |
required |
lags |
int, list, numpy ndarray, range
|
Lags used as predictors. Index starts at 1, so lag 1 is equal to t-1.
|
`None`
|
window_features |
(object, list)
|
Instance or list of instances used to create window features. Window features are created from the original time series and are included as predictors. |
`None`
|
transformer_y |
object transformer (preprocessor)
|
An instance of a transformer (preprocessor) compatible with the scikit-learn
preprocessing API with methods: fit, transform, fit_transform and inverse_transform.
ColumnTransformers are not allowed since they do not have inverse_transform method.
The transformation is applied to |
`None`
|
transformer_exog |
object transformer (preprocessor)
|
An instance of a transformer (preprocessor) compatible with the scikit-learn
preprocessing API. The transformation is applied to |
`None`
|
weight_func |
Callable
|
Function that defines the individual weights for each sample based on the
index. For example, a function that assigns a lower weight to certain dates.
Ignored if |
`None`
|
differentiation |
int
|
Order of differencing applied to the time series before training the forecaster.
If |
`None`
|
fit_kwargs |
dict
|
Additional arguments to be passed to the |
`None`
|
binner_kwargs |
dict
|
Additional arguments to pass to the |
`None`
|
forecaster_id |
(str, int)
|
Name used as an identifier of the forecaster. |
`None`
|
Attributes:
Name | Type | Description |
---|---|---|
regressor |
regressor or pipeline compatible with the scikit-learn API
|
An instance of a regressor or pipeline compatible with the scikit-learn API. |
lags |
numpy ndarray
|
Lags used as predictors. |
lags_names |
list
|
Names of the lags used as predictors. |
max_lag |
int
|
Maximum lag included in |
window_features |
list
|
Class or list of classes used to create window features. |
window_features_names |
list
|
Names of the window features to be included in the |
window_features_class_names |
list
|
Names of the classes used to create the window features. |
max_size_window_features |
int
|
Maximum window size required by the window features. |
window_size |
int
|
The window size needed to create the predictors. It is calculated as the
maximum value between |
transformer_y |
object transformer (preprocessor)
|
An instance of a transformer (preprocessor) compatible with the scikit-learn
preprocessing API with methods: fit, transform, fit_transform and inverse_transform.
ColumnTransformers are not allowed since they do not have inverse_transform method.
The transformation is applied to |
transformer_exog |
object transformer (preprocessor)
|
An instance of a transformer (preprocessor) compatible with the scikit-learn
preprocessing API. The transformation is applied to |
weight_func |
Callable
|
Function that defines the individual weights for each sample based on the
index. For example, a function that assigns a lower weight to certain dates.
Ignored if |
differentiation |
int
|
Order of differencing applied to the time series before training the forecaster.
If |
binner |
KBinsDiscretizer
|
|
binner_intervals_ |
dict
|
Intervals used to discretize residuals into k bins according to the predicted values associated with each residual. New in version 0.12.0 |
binner_kwargs |
dict
|
Additional arguments to pass to the |
source_code_weight_func |
str
|
Source code of the custom function used to create weights. |
differentiation |
int
|
Order of differencing applied to the time series before training the forecaster. |
differentiator |
TimeSeriesDifferentiator
|
Skforecast object used to differentiate the time series. |
last_window_ |
pandas DataFrame
|
This window represents the most recent data observed by the predictor
during its training phase. It contains the values needed to predict the
next step immediately after the training data. These values are stored
in the original scale of the time series before undergoing any transformations
or differentiation. When |
index_type_ |
type
|
Type of index of the input used in training. |
index_freq_ |
str
|
Frequency of Index of the input used in training. |
training_range_ |
pandas Index
|
First and last values of index of the data used during training. |
exog_in_ |
bool
|
If the forecaster has been trained using exogenous variable/s. |
exog_names_in_ |
list
|
Names of the exogenous variables used during training. |
exog_type_in_ |
type
|
Type of exogenous data (pandas Series or DataFrame) used in training. |
exog_dtypes_in_ |
dict
|
Type of each exogenous variable/s used in training. If |
X_train_window_features_names_out_ |
list
|
Names of the window features included in the matrix |
X_train_exog_names_out_ |
list
|
Names of the exogenous variables included in the matrix |
X_train_features_names_out_ |
list
|
Names of columns of the matrix created internally for training. |
fit_kwargs |
dict
|
Additional arguments to be passed to the |
in_sample_residuals_ |
numpy ndarray
|
Residuals of the model when predicting training data. Only stored up to
10_000 values. If |
in_sample_residuals_by_bin_ |
dict
|
In sample residuals binned according to the predicted value each residual
is associated with. If |
out_sample_residuals_ |
numpy ndarray
|
Residuals of the model when predicting non training data. Only stored up to
10_000 values. If |
out_sample_residuals_by_bin_ |
dict
|
Out of sample residuals binned according to the predicted value each residual
is associated with. If |
creation_date |
str
|
Date of creation. |
is_fitted |
bool
|
Tag to identify if the regressor has been fitted (trained). |
fit_date |
str
|
Date of last fit. |
skforecast_version |
str
|
Version of skforecast library used to create the forecaster. |
python_version |
str
|
Version of python used to create the forecaster. |
forecaster_id |
(str, int)
|
Name used as an identifier of the forecaster. |
Source code in skforecast\recursive\_forecaster_recursive.py
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
|
_repr_html_ ¶
_repr_html_()
HTML representation of the object. The "General Information" section is expanded by default.
