Skip to content

model_selection

backtesting_forecaster(forecaster, y, steps, metric, initial_train_size=None, fixed_train_size=True, gap=0, allow_incomplete_fold=True, exog=None, refit=False, interval=None, n_boot=250, random_state=123, in_sample_residuals=True, binned_residuals=False, n_jobs='auto', verbose=False, show_progress=True)

Backtesting of forecaster model.

  • If refit is False, the model will be trained only once using the initial_train_size first observations.
  • If refit is True, the model is trained on each iteration, increasing the training set.
  • If refit is an integer, the model will be trained every that number of iterations.
  • If forecaster is already trained and initial_train_size is None, no initial train will be done and all data will be used to evaluate the model. However, the first len(forecaster.last_window) observations are needed to create the initial predictors, so no predictions are calculated for them.

A copy of the original forecaster is created so that it is not modified during the process.

Parameters:

Name Type Description Default
forecaster (ForecasterAutoreg, ForecasterAutoregCustom, ForecasterAutoregDirect)

Forecaster model.

required
y pandas Series

Training time series.

required
steps int

Number of steps to predict.

required
metric (str, Callable, list)

Metric used to quantify the goodness of fit of the model.

  • If string: {'mean_squared_error', 'mean_absolute_error', 'mean_absolute_percentage_error', 'mean_squared_log_error'}
  • If Callable: Function with arguments y_true, y_pred that returns a float.
  • If list: List containing multiple strings and/or Callables.
required
initial_train_size int

Number of samples in the initial train split. If None and forecaster is already trained, no initial train is done and all data is used to evaluate the model. However, the first len(forecaster.last_window) observations are needed to create the initial predictors, so no predictions are calculated for them. This useful to backtest the model on the same data used to train it. None is only allowed when refit is False and forecaster is already trained.

`None`
fixed_train_size bool

If True, train size doesn't increase but moves by steps in each iteration.

`True`
gap int

Number of samples to be excluded after the end of each training set and before the test set.

`0`
allow_incomplete_fold bool

Last fold is allowed to have a smaller number of samples than the test_size. If False, the last fold is excluded.

`True`
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s. Must have the same number of observations as y and should be aligned so that y[i] is regressed on exog[i].

`None`
refit (bool, int)

Whether to re-fit the forecaster in each iteration. If refit is an integer, the Forecaster will be trained every that number of iterations.

`False`
interval list

Confidence of the prediction interval estimated. Sequence of percentiles to compute, which must be between 0 and 100 inclusive. For example, interval of 95% should be as interval = [2.5, 97.5]. If None, no intervals are estimated.

`None`
n_boot int

Number of bootstrapping iterations used to estimate prediction intervals.

`500`
random_state int

Sets a seed to the random generator, so that boot intervals are always deterministic.

`123`
in_sample_residuals bool

If True, residuals from the training data are used as proxy of prediction error to create prediction intervals. If False, out_sample_residuals are used if they are already stored inside the forecaster.

`True`
binned_residuals bool
If `True`, residuals used in each bootstrapping iteration are selected
conditioning on the predicted values. If `False`, residuals are selected
randomly without conditioning on the predicted values.
`False`
n_jobs (int, auto)

The number of jobs to run in parallel. If -1, then the number of jobs is set to the number of cores. If 'auto', n_jobs is set using the function skforecast.utils.select_n_jobs_backtesting. New in version 0.9.0

`'auto'`
verbose bool

Print number of folds and index of training and validation sets used for backtesting.

`False`
show_progress bool

Whether to show a progress bar.

`True`

Returns:

Name Type Description
metrics_value (float, list)

Value(s) of the metric(s).

backtest_predictions pandas DataFrame

Value of predictions and their estimated interval if interval is not None.

  • column pred: predictions.
  • column lower_bound: lower bound of the interval.
  • column upper_bound: upper bound of the interval.
Source code in skforecast\model_selection\model_selection.py
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
def backtesting_forecaster(
    forecaster: object,
    y: pd.Series,
    steps: int,
    metric: Union[str, Callable, list],
    initial_train_size: Optional[int]=None,
    fixed_train_size: bool=True,
    gap: int=0,
    allow_incomplete_fold: bool=True,
    exog: Optional[Union[pd.Series, pd.DataFrame]]=None,
    refit: Union[bool, int]=False,
    interval: Optional[list]=None,
    n_boot: int=250,
    random_state: int=123,
    in_sample_residuals: bool=True,
    binned_residuals: bool=False,
    n_jobs: Union[int, str]='auto',
    verbose: bool=False,
    show_progress: bool=True
) -> Tuple[Union[float, list], pd.DataFrame]:
    """
    Backtesting of forecaster model.

    - If `refit` is `False`, the model will be trained only once using the 
    `initial_train_size` first observations. 
    - If `refit` is `True`, the model is trained on each iteration, increasing
    the training set. 
    - If `refit` is an `integer`, the model will be trained every that number 
    of iterations.
    - If `forecaster` is already trained and `initial_train_size` is `None`,
    no initial train will be done and all data will be used to evaluate the model.
    However, the first `len(forecaster.last_window)` observations are needed
    to create the initial predictors, so no predictions are calculated for them.

    A copy of the original forecaster is created so that it is not modified during 
    the process.

    Parameters
    ----------
    forecaster : ForecasterAutoreg, ForecasterAutoregCustom, ForecasterAutoregDirect
        Forecaster model.
    y : pandas Series
        Training time series.
    steps : int
        Number of steps to predict.
    metric : str, Callable, list
        Metric used to quantify the goodness of fit of the model.

