Skip to content

ForecasterAutoreg

ForecasterAutoreg(regressor, lags, transformer_y=None, transformer_exog=None, weight_func=None, differentiation=None, fit_kwargs=None, binner_kwargs=None, forecaster_id=None)

Bases: ForecasterBase

This class turns any regressor compatible with the scikit-learn API into a recursive autoregressive (multi-step) forecaster.

Parameters:

Name Type Description Default
regressor regressor or pipeline compatible with the scikit-learn API

An instance of a regressor or pipeline compatible with the scikit-learn API

required
lags int, list, numpy ndarray, range

Lags used as predictors. Index starts at 1, so lag 1 is equal to t-1.

  • int: include lags from 1 to lags (included).
  • list, 1d numpy ndarray or range: include only lags present in lags, all elements must be int.
required
transformer_y object transformer (preprocessor)

An instance of a transformer (preprocessor) compatible with the scikit-learn preprocessing API with methods: fit, transform, fit_transform and inverse_transform. ColumnTransformers are not allowed since they do not have inverse_transform method. The transformation is applied to y before training the forecaster.

`None`
transformer_exog object transformer (preprocessor)

An instance of a transformer (preprocessor) compatible with the scikit-learn preprocessing API. The transformation is applied to exog before training the forecaster. inverse_transform is not available when using ColumnTransformers.

`None`
weight_func Callable

Function that defines the individual weights for each sample based on the index. For example, a function that assigns a lower weight to certain dates. Ignored if regressor does not have the argument sample_weight in its fit method. The resulting sample_weight cannot have negative values.

`None`
differentiation int

Order of differencing applied to the time series before training the forecaster. If None, no differencing is applied. The order of differentiation is the number of times the differencing operation is applied to a time series. Differencing involves computing the differences between consecutive data points in the series. Differentiation is reversed in the output of predict() and predict_interval(). WARNING: This argument is newly introduced and requires special attention. It is still experimental and may undergo changes. New in version 0.10.0

`None`
fit_kwargs dict

Additional arguments to be passed to the fit method of the regressor.

`None`
binner_kwargs dict

Additional arguments to pass to the KBinsDiscretizer used to discretize the residuals into k bins according to the predicted values associated with each residual. The encode' argument is always set to 'ordinal' anddtype' to np.float64. New in version 0.12.0

`None`
forecaster_id (str, int)

Name used as an identifier of the forecaster.

`None`

Attributes:

Name Type Description
regressor regressor or pipeline compatible with the scikit-learn API

An instance of a regressor or pipeline compatible with the scikit-learn API.

lags numpy ndarray

Lags used as predictors.

transformer_y object transformer (preprocessor)

An instance of a transformer (preprocessor) compatible with the scikit-learn preprocessing API with methods: fit, transform, fit_transform and inverse_transform. ColumnTransformers are not allowed since they do not have inverse_transform method. The transformation is applied to y before training the forecaster.

transformer_exog object transformer (preprocessor)

An instance of a transformer (preprocessor) compatible with the scikit-learn preprocessing API. The transformation is applied to exog before training the forecaster. inverse_transform is not available when using ColumnTransformers.

weight_func Callable

Function that defines the individual weights for each sample based on the index. For example, a function that assigns a lower weight to certain dates. Ignored if regressor does not have the argument sample_weight in its fit method. The resulting sample_weight cannot have negative values.

differentiation int, default `None`

Order of differencing applied to the time series before training the forecaster. If None, no differencing is applied. The order of differentiation is the number of times the differencing operation is applied to a time series. Differencing involves computing the differences between consecutive data points in the series. Differentiation is reversed in the output of predict() and predict_interval(). WARNING: This argument is newly introduced and requires special attention. It is still experimental and may undergo changes. New in version 0.10.0

binner KBinsDiscretizer

KBinsDiscretizer used to discretize residuals into k bins according to the predicted values associated with each residual. New in version 0.12.0

binner_kwargs dict

Additional arguments to pass to the KBinsDiscretizer used to discretize the residuals into k bins according to the predicted values associated with each residual. The encode' argument is always set to 'ordinal' anddtype' to np.float64. New in version 0.12.0

source_code_weight_func str

Source code of the custom function used to create weights.

differentiation int

Order of differencing applied to the time series before training the forecaster.

differentiator TimeSeriesDifferentiator

Skforecast object used to differentiate the time series.

max_lag int

Maximum value of lag included in lags.

window_size int

Size of the window needed to create the predictors. It is equal to max_lag.

window_size_diff int

Size of the window extended by the order of differentiation. When using differentiation, the window_size is increased by the order of differentiation so that the predictors can be created correctly.

last_window pandas Series

This window represents the most recent data observed by the predictor during its training phase. It contains the values needed to predict the next step immediately after the training data. These values are stored in the original scale of the time series before undergoing any transformations or differentiation. When differentiation parameter is specified, the dimensions of the last_window are expanded as many values as the order of differentiation. For example, if lags = 7 and differentiation = 1, last_window will have 8 values.

index_type type

Type of index of the input used in training.

index_freq str

Frequency of Index of the input used in training.

training_range pandas Index

First and last values of index of the data used during training.

included_exog bool

If the forecaster has been trained using exogenous variable/s.

exog_type type

Type of exogenous data (pandas Series or DataFrame) used in training.

exog_dtypes dict

Type of each exogenous variable/s used in training. If transformer_exog is used, the dtypes are calculated after the transformation.

exog_col_names list

Names of the exogenous variables used during training.