Source code in skforecast\recursive\_forecaster_recursive.py
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 |
|
_create_lags ¶
_create_lags(y, X_as_pandas=False, train_index=None)
Create the lagged values and their target variable from a time series.
Note that the returned matrix X_data
contains the lag 1 in the first
column, the lag 2 in the in the second column and so on.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y |
numpy ndarray
|
Training time series values. |
required |
X_as_pandas |
bool
|
If |
`False`
|
train_index |
pandas Index
|
Index of the training data. It is used to create the pandas DataFrame
|
`None`
|
Returns:
Name | Type | Description |
---|---|---|
X_data |
numpy ndarray, pandas DataFrame, None
|
Lagged values (predictors). |
y_data |
numpy ndarray
|
Values of the time series related to each row of |
Source code in skforecast\recursive\_forecaster_recursive.py
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 |
|
_create_window_features ¶
_create_window_features(y, train_index, X_as_pandas=False)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y |
pandas Series
|
Training time series. |
required |
train_index |
pandas Index
|
Index of the training data. It is used to create the pandas DataFrame
|
required |
X_as_pandas |
bool
|
If |
`False`
|
Returns:
Name | Type | Description |
---|---|---|
X_train_window_features |
list
|
List of numpy ndarrays or pandas DataFrames with the window features. |
X_train_window_features_names_out_ |
list
|
Names of the window features. |
Source code in skforecast\recursive\_forecaster_recursive.py
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 |
|
_create_train_X_y ¶
_create_train_X_y(y, exog=None)
Create training matrices from univariate time series and exogenous variables.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y |
pandas Series
|
Training time series. |
required |
exog |
pandas Series, pandas DataFrame
|
Exogenous variable/s included as predictor/s. Must have the same
number of observations as |
`None`
|
Returns:
Name | Type | Description |
---|---|---|
X_train |
pandas DataFrame
|
Training values (predictors). |
y_train |
pandas Series
|
Values of the time series related to each row of |
exog_names_in_ |
list
|
Names of the exogenous variables used during training. |
X_train_window_features_names_out_ |
list
|
Names of the window features included in the matrix |
X_train_exog_names_out_ |
list
|
Names of the exogenous variables included in the matrix |
X_train_features_names_out_ |
list
|
Names of the columns of the matrix created internally for training. |
exog_dtypes_in_ |
dict
|
Type of each exogenous variable/s used in training. If |
Source code in skforecast\recursive\_forecaster_recursive.py
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 |
|
create_train_X_y ¶
create_train_X_y(y, exog=None)
Create training matrices from univariate time series and exogenous variables.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y |
pandas Series
|
Training time series. |
required |
exog |
pandas Series, pandas DataFrame
|
Exogenous variable/s included as predictor/s. Must have the same
number of observations as |
`None`
|
Returns:
Name | Type | Description |
---|---|---|
X_train |
pandas DataFrame
|
Training values (predictors). |
y_train |
pandas Series
|
Values of the time series related to each row of |
Source code in skforecast\recursive\_forecaster_recursive.py
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 |
|
_train_test_split_one_step_ahead ¶
_train_test_split_one_step_ahead(
y, initial_train_size, exog=None
)
Create matrices needed to train and test the forecaster for one-step-ahead predictions.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y |
pandas Series
|
Training time series. |
required |
initial_train_size |
int
|
Initial size of the training set. It is the number of observations used to train the forecaster before making the first prediction. |
required |
exog |
pandas Series, pandas DataFrame
|