        - If `string`: {'mean_squared_error', 'mean_absolute_error',
        'mean_absolute_percentage_error', 'mean_squared_log_error'}
        - If `Callable`: Function with arguments y_true, y_pred that returns 
        a float.
        - If `list`: List containing multiple strings and/or Callables.
    initial_train_size : int, default `None`
        Number of samples in the initial train split. If `None` and `forecaster` is 
        already trained, no initial train is done and all data is used to evaluate the 
        model. However, the first `len(forecaster.last_window)` observations are needed 
        to create the initial predictors, so no predictions are calculated for them. 
        This useful to backtest the model on the same data used to train it.
        `None` is only allowed when `refit` is `False` and `forecaster` is already
        trained.
    fixed_train_size : bool, default `True`
        If True, train size doesn't increase but moves by `steps` in each iteration.
    gap : int, default `0`
        Number of samples to be excluded after the end of each training set and 
        before the test set.
    allow_incomplete_fold : bool, default `True`
        Last fold is allowed to have a smaller number of samples than the 
        `test_size`. If `False`, the last fold is excluded.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s. Must have the same
        number of observations as `y` and should be aligned so that y[i] is
        regressed on exog[i].
    refit : bool, int, default `False`
        Whether to re-fit the forecaster in each iteration. If `refit` is an integer, 
        the Forecaster will be trained every that number of iterations.
    interval : list, default `None`
        Confidence of the prediction interval estimated. Sequence of percentiles
        to compute, which must be between 0 and 100 inclusive. For example, 
        interval of 95% should be as `interval = [2.5, 97.5]`. If `None`, no
        intervals are estimated.
    n_boot : int, default `500`
        Number of bootstrapping iterations used to estimate prediction
        intervals.
    random_state : int, default `123`
        Sets a seed to the random generator, so that boot intervals are always 
        deterministic.
    in_sample_residuals : bool, default `True`
        If `True`, residuals from the training data are used as proxy of prediction 
        error to create prediction intervals. If `False`, out_sample_residuals 
        are used if they are already stored inside the forecaster.
    binned_residuals : bool, default `False`
            If `True`, residuals used in each bootstrapping iteration are selected
            conditioning on the predicted values. If `False`, residuals are selected
            randomly without conditioning on the predicted values.
    n_jobs : int, 'auto', default `'auto'`
        The number of jobs to run in parallel. If `-1`, then the number of jobs is 
        set to the number of cores. If 'auto', `n_jobs` is set using the function
        skforecast.utils.select_n_jobs_backtesting.
        **New in version 0.9.0**
    verbose : bool, default `False`
        Print number of folds and index of training and validation sets used 
        for backtesting.
    show_progress : bool, default `True`
        Whether to show a progress bar.

    Returns
    -------
    metrics_value : float, list
        Value(s) of the metric(s).
    backtest_predictions : pandas DataFrame
        Value of predictions and their estimated interval if `interval` is not `None`.

        - column pred: predictions.
        - column lower_bound: lower bound of the interval.
        - column upper_bound: upper bound of the interval.

    """

    forecaters_allowed = [
        'ForecasterAutoreg', 
        'ForecasterAutoregCustom', 
        'ForecasterAutoregDirect',
        'ForecasterEquivalentDate'
    ]

    if type(forecaster).__name__ not in forecaters_allowed:
        raise TypeError(
            (f"`forecaster` must be of type {forecaters_allowed}, for all other types of "
             f" forecasters use the functions available in the other `model_selection` "
             f"modules.")
        )

    check_backtesting_input(
        forecaster            = forecaster,
        steps                 = steps,
        metric                = metric,
        y                     = y,
        initial_train_size    = initial_train_size,
        fixed_train_size      = fixed_train_size,
        gap                   = gap,
        allow_incomplete_fold = allow_incomplete_fold,
        refit                 = refit,
        interval              = interval,
        n_boot                = n_boot,
        random_state          = random_state,
        in_sample_residuals   = in_sample_residuals,
        n_jobs                = n_jobs,
        verbose               = verbose,
        show_progress         = show_progress
    )

    if type(forecaster).__name__ == 'ForecasterAutoregDirect' and \
       forecaster.steps < steps + gap:
        raise ValueError(
            (f"When using a ForecasterAutoregDirect, the combination of steps "
             f"+ gap ({steps + gap}) cannot be greater than the `steps` parameter "
             f"declared when the forecaster is initialized ({forecaster.steps}).")
        )

    metrics_values, backtest_predictions = _backtesting_forecaster(
        forecaster            = forecaster,
        y                     = y,
        steps                 = steps,
        metric                = metric,
        initial_train_size    = initial_train_size,
        fixed_train_size      = fixed_train_size,
        gap                   = gap,
        allow_incomplete_fold = allow_incomplete_fold,
        exog                  = exog,
        refit                 = refit,
        interval              = interval,
        n_boot                = n_boot,
        random_state          = random_state,
        in_sample_residuals   = in_sample_residuals,
        binned_residuals      = binned_residuals,
        n_jobs                = n_jobs,
        verbose               = verbose,
        show_progress         = show_progress
    )

    return metrics_values, backtest_predictions

grid_search_forecaster(forecaster, y, param_grid, steps, metric, initial_train_size, fixed_train_size=True, gap=0, allow_incomplete_fold=True, exog=None, lags_grid=None, refit=False, return_best=True, n_jobs='auto', verbose=True, show_progress=True, output_file=None)

Exhaustive search over specified parameter values for a Forecaster object. Validation is done using time series backtesting.