Exogenous variable/s included as predictor/s. Must have the same
number of observations as |
`None`
|
Returns:
Name | Type | Description |
---|---|---|
X_train |
pandas DataFrame
|
Predictor values used to train the model. |
y_train |
pandas Series
|
Target values related to each row of |
X_test |
pandas DataFrame
|
Predictor values used to test the model. |
y_test |
pandas Series
|
Target values related to each row of |
Source code in skforecast\recursive\_forecaster_recursive.py
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 |
|
create_sample_weights ¶
create_sample_weights(X_train)
Crate weights for each observation according to the forecaster's attribute
weight_func
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X_train |
pandas DataFrame
|
Dataframe created with the |
required |
Returns:
Name | Type | Description |
---|---|---|
sample_weight |
numpy ndarray
|
Weights to use in |
Source code in skforecast\recursive\_forecaster_recursive.py
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 |
|
fit ¶
fit(
y,
exog=None,
store_last_window=True,
store_in_sample_residuals=True,
random_state=123,
)
Training Forecaster.
Additional arguments to be passed to the fit
method of the regressor
can be added with the fit_kwargs
argument when initializing the forecaster.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y |
pandas Series
|
Training time series. |
required |
exog |
pandas Series, pandas DataFrame
|
Exogenous variable/s included as predictor/s. Must have the same
number of observations as |
`None`
|
store_last_window |
bool
|
Whether or not to store the last window ( |
`True`
|
store_in_sample_residuals |
bool
|
If |
`True`
|
random_state |
int
|
Set a seed for the random generator so that the stored sample residuals are always deterministic. |
`123`
|
Returns:
Type | Description |
---|---|
None
|
|
Source code in skforecast\recursive\_forecaster_recursive.py
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 |
|
_binning_in_sample_residuals ¶
_binning_in_sample_residuals(
y_true, y_pred, random_state=123
)
Binning residuals according to the predicted value each residual is
associated with. First a skforecast.preprocessing.QuantileBinner object
is fitted to the predicted values. Then, residuals are binned according
to the predicted value each residual is associated with. Residuals are
stored in the forecaster object as in_sample_residuals_
and
in_sample_residuals_by_bin_
.
If transformer_y
is not None
, y_true
and y_pred
are transformed
before calculating residuals. If differentiation
is not None
, y_true
and y_pred
are differentiated before calculating residuals. If both,
transformer_y
and differentiation
are not None
, transformation is
done before differentiation. The number of residuals stored per bin is
limited to 10_000 // self.binner.n_bins_
. The total number of residuals
stored is 10_000
.
New in version 0.14.0
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_true |
numpy ndarray
|
True values of the time series. |
required |
y_pred |
numpy ndarray
|
Predicted values of the time series. |
required |
random_state |
int
|
Set a seed for the random generator so that the stored sample residuals are always deterministic. |
`123`
|
Returns:
Type | Description |
---|---|
None
|
|
Source code in skforecast\recursive\_forecaster_recursive.py
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 |
|
_create_predict_inputs ¶
_create_predict_inputs(
steps,
last_window=None,
exog=None,
predict_boot=False,
use_in_sample_residuals=True,
use_binned_residuals=False,
check_inputs=True,
)
Create the inputs needed for the first iteration of the prediction process. As this is a recursive process, the last window is updated at each iteration of the prediction process.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
steps |
int, str, pandas Timestamp
|
Number of steps to predict.
|
required |
last_window |
pandas Series, pandas DataFrame
|
Series values used to create the predictors (lags) needed in the
first iteration of the prediction (t + 1).