Parameters:

Name Type Description Default
forecaster (ForecasterAutoreg, ForecasterAutoregCustom, ForecasterAutoregDirect)

Forecaster model.

required
y pandas Series

Training time series.

required
param_grid dict

Dictionary with parameters names (str) as keys and lists of parameter settings to try as values.

required
steps int

Number of steps to predict.

required
metric (str, Callable, list)

Metric used to quantify the goodness of fit of the model.

  • If string: {'mean_squared_error', 'mean_absolute_error', 'mean_absolute_percentage_error', 'mean_squared_log_error'}
  • If Callable: Function with arguments y_true, y_pred that returns a float.
  • If list: List containing multiple strings and/or Callables.
required
initial_train_size int

Number of samples in the initial train split.

required
fixed_train_size bool

If True, train size doesn't increase but moves by steps in each iteration.

`True`
gap int

Number of samples to be excluded after the end of each training set and before the test set.

`0`
allow_incomplete_fold bool

Last fold is allowed to have a smaller number of samples than the test_size. If False, the last fold is excluded.

`True`
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s. Must have the same number of observations as y and should be aligned so that y[i] is regressed on exog[i].

`None`
lags_grid (list, dict)

Lists of lags to try, containing int, lists, numpy ndarray, or range objects. If dict, the keys are used as labels in the results DataFrame, and the values are used as the lists of lags to try. Ignored if the forecaster is an instance of ForecasterAutoregCustom or ForecasterAutoregMultiSeriesCustom.

`None`
refit (bool, int)

Whether to re-fit the forecaster in each iteration. If refit is an integer, the Forecaster will be trained every that number of iterations.

`False`
return_best bool

Refit the forecaster using the best found parameters on the whole data.

`True`
n_jobs (int, auto)

The number of jobs to run in parallel. If -1, then the number of jobs is set to the number of cores. If 'auto', n_jobs is set using the function skforecast.utils.select_n_jobs_backtesting. New in version 0.9.0

`'auto'`
verbose bool

Print number of folds used for cv or backtesting.

`True`
show_progress bool

Whether to show a progress bar.

`True`
output_file str

Specifies the filename or full path where the results should be saved. The results will be saved in a tab-separated values (TSV) format. If None, the results will not be saved to a file. New in version 0.12.0

`None`

Returns:

Name Type Description
results pandas DataFrame

Results for each combination of parameters.

  • column lags: lags configuration for each iteration.
  • column lags_label: descriptive label or alias for the lags.
  • column params: parameters configuration for each iteration.
  • column metric: metric value estimated for each iteration.
  • additional n columns with param = value.
Source code in skforecast\model_selection\model_selection.py
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
def grid_search_forecaster(
    forecaster: object,
    y: pd.Series,
    param_grid: dict,
    steps: int,
    metric: Union[str, Callable, list],
    initial_train_size: int,
    fixed_train_size: bool=True,
    gap: int=0,
    allow_incomplete_fold: bool=True,
    exog: Optional[Union[pd.Series, pd.DataFrame]]=None,
    lags_grid: Optional[Union[list, dict]]=None,
    refit: Union[bool, int]=False,
    return_best: bool=True,
    n_jobs: Union[int, str]='auto',
    verbose: bool=True,
    show_progress: bool=True,
    output_file: Optional[str]=None
) -> pd.DataFrame:
    """
    Exhaustive search over specified parameter values for a Forecaster object.
    Validation is done using time series backtesting.

    Parameters
    ----------
    forecaster : ForecasterAutoreg, ForecasterAutoregCustom, ForecasterAutoregDirect
        Forecaster model.
    y : pandas Series
        Training time series. 
    param_grid : dict
        Dictionary with parameters names (`str`) as keys and lists of parameter
        settings to try as values.
    steps : int
        Number of steps to predict.
    metric : str, Callable, list
        Metric used to quantify the goodness of fit of the model.

        - If `string`: {'mean_squared_error', 'mean_absolute_error',
        'mean_absolute_percentage_error', 'mean_squared_log_error'}
        - If `Callable`: Function with arguments y_true, y_pred that returns 
        a float.
        - If `list`: List containing multiple strings and/or Callables.
    initial_train_size : int 
        Number of samples in the initial train split.
    fixed_train_size : bool, default `True`
        If True, train size doesn't increase but moves by `steps` in each iteration.
    gap : int, default `0`
        Number of samples to be excluded after the end of each training set and 
        before the test set.
    allow_incomplete_fold : bool, default `True`
        Last fold is allowed to have a smaller number of samples than the 
        `test_size`. If `False`, the last fold is excluded.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s. Must have the same
        number of observations as `y` and should be aligned so that y[i] is
        regressed on exog[i].
    lags_grid : list, dict, default `None`
        Lists of lags to try, containing int, lists, numpy ndarray, or range 
        objects. If `dict`, the keys are used as labels in the `results` 
        DataFrame, and the values are used as the lists of lags to try. Ignored 
        if the forecaster is an instance of `ForecasterAutoregCustom` or 
        `ForecasterAutoregMultiSeriesCustom`.
    refit : bool, int, default `False`
        Whether to re-fit the forecaster in each iteration. If `refit` is an integer, 
        the Forecaster will be trained every that number of iterations.
    return_best : bool, default `True`
        Refit the `forecaster` using the best found parameters on the whole data.
    n_jobs : int, 'auto', default `'auto'`
        The number of jobs to run in parallel. If `-1`, then the number of jobs is 
        set to the number of cores. If 'auto', `n_jobs` is set using the function
        skforecast.utils.select_n_jobs_backtesting.
        **New in version 0.9.0**
    verbose : bool, default `True`
        Print number of folds used for cv or backtesting.
    show_progress : bool, default `True`
        Whether to show a progress bar.
    output_file : str, default `None`
        Specifies the filename or full path where the results should be saved. 
        The results will be saved in a tab-separated values (TSV) format. If 
        `None`, the results will not be saved to a file.
        **New in version 0.12.0**

    Returns
    -------
    results : pandas DataFrame
        Results for each combination of parameters.

        - column lags: lags configuration for each iteration.
        - column lags_label: descriptive label or alias for the lags.
        - column params: parameters configuration for each iteration.
        - column metric: metric value estimated for each iteration.
        - additional n columns with param = value.

    """

    param_grid = list(ParameterGrid(param_grid))

    results = _evaluate_grid_hyperparameters(
        forecaster            = forecaster,
        y                     = y,
        param_grid            = param_grid,
        steps                 = steps,
        metric                = metric,
        initial_train_size    = initial_train_size,
        fixed_train_size      = fixed_train_size,
        gap                   = gap,
        allow_incomplete_fold = allow_incomplete_fold,
        exog                  = exog,
        lags_grid             = lags_grid,
        refit                 = refit,
        return_best           = return_best,
        n_jobs                = n_jobs,
        verbose               = verbose,
        show_progress         = show_progress,
        output_file           = output_file
    )

    return results

random_search_forecaster(forecaster, y, param_distributions, steps, metric, initial_train_size, fixed_train_size=True, gap=0, allow_incomplete_fold=True, exog=None, lags_grid=None, refit=False, n_iter=10, random_state=123, return_best=True, n_jobs='auto', verbose=True, show_progress=True, output_file=None)

Random search over specified parameter values or distributions for a Forecaster object. Validation is done using time series backtesting.

Parameters:

Name Type Description Default
forecaster (ForecasterAutoreg, ForecasterAutoregCustom, ForecasterAutoregDirect)

Forecaster model.

required
y pandas Series

Training time series.

required
param_distributions dict

Dictionary with parameters names (str) as keys and distributions or lists of parameters to try.

required
steps int

Number of steps to predict.

required
metric (str, Callable, list)

Metric used to quantify the goodness of fit of the model.

  • If string: {'mean_squared_error', 'mean_absolute_error', 'mean_absolute_percentage_error', 'mean_squared_log_error'}
  • If Callable: Function with arguments y_true, y_pred that returns a float.
  • If list: List containing multiple strings and/or Callables.
required
initial_train_size int

Number of samples in the initial train split.

required
fixed_train_size bool

If True, train size doesn't increase but moves by steps in each iteration.

`True`
gap int

Number of samples to be excluded after the end of each training set and before the test set.

`0`
allow_incomplete_fold bool

Last fold is allowed to have a smaller number of samples than the test_size. If False, the last fold is excluded.

`True`
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s. Must have the same number of observations as y and should be aligned so that y[i] is regressed on exog[i].

`None`
lags_grid (list, dict)

Lists of lags to try, containing int, lists, numpy ndarray, or range objects. If dict, the keys are used as labels in the results DataFrame, and the values are used as the lists of lags to try. Ignored if the forecaster is an instance of ForecasterAutoregCustom or ForecasterAutoregMultiSeriesCustom.

`None`
refit (bool, int)

Whether to re-fit the forecaster in each iteration. If refit is an integer, the Forecaster will be trained every that number of iterations.

`False`
n_iter int

Number of parameter settings that are sampled per lags configuration. n_iter trades off runtime vs quality of the solution.

`10`
random_state int

Sets a seed to the random sampling for reproducible output.

`123`
return_best bool

Refit the forecaster using the best found parameters on the whole data.

`True`
n_jobs (int, auto)

The number of jobs to run in parallel. If -1, then the number of jobs is set to the number of cores. If 'auto', n_jobs is set using the function skforecast.utils.select_n_jobs_backtesting. New in version 0.9.0

`'auto'`
verbose bool

Print number of folds used for cv or backtesting.

`True`
show_progress bool

Whether to show a progress bar.

`True`
output_file str

Specifies the filename or full path where the results should be saved. The results will be saved in a tab-separated values (TSV) format. If None, the results will not be saved to a file. New in version 0.12.0

`None`

Returns:

Name Type Description
results pandas DataFrame

Results for each combination of parameters.

  • column lags: lags configuration for each iteration.
  • column lags_label: descriptive label or alias for the lags.
  • column params: parameters configuration for each iteration.
  • column metric: metric value estimated for each iteration.
  • additional n columns with param = value.
Source code in skforecast\model_selection\model_selection.py
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
def random_search_forecaster(
    forecaster: object,
    y: pd.Series,
    param_distributions: dict,
    steps: int,
    metric: Union[str, Callable, list],
    initial_train_size: int,
    fixed_train_size: bool=True,
    gap: int=0,
    allow_incomplete_fold: bool=True,
    exog: Optional[Union[pd.Series, pd.DataFrame]]=None,
    lags_grid: Optional[Union[list, dict]]=None,
    refit: Union[bool, int]=False,
    n_iter: int=10,
    random_state: int=123,
    return_best: bool=True,
    n_jobs: Union[int, str]='auto',
    verbose: bool=True,
    show_progress: bool=True,
    output_file: Optional[str]=None
) -> pd.DataFrame:
    """
    Random search over specified parameter values or distributions for a Forecaster 
    object. Validation is done using time series backtesting.

    Parameters
    ----------
    forecaster : ForecasterAutoreg, ForecasterAutoregCustom, ForecasterAutoregDirect
        Forecaster model.
    y : pandas Series
        Training time series. 
    param_distributions : dict
        Dictionary with parameters names (`str`) as keys and 
        distributions or lists of parameters to try.
    steps : int
        Number of steps to predict.
    metric : str, Callable, list
        Metric used to quantify the goodness of fit of the model.