If |
`None`
|
exog |
pandas Series, pandas DataFrame
|
Exogenous variable/s included as predictor/s. |
`None`
|
predict_boot |
bool
|
If |
`False`
|
use_in_sample_residuals |
bool
|
If |
`True`
|
use_binned_residuals |
bool
|
If |
`False`
|
check_inputs |
bool
|
If |
`True`
|
Returns:
Name | Type | Description |
---|---|---|
last_window_values |
numpy ndarray
|
Series values used to create the predictors needed in the first iteration of the prediction (t + 1). |
exog_values |
numpy ndarray, None
|
Exogenous variable/s included as predictor/s. |
prediction_index |
pandas Index
|
Index of the predictions. |
steps |
int
|
Number of future steps predicted. |
Source code in skforecast\recursive\_forecaster_recursive.py
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 |
|
_recursive_predict ¶
_recursive_predict(
steps,
last_window_values,
exog_values=None,
residuals=None,
use_binned_residuals=False,
)
Predict n steps ahead. It is an iterative process in which, each prediction, is used as a predictor for the next step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
steps |
int
|
Number of future steps predicted. |
required |
last_window_values |
numpy ndarray
|
Series values used to create the predictors needed in the first iteration of the prediction (t + 1). |
required |
exog_values |
numpy ndarray
|
Exogenous variable/s included as predictor/s. |
`None`
|
residuals |
numpy ndarray, dict
|
Residuals used to generate bootstrapping predictions. |
`None`
|
use_binned_residuals |
bool
|
If |
`False`
|
Returns:
Name | Type | Description |
---|---|---|
predictions |
numpy ndarray
|
Predicted values. |
Source code in skforecast\recursive\_forecaster_recursive.py
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 |
|
create_predict_X ¶
create_predict_X(steps, last_window=None, exog=None)
Create the predictors needed to predict steps
ahead. As it is a recursive
process, the predictors are created at each iteration of the prediction
process.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
steps |
int, str, pandas Timestamp
|
Number of steps to predict.
|
required |
last_window |
pandas Series, pandas DataFrame
|
Series values used to create the predictors (lags) needed in the
first iteration of the prediction (t + 1).
If |
`None`
|
exog |
pandas Series, pandas DataFrame
|
Exogenous variable/s included as predictor/s. |
`None`
|
Returns:
Name | Type | Description |
---|---|---|
X_predict |
pandas DataFrame
|
Pandas DataFrame with the predictors for each step. The index is the same as the prediction index. |
Source code in skforecast\recursive\_forecaster_recursive.py
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 |
|
predict ¶
predict(
steps, last_window=None, exog=None, check_inputs=True
)
Predict n steps ahead. It is an recursive process in which, each prediction, is used as a predictor for the next step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
steps |
int, str, pandas Timestamp
|
Number of steps to predict.
|
required |
last_window |
pandas Series, pandas DataFrame
|
Series values used to create the predictors (lags) needed in the
first iteration of the prediction (t + 1).
If |
`None`
|
exog |
pandas Series, pandas DataFrame
|
Exogenous variable/s included as predictor/s. |
`None`
|
check_inputs |
bool
|
If |
`True`
|
Returns:
Name | Type | Description |
---|---|---|
predictions |
pandas Series
|
Predicted values. |
Source code in skforecast\recursive\_forecaster_recursive.py
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 |
|
predict_bootstrapping ¶
predict_bootstrapping(
steps,
last_window=None,
exog=None,
n_boot=250,
random_state=123,
use_in_sample_residuals=True,
use_binned_residuals=False,
)
Generate multiple forecasting predictions using a bootstrapping process. By sampling from a collection of past observed errors (the residuals), each iteration of bootstrapping generates a different set of predictions. See the Notes section for more information.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
steps |
int, str, pandas Timestamp
|
Number of steps to predict.
|
required |
last_window |
pandas Series
|
Series values used to create the predictors (lags) needed in the
first iteration of the prediction (t + 1).
If |
`None`
|
exog |
pandas Series, pandas DataFrame
|
Exogenous variable/s included as predictor/s. |
`None`
|
n_boot |
int
|
Number of bootstrapping iterations used to estimate predictions. |
`250`
|
random_state |
int
|
Sets a seed to the random generator, so that boot predictions are always deterministic. |
`123`
|
use_in_sample_residuals |
bool
|
If |
`True`
|
use_binned_residuals |
bool
|
If |
`False`
|
Returns:
Name | Type | Description |
---|---|---|
boot_predictions |
pandas DataFrame
|
Predictions generated by bootstrapping. Shape: (steps, n_boot) |
Notes
More information about prediction intervals in forecasting: https://otexts.com/fpp3/prediction-intervals.html#prediction-intervals-from-bootstrapped-residuals Forecasting: Principles and Practice (3nd ed) Rob J Hyndman and George Athanasopoulos.