        - If `string`: {'mean_squared_error', 'mean_absolute_error',
        'mean_absolute_percentage_error', 'mean_squared_log_error'}
        - If `Callable`: Function with arguments y_true, y_pred that returns 
        a float.
        - If `list`: List containing multiple strings and/or Callables.
    initial_train_size : int 
        Number of samples in the initial train split.
    fixed_train_size : bool, default `True`
        If True, train size doesn't increase but moves by `steps` in each iteration.
    gap : int, default `0`
        Number of samples to be excluded after the end of each training set and 
        before the test set.
    allow_incomplete_fold : bool, default `True`
        Last fold is allowed to have a smaller number of samples than the 
        `test_size`. If `False`, the last fold is excluded.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s. Must have the same
        number of observations as `y` and should be aligned so that y[i] is
        regressed on exog[i]. 
    lags_grid : list, dict, default `None`
        Lists of lags to try, containing int, lists, numpy ndarray, or range 
        objects. If `dict`, the keys are used as labels in the `results` 
        DataFrame, and the values are used as the lists of lags to try. Ignored 
        if the forecaster is an instance of `ForecasterAutoregCustom` or 
        `ForecasterAutoregMultiSeriesCustom`.
    refit : bool, int, default `False`
        Whether to re-fit the forecaster in each iteration. If `refit` is an integer, 
        the Forecaster will be trained every that number of iterations.
    n_iter : int, default `10`
        Number of parameter settings that are sampled per lags configuration. 
        n_iter trades off runtime vs quality of the solution.
    random_state : int, default `123`
        Sets a seed to the random sampling for reproducible output.
    return_best : bool, default `True`
        Refit the `forecaster` using the best found parameters on the whole data.
    n_jobs : int, 'auto', default `'auto'`
        The number of jobs to run in parallel. If `-1`, then the number of jobs is 
        set to the number of cores. If 'auto', `n_jobs` is set using the function
        skforecast.utils.select_n_jobs_backtesting.
        **New in version 0.9.0**
    verbose : bool, default `True`
        Print number of folds used for cv or backtesting.
    show_progress : bool, default `True`
        Whether to show a progress bar.
    output_file : str, default `None`
        Specifies the filename or full path where the results should be saved. 
        The results will be saved in a tab-separated values (TSV) format. If 
        `None`, the results will not be saved to a file.
        **New in version 0.12.0**

    Returns
    -------
    results : pandas DataFrame
        Results for each combination of parameters.

        - column lags: lags configuration for each iteration.
        - column lags_label: descriptive label or alias for the lags.
        - column params: parameters configuration for each iteration.
        - column metric: metric value estimated for each iteration.
        - additional n columns with param = value.

    """

    param_grid = list(ParameterSampler(param_distributions, n_iter=n_iter, random_state=random_state))

    results = _evaluate_grid_hyperparameters(
        forecaster            = forecaster,
        y                     = y,
        param_grid            = param_grid,
        steps                 = steps,
        metric                = metric,
        initial_train_size    = initial_train_size,
        fixed_train_size      = fixed_train_size,
        gap                   = gap,
        allow_incomplete_fold = allow_incomplete_fold,
        exog                  = exog,
        lags_grid             = lags_grid,
        refit                 = refit,
        return_best           = return_best,
        n_jobs                = n_jobs,
        verbose               = verbose,
        show_progress         = show_progress,
        output_file           = output_file
    )

    return results

bayesian_search_forecaster(forecaster, y, search_space, steps, metric, initial_train_size, fixed_train_size=True, gap=0, allow_incomplete_fold=True, exog=None, lags_grid='deprecated', refit=False, n_trials=10, random_state=123, return_best=True, n_jobs='auto', verbose=True, show_progress=True, output_file=None, engine='optuna', kwargs_create_study={}, kwargs_study_optimize={})

Bayesian optimization for a Forecaster object using time series backtesting and optuna library.

Parameters:

Name Type Description Default
forecaster (ForecasterAutoreg, ForecasterAutoregCustom, ForecasterAutoregDirect)

Forecaster model.

required
y pandas Series

Training time series.

required
search_space Callable(optuna)

Function with argument trial which returns a dictionary with parameters names (str) as keys and Trial object from optuna (trial.suggest_float, trial.suggest_int, trial.suggest_categorical) as values.

required
steps int

Number of steps to predict.

required
metric (str, Callable, list)

Metric used to quantify the goodness of fit of the model.

  • If string: {'mean_squared_error', 'mean_absolute_error', 'mean_absolute_percentage_error', 'mean_squared_log_error'}
  • If Callable: Function with arguments y_true, y_pred that returns a float.
  • If list: List containing multiple strings and/or Callables.
required
initial_train_size int

Number of samples in the initial train split.

required
fixed_train_size bool

If True, train size doesn't increase but moves by steps in each iteration.

`True`
gap int

Number of samples to be excluded after the end of each training set and before the test set.

`0`
allow_incomplete_fold bool

Last fold is allowed to have a smaller number of samples than the test_size. If False, the last fold is excluded.

`True`
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s. Must have the same number of observations as y and should be aligned so that y[i] is regressed on exog[i].

`None`
lags_grid deprecated

Deprecated since version 0.12.0 and will be removed in 0.13.0. Use search_space to define the candidate values for the lags. This way, lags can be optimized together with the other parameters of the regressor in the bayesian search.

'deprecated'
refit (bool, int)

Whether to re-fit the forecaster in each iteration. If refit is an integer, the Forecaster will be trained every that number of iterations.

`False`
n_trials int

Number of parameter settings that are sampled in each lag configuration.

`10`
random_state int

Sets a seed to the sampling for reproducible output. When a new sampler is passed in kwargs_create_study, the seed must be set within the sampler. For example {'sampler': TPESampler(seed=145)}.

`123`
return_best bool

Refit the forecaster using the best found parameters on the whole data.

`True`
n_jobs (int, auto)

The number of jobs to run in parallel. If -1, then the number of jobs is set to the number of cores. If 'auto', n_jobs is set using the function skforecast.utils.select_n_jobs_backtesting. New in version 0.9.0

`'auto'`
verbose bool

Print number of folds used for cv or backtesting.

`True`
show_progress bool

Whether to show a progress bar.

`True`
output_file str

Specifies the filename or full path where the results should be saved. The results will be saved in a tab-separated values (TSV) format. If None, the results will not be saved to a file. New in version 0.12.0

`None`
engine str

Bayesian optimization runs through the optuna library.

`'optuna'`
kwargs_create_study dict

Keyword arguments (key, value mappings) to pass to optuna.create_study(). If default, the direction is set to 'minimize' and a TPESampler(seed=123) sampler is used during optimization.

`{}`
kwargs_study_optimize dict

Only applies to engine='optuna'. Other keyword arguments (key, value mappings) to pass to study.optimize().

`{}`

Returns:

Name Type Description
results pandas DataFrame

Results for each combination of parameters.

  • column lags: lags configuration for each iteration.
  • column params: parameters configuration for each iteration.
  • column metric: metric value estimated for each iteration.
  • additional n columns with param = value.
best_trial optuna object

The best optimization result returned as a FrozenTrial optuna object.

Source code in skforecast\model_selection\model_selection.py
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
def bayesian_search_forecaster(
    forecaster: object,
    y: pd.Series,
    search_space: Callable,
    steps: int,
    metric: Union[str, Callable, list],
    initial_train_size: int,
    fixed_train_size: bool=True,
    gap: int=0,
    allow_incomplete_fold: bool=True,
    exog: Optional[Union[pd.Series, pd.DataFrame]]=None,
    lags_grid: Any='deprecated',
    refit: Union[bool, int]=False,
    n_trials: int=10,
    random_state: int=123,
    return_best: bool=True,
    n_jobs: Union[int, str]='auto',
    verbose: bool=True,
    show_progress: bool=True,
    output_file: Optional[str]=None,
    engine: str='optuna',
    kwargs_create_study: dict={},
    kwargs_study_optimize: dict={}
) -> Tuple[pd.DataFrame, object]:
    """
    Bayesian optimization for a Forecaster object using time series backtesting and 
    optuna library.

    Parameters
    ----------
    forecaster : ForecasterAutoreg, ForecasterAutoregCustom, ForecasterAutoregDirect
        Forecaster model.
    y : pandas Series
        Training time series. 
    search_space : Callable (optuna)
        Function with argument `trial` which returns a dictionary with parameters names 
        (`str`) as keys and Trial object from optuna (trial.suggest_float, 
        trial.suggest_int, trial.suggest_categorical) as values.
    steps : int
        Number of steps to predict.
    metric : str, Callable, list
        Metric used to quantify the goodness of fit of the model.

        - If `string`: {'mean_squared_error', 'mean_absolute_error',
        'mean_absolute_percentage_error', 'mean_squared_log_error'}
        - If `Callable`: Function with arguments y_true, y_pred that returns 
        a float.
        - If `list`: List containing multiple strings and/or Callables.
    initial_train_size : int 
        Number of samples in the initial train split.
    fixed_train_size : bool, default `True`
        If True, train size doesn't increase but moves by `steps` in each iteration.
    gap : int, default `0`
        Number of samples to be excluded after the end of each training set and 
        before the test set.
    allow_incomplete_fold : bool, default `True`
        Last fold is allowed to have a smaller number of samples than the 
        `test_size`. If `False`, the last fold is excluded.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s. Must have the same
        number of observations as `y` and should be aligned so that y[i] is
        regressed on exog[i]. 
    lags_grid : deprecated
        **Deprecated since version 0.12.0 and will be removed in 0.13.0.** Use
        `search_space` to define the candidate values for the lags. This way,
        lags can be optimized together with the other parameters of the regressor
        in the bayesian search.
    refit : bool, int, default `False`
        Whether to re-fit the forecaster in each iteration. If `refit` is an integer, 
        the Forecaster will be trained every that number of iterations.
    n_trials : int, default `10`
        Number of parameter settings that are sampled in each lag configuration.
    random_state : int, default `123`
        Sets a seed to the sampling for reproducible output. When a new sampler 
        is passed in `kwargs_create_study`, the seed must be set within the 
        sampler. For example `{'sampler': TPESampler(seed=145)}`.
    return_best : bool, default `True`
        Refit the `forecaster` using the best found parameters on the whole data.
    n_jobs : int, 'auto', default `'auto'`
        The number of jobs to run in parallel. If `-1`, then the number of jobs is 
        set to the number of cores. If 'auto', `n_jobs` is set using the function
        skforecast.utils.select_n_jobs_backtesting.
        **New in version 0.9.0**
    verbose : bool, default `True`
        Print number of folds used for cv or backtesting.
    show_progress : bool, default `True`
        Whether to show a progress bar.
    output_file : str, default `None`
        Specifies the filename or full path where the results should be saved. 
        The results will be saved in a tab-separated values (TSV) format. If 
        `None`, the results will not be saved to a file.
        **New in version 0.12.0**
    engine : str, default `'optuna'`
        Bayesian optimization runs through the optuna library.
    kwargs_create_study : dict, default `{}`
        Keyword arguments (key, value mappings) to pass to optuna.create_study().
        If default, the direction is set to 'minimize' and a TPESampler(seed=123) 
        sampler is used during optimization.
    kwargs_study_optimize : dict, default `{}`
        Only applies to engine='optuna'. Other keyword arguments (key, value mappings) 
        to pass to study.optimize().