Source code in skforecast\recursive\_forecaster_recursive.py
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 |
|
predict_interval ¶
predict_interval(
steps,
last_window=None,
exog=None,
interval=[5, 95],
n_boot=250,
random_state=123,
use_in_sample_residuals=True,
use_binned_residuals=False,
)
Iterative process in which each prediction is used as a predictor for the next step, and bootstrapping is used to estimate prediction intervals. Both predictions and intervals are returned.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
steps |
int, str, pandas Timestamp
|
Number of steps to predict.
|
required |
last_window |
pandas Series
|
Series values used to create the predictors (lags) needed in the
first iteration of the prediction (t + 1).
If |
`None`
|
exog |
pandas Series, pandas DataFrame
|
Exogenous variable/s included as predictor/s. |
`None`
|
interval |
list
|
Confidence of the prediction interval estimated. Sequence of
percentiles to compute, which must be between 0 and 100 inclusive.
For example, interval of 95% should be as |
`[5, 95]`
|
n_boot |
int
|
Number of bootstrapping iterations used to estimate predictions. |
`250`
|
random_state |
int
|
Sets a seed to the random generator, so that boot predictions are always deterministic. |
`123`
|
use_in_sample_residuals |
bool
|
If |
`True`
|
use_binned_residuals |
bool
|
If |
`False`
|
Returns:
Name | Type | Description |
---|---|---|
predictions |
pandas DataFrame
|
Values predicted by the forecaster and their estimated interval.
|
Notes
More information about prediction intervals in forecasting: https://otexts.com/fpp2/prediction-intervals.html Forecasting: Principles and Practice (2nd ed) Rob J Hyndman and George Athanasopoulos.
Source code in skforecast\recursive\_forecaster_recursive.py
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 |
|
predict_quantiles ¶
predict_quantiles(
steps,
last_window=None,
exog=None,
quantiles=[0.05, 0.5, 0.95],
n_boot=250,
random_state=123,
use_in_sample_residuals=True,
use_binned_residuals=False,
)
Calculate the specified quantiles for each step. After generating multiple forecasting predictions through a bootstrapping process, each quantile is calculated for each step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
steps |
int, str, pandas Timestamp
|
Number of steps to predict.
|
required |
last_window |
pandas Series
|
Series values used to create the predictors (lags) needed in the
first iteration of the prediction (t + 1).
If |
`None`
|
exog |
pandas Series, pandas DataFrame
|
Exogenous variable/s included as predictor/s. |
`None`
|
quantiles |
list
|
Sequence of quantiles to compute, which must be between 0 and 1
inclusive. For example, quantiles of 0.05, 0.5 and 0.95 should be as
|
`[0.05, 0.5, 0.95]`
|
n_boot |
int
|
Number of bootstrapping iterations used to estimate quantiles. |
`250`
|
random_state |
int
|
Sets a seed to the random generator, so that boot quantiles are always deterministic. |
`123`
|
use_in_sample_residuals |
bool
|
If |
`True`
|
use_binned_residuals |
bool
|
If |
`False`
|
Returns:
Name | Type | Description |
---|---|---|
predictions |
pandas DataFrame
|
Quantiles predicted by the forecaster. |
Notes
More information about prediction intervals in forecasting: https://otexts.com/fpp2/prediction-intervals.html Forecasting: Principles and Practice (2nd ed) Rob J Hyndman and George Athanasopoulos.
Source code in skforecast\recursive\_forecaster_recursive.py
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 |
|
predict_dist ¶
predict_dist(
steps,
distribution,
last_window=None,
exog=None,
n_boot=250,
random_state=123,
use_in_sample_residuals=True,
use_binned_residuals=False,
)
Fit a given probability distribution for each step. After generating multiple forecasting predictions through a bootstrapping process, each step is fitted to the given distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
steps |
int, str, pandas Timestamp
|
Number of steps to predict.