    Returns
    -------
    results : pandas DataFrame
        Results for each combination of parameters.

        - column lags: lags configuration for each iteration.
        - column params: parameters configuration for each iteration.
        - column metric: metric value estimated for each iteration.
        - additional n columns with param = value.
    best_trial : optuna object
        The best optimization result returned as a FrozenTrial optuna object.

    """

    if return_best and exog is not None and (len(exog) != len(y)):
        raise ValueError(
            (f"`exog` must have same number of samples as `y`. "
             f"length `exog`: ({len(exog)}), length `y`: ({len(y)})")
        )

    if lags_grid != 'deprecated':
        warnings.warn(
            ("The 'lags_grid' argument is deprecated and will be removed in a future version. "
             "Use the 'search_space' argument to define the candidate values for the lags. "
             "Example: {'lags' : trial.suggest_categorical('lags', [3, 5])}")
        )
        lags_grid = 'deprecated'

    if engine not in ['optuna']:
        raise ValueError(
            f"`engine` only allows 'optuna', got {engine}."
        )

    results, best_trial = _bayesian_search_optuna(
                              forecaster            = forecaster,
                              y                     = y,
                              exog                  = exog,
                              lags_grid             = lags_grid,
                              search_space          = search_space,
                              steps                 = steps,
                              metric                = metric,
                              refit                 = refit,
                              initial_train_size    = initial_train_size,
                              fixed_train_size      = fixed_train_size,
                              gap                   = gap,
                              allow_incomplete_fold = allow_incomplete_fold,
                              n_trials              = n_trials,
                              random_state          = random_state,
                              return_best           = return_best,
                              n_jobs                = n_jobs,
                              verbose               = verbose,
                              show_progress         = show_progress,
                              output_file           = output_file,
                              kwargs_create_study   = kwargs_create_study,
                              kwargs_study_optimize = kwargs_study_optimize
                          )

    return results, best_trial

select_features(forecaster, selector, y, exog=None, select_only=None, force_inclusion=None, subsample=0.5, random_state=123, verbose=True)

Feature selection using any of the sklearn.feature_selection module selectors (such as RFECV, SelectFromModel, etc.). Two groups of features are evaluated: autoregressive features and exogenous features. By default, the selection process is performed on both sets of features at the same time, so that the most relevant autoregressive and exogenous features are selected. However, using the select_only argument, the selection process can focus only on the autoregressive or exogenous features without taking into account the other features. Therefore, all other features will remain in the model. It is also possible to force the inclusion of certain features in the final list of selected features using the force_inclusion parameter.

Parameters:

Name Type Description Default
forecaster (ForecasterAutoreg, ForecasterAutoregCustom)

Forecaster model.

required
selector object

A feature selector from sklearn.feature_selection.

required
y pandas Series, pandas DataFrame

Target time series to which the feature selection will be applied.

required
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s. Must have the same number of observations as y and should be aligned so that y[i] is regressed on exog[i].

`None`
select_only str

Decide what type of features to include in the selection process.

  • If 'autoreg', only autoregressive features (lags or custom predictors) are evaluated by the selector. All exogenous features are included in the output (selected_exog).
  • If 'exog', only exogenous features are evaluated without the presence of autoregressive features. All autoregressive features are included in the output (selected_autoreg).
  • If None, all features are evaluated by the selector.
`None`
force_inclusion (list, str)

Features to force include in the final list of selected features.

  • If list, list of feature names to force include.
  • If str, regular expression to identify features to force include. For example, if force_inclusion="^sun_", all features that begin with "sun_" will be included in the final list of selected features.
`None`
subsample (int, float)

Proportion of records to use for feature selection.

`0.5`
random_state int

Sets a seed for the random subsample so that the subsampling process is always deterministic.

`123`
verbose bool

Print information about feature selection process.

`True`

Returns:

Name Type Description
selected_autoreg list

List of selected autoregressive features.

selected_exog list

List of selected exogenous features.

Source code in skforecast\model_selection\model_selection.py
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
def select_features(
    forecaster: object,
    selector: object,
    y: Union[pd.Series, pd.DataFrame],
    exog: Optional[Union[pd.Series, pd.DataFrame]]=None,
    select_only: Optional[str]=None,
    force_inclusion: Optional[Union[list, str]]=None,
    subsample: Union[int, float]=0.5,
    random_state: int=123,
    verbose: bool=True
) -> Union[list, list]:
    """
    Feature selection using any of the sklearn.feature_selection module selectors 
    (such as `RFECV`, `SelectFromModel`, etc.). Two groups of features are
    evaluated: autoregressive features and exogenous features. By default, the 
    selection process is performed on both sets of features at the same time, 
    so that the most relevant autoregressive and exogenous features are selected. 
    However, using the `select_only` argument, the selection process can focus 
    only on the autoregressive or exogenous features without taking into account 
    the other features. Therefore, all other features will remain in the model. 
    It is also possible to force the inclusion of certain features in the final 
    list of selected features using the `force_inclusion` parameter.