|
required |
distribution |
Object
|
A distribution object from scipy.stats. |
required |
last_window |
pandas Series
|
Series values used to create the predictors (lags) needed in the
first iteration of the prediction (t + 1). |
`None`
|
exog |
pandas Series, pandas DataFrame
|
Exogenous variable/s included as predictor/s. |
`None`
|
n_boot |
int
|
Number of bootstrapping iterations used to estimate predictions. |
`250`
|
random_state |
int
|
Sets a seed to the random generator, so that boot predictions are always deterministic. |
`123`
|
use_in_sample_residuals |
bool
|
If |
`True`
|
use_binned_residuals |
bool
|
If |
`False`
|
Returns:
Name | Type | Description |
---|---|---|
predictions |
pandas DataFrame
|
Distribution parameters estimated for each step. |
Source code in skforecast\recursive\_forecaster_recursive.py
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 |
|
set_params ¶
set_params(params)
Set new values to the parameters of the scikit learn model stored in the forecaster.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
params |
dict
|
Parameters values. |
required |
Returns:
Type | Description |
---|---|
None
|
|
Source code in skforecast\recursive\_forecaster_recursive.py
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 |
|
set_fit_kwargs ¶
set_fit_kwargs(fit_kwargs)
Set new values for the additional keyword arguments passed to the fit
method of the regressor.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
fit_kwargs |
dict
|
Dict of the form {"argument": new_value}. |
required |
Returns:
Type | Description |
---|---|
None
|
|
Source code in skforecast\recursive\_forecaster_recursive.py
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 |
|
set_lags ¶
set_lags(lags=None)
Set new value to the attribute lags
. Attributes lags_names
,
max_lag
and window_size
are also updated.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
lags |
int, list, numpy ndarray, range
|
Lags used as predictors. Index starts at 1, so lag 1 is equal to t-1.
|
`None`
|
Returns:
Type | Description |
---|---|
None
|
|
Source code in skforecast\recursive\_forecaster_recursive.py
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 |
|
set_window_features ¶
set_window_features(window_features=None)
Set new value to the attribute window_features
. Attributes
max_size_window_features
, window_features_names
,
window_features_class_names
and window_size
are also updated.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
window_features |
(object, list)
|
Instance or list of instances used to create window features. Window features are created from the original time series and are included as predictors. |
`None`
|
Returns:
Type | Description |
---|---|
None
|
|
Source code in skforecast\recursive\_forecaster_recursive.py
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 |
|
set_out_sample_residuals ¶
set_out_sample_residuals(
y_true, y_pred, append=False, random_state=123
)
Set new values to the attribute out_sample_residuals_
. Out of sample
residuals are meant to be calculated using observations that did not
participate in the training process. y_true
and y_pred
are expected
to be in the original scale of the time series. Residuals are calculated
as y_true
- y_pred
, after applying the necessary transformations and
differentiations if the forecaster includes them (self.transformer_y
and self.differentiation
). Two internal attributes are updated:
out_sample_residuals_
: residuals stored in a numpy ndarray.out_sample_residuals_by_bin_
: residuals are binned according to the predicted value they are associated with and stored in a dictionary, where the keys are the intervals of the predicted values and the values are the residuals associated with that range. If a bin binning is empty, it is filled with a random sample of residuals from other bins. This is done to ensure that all bins have at least one residual and can be used in the prediction process.
A total of 10_000 residuals are stored in the attribute out_sample_residuals_
.
If the number of residuals is greater than 10_000, a random sample of
10_000 residuals is stored. The number of residuals stored per bin is
limited to 10_000 // self.binner.n_bins_
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_true |
pandas Series, numpy ndarray
|
True values of the time series from which the residuals have been calculated. |
required |
y_pred |
pandas Series, numpy ndarray
|
Predicted values of the time series. |
required |
append |
bool
|
If |
`False`
|
random_state |
int
|
Sets a seed to the random sampling for reproducible output. |
`123`
|
Returns:
Type | Description |
---|---|
None
|
|
Source code in skforecast\recursive\_forecaster_recursive.py
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 |
|
get_feature_importances ¶
get_feature_importances(sort_importance=True)
Return feature importances of the regressor stored in the forecaster.
Only valid when regressor stores internally the feature importances in the
attribute feature_importances_
or coef_
. Otherwise, returns None
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sort_importance |
bool
|
If |
True
|
Returns:
Name | Type | Description |
---|---|---|
feature_importances |
pandas DataFrame
|
Feature importances associated with each predictor. |
Source code in skforecast\recursive\_forecaster_recursive.py
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 |
|