    Parameters
    ----------
    forecaster : ForecasterAutoreg, ForecasterAutoregCustom
        Forecaster model.
    selector : object
        A feature selector from sklearn.feature_selection.
    y : pandas Series, pandas DataFrame
        Target time series to which the feature selection will be applied.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s. Must have the same
        number of observations as `y` and should be aligned so that y[i] is
        regressed on exog[i].
    select_only : str, default `None`
        Decide what type of features to include in the selection process. 

        - If `'autoreg'`, only autoregressive features (lags or custom 
        predictors) are evaluated by the selector. All exogenous features are 
        included in the output (`selected_exog`).
        - If `'exog'`, only exogenous features are evaluated without the presence
        of autoregressive features. All autoregressive features are included 
        in the output (`selected_autoreg`).
        - If `None`, all features are evaluated by the selector.
    force_inclusion : list, str, default `None`
        Features to force include in the final list of selected features.

        - If `list`, list of feature names to force include.
        - If `str`, regular expression to identify features to force include. 
        For example, if `force_inclusion="^sun_"`, all features that begin 
        with "sun_" will be included in the final list of selected features.
    subsample : int, float, default `0.5`
        Proportion of records to use for feature selection.
    random_state : int, default `123`
        Sets a seed for the random subsample so that the subsampling process 
        is always deterministic.
    verbose : bool, default `True`
        Print information about feature selection process.

    Returns
    -------
    selected_autoreg : list
        List of selected autoregressive features.
    selected_exog : list
        List of selected exogenous features.

    """

    valid_forecasters = [
        'ForecasterAutoreg',
        'ForecasterAutoregCustom'
    ]

    if type(forecaster).__name__ not in valid_forecasters:
        raise TypeError(
            f"`forecaster` must be one of the following classes: {valid_forecasters}."
        )

    if select_only not in ['autoreg', 'exog', None]:
        raise ValueError(
            "`select_only` must be one of the following values: 'autoreg', 'exog', None."
        )

    if subsample <= 0 or subsample > 1:
        raise ValueError(
            "`subsample` must be a number greater than 0 and less than or equal to 1."
        )

    forecaster = deepcopy(forecaster)
    forecaster.fitted = False
    X_train, y_train = forecaster.create_train_X_y(y=y, exog=exog)

    if hasattr(forecaster, 'lags'):
        autoreg_cols = [f"lag_{lag}" for lag in forecaster.lags]
    else:
        if forecaster.name_predictors is not None:
            autoreg_cols = forecaster.name_predictors
        else:
            autoreg_cols = [
                col
                for col in X_train.columns
                if re.match(r'^custom_predictor_\d+', col)
            ]
    exog_cols = [col for col in X_train.columns if col not in autoreg_cols]

    forced_autoreg = []
    forced_exog = []
    if force_inclusion is not None:
        if isinstance(force_inclusion, list):
            forced_autoreg = [col for col in force_inclusion if col in autoreg_cols]
            forced_exog = [col for col in force_inclusion if col in exog_cols]
        elif isinstance(force_inclusion, str):
            forced_autoreg = [col for col in autoreg_cols if re.match(force_inclusion, col)]
            forced_exog = [col for col in exog_cols if re.match(force_inclusion, col)]

    if select_only == 'autoreg':
        X_train = X_train.drop(columns=exog_cols)
    elif select_only == 'exog':
        X_train = X_train.drop(columns=autoreg_cols)

    if isinstance(subsample, float):
        subsample = int(len(X_train)*subsample)

    rng = np.random.default_rng(seed=random_state)
    sample = rng.choice(X_train.index, size=subsample, replace=False)
    X_train_sample = X_train.loc[sample, :]
    y_train_sample = y_train.loc[sample]
    selector.fit(X_train_sample, y_train_sample)
    selected_features = selector.get_feature_names_out()

    if select_only == 'exog':
        selected_autoreg = autoreg_cols
    else:
        selected_autoreg = [
            feature
            for feature in selected_features
            if feature in autoreg_cols
        ]

    if select_only == 'autoreg':
        selected_exog = exog_cols
    else:
        selected_exog = [
            feature
            for feature in selected_features
            if feature in exog_cols
        ]

    if force_inclusion is not None: 
        if select_only != 'autoreg':
            forced_exog_not_selected = set(forced_exog) - set(selected_features)
            selected_exog.extend(forced_exog_not_selected)
            selected_exog.sort(key=exog_cols.index)
        if select_only != 'exog':
            forced_autoreg_not_selected = set(forced_autoreg) - set(selected_features)
            selected_autoreg.extend(forced_autoreg_not_selected)
            selected_autoreg.sort(key=autoreg_cols.index)

    if len(selected_autoreg) == 0:
        warnings.warn(
            ("No autoregressive features have been selected. Since a Forecaster "
             "cannot be created without them, be sure to include at least one "
             "using the `force_inclusion` parameter.")
        )
    else:
        if hasattr(forecaster, 'lags'):
            selected_autoreg = [int(feature.replace('lag_', '')) 
                                for feature in selected_autoreg]

    if verbose:
        print(f"Recursive feature elimination ({selector.__class__.__name__})")
        print("--------------------------------" + "-"*len(selector.__class__.__name__))
        print(f"Total number of records available: {X_train.shape[0]}")
        print(f"Total number of records used for feature selection: {X_train_sample.shape[0]}")
        print(f"Number of features available: {X_train.shape[1]}") 
        print(f"    Autoreg (n={len(autoreg_cols)})")
        print(f"    Exog    (n={len(exog_cols)})")
        print(f"Number of features selected: {len(selected_features)}")
        print(f"    Autoreg (n={len(selected_autoreg)}) : {selected_autoreg}")
        print(f"    Exog    (n={len(selected_exog)}) : {selected_exog}")

    return selected_autoreg, selected_exog