X_train_col_names list

Names of columns of the matrix created internally for training.

fit_kwargs dict

Additional arguments to be passed to the fit method of the regressor.

in_sample_residuals numpy ndarray

Residuals of the model when predicting training data. Only stored up to 1000 values. If transformer_y is not None, residuals are stored in the transformed scale.

in_sample_residuals_by_bin dict

In sample residuals binned according to the predicted value each residual is associated with. Only stored up to 200 values per bin. If transformer_y is not None, residuals are stored in the transformed scale. New in version 0.12.0

out_sample_residuals numpy ndarray

Residuals of the model when predicting non training data. Only stored up to 1000 values. If transformer_y is not None, residuals are assumed to be in the transformed scale. Use set_out_sample_residuals method to set values.

out_sample_residuals_by_bin dict

Out of sample residuals binned according to the predicted value each residual is associated with. Only stored up to 200 values per bin. If transformer_y is not None, residuals are assumed to be in the transformed scale. New in version 0.12.0

fitted bool

Tag to identify if the regressor has been fitted (trained).

creation_date str

Date of creation.

fit_date str

Date of last fit.

skforecast_version str

Version of skforecast library used to create the forecaster.

python_version str

Version of python used to create the forecaster.

forecaster_id (str, int)

Name used as an identifier of the forecaster.

Source code in skforecast\ForecasterAutoreg\ForecasterAutoreg.py
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
def __init__(
    self,
    regressor: object,
    lags: Union[int, np.ndarray, list],
    transformer_y: Optional[object]=None,
    transformer_exog: Optional[object]=None,
    weight_func: Optional[Callable]=None,
    differentiation: Optional[int]=None,
    fit_kwargs: Optional[dict]=None,
    binner_kwargs: Optional[dict]=None,
    forecaster_id: Optional[Union[str, int]]=None
) -> None:

    self.regressor                   = regressor
    self.transformer_y               = transformer_y
    self.transformer_exog            = transformer_exog
    self.weight_func                 = weight_func
    self.source_code_weight_func     = None
    self.differentiation             = differentiation
    self.differentiator              = None
    self.last_window                 = None
    self.index_type                  = None
    self.index_freq                  = None
    self.training_range              = None
    self.included_exog               = False
    self.exog_type                   = None
    self.exog_dtypes                 = None
    self.exog_col_names              = None
    self.X_train_col_names           = None
    self.in_sample_residuals         = None
    self.out_sample_residuals        = None
    self.in_sample_residuals_by_bin  = None
    self.out_sample_residuals_by_bin = None
    self.fitted                      = False
    self.creation_date               = pd.Timestamp.today().strftime('%Y-%m-%d %H:%M:%S')
    self.fit_date                    = None
    self.skforecast_version          = skforecast.__version__
    self.python_version              = sys.version.split(" ")[0]
    self.forecaster_id               = forecaster_id

    self.lags = initialize_lags(type(self).__name__, lags)
    self.max_lag = max(self.lags)
    self.window_size = self.max_lag
    self.window_size_diff = self.max_lag

    self.binner_kwargs = binner_kwargs
    if binner_kwargs is None:
        self.binner_kwargs = {
            'n_bins': 15, 'encode': 'ordinal', 'strategy': 'quantile',
            'subsample': 10000, 'random_state': 789654, 'dtype': np.float64
        }
    else:
        self.binner_kwargs = binner_kwargs
        self.binner_kwargs['encode'] = 'ordinal'
        self.binner_kwargs['dtype'] = np.float64
    self.binner = KBinsDiscretizer(**self.binner_kwargs)
    self.binner_intervals = None

    if self.differentiation is not None:
        if not isinstance(differentiation, int) or differentiation < 1:
            raise ValueError(
                (f"Argument `differentiation` must be an integer equal to or "
                 f"greater than 1. Got {differentiation}.")
            )
        self.window_size_diff += self.differentiation
        self.differentiator = TimeSeriesDifferentiator(order=self.differentiation)

    self.weight_func, self.source_code_weight_func, _ = initialize_weights(
        forecaster_name = type(self).__name__, 
        regressor       = regressor, 
        weight_func     = weight_func, 
        series_weights  = None
    )

    self.fit_kwargs = check_select_fit_kwargs(
                          regressor  = regressor,
                          fit_kwargs = fit_kwargs
                      )

_create_lags(y)

Transforms a 1d array into a 2d array (X) and a 1d array (y). Each row in X is associated with a value of y and it represents the lags that precede it.

Notice that, the returned matrix X_data, contains the lag 1 in the first column, the lag 2 in the second column and so on.

Parameters:

Name Type Description Default
y numpy ndarray

1d numpy ndarray Training time series.

required

Returns:

Name Type Description
X_data numpy ndarray

2d numpy ndarray with the lagged values (predictors). Shape: (samples - max(self.lags), len(self.lags))

y_data numpy ndarray

1d numpy ndarray with the values of the time series related to each row of X_data. Shape: (samples - max(self.lags), )

Source code in skforecast\ForecasterAutoreg\ForecasterAutoreg.py
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
def _create_lags(
    self, 
    y: np.ndarray
) -> Tuple[np.ndarray, np.ndarray]:
    """
    Transforms a 1d array into a 2d array (X) and a 1d array (y). Each row
    in X is associated with a value of y and it represents the lags that
    precede it.

    Notice that, the returned matrix X_data, contains the lag 1 in the first
    column, the lag 2 in the second column and so on.

    Parameters
    ----------
    y : numpy ndarray
        1d numpy ndarray Training time series.

    Returns
    -------
    X_data : numpy ndarray
        2d numpy ndarray with the lagged values (predictors). 
        Shape: (samples - max(self.lags), len(self.lags))
    y_data : numpy ndarray
        1d numpy ndarray with the values of the time series related to each 
        row of `X_data`. 
        Shape: (samples - max(self.lags), )

    """

    n_splits = len(y) - self.max_lag
    if n_splits <= 0:
        raise ValueError(
            (f"The maximum lag ({self.max_lag}) must be less than the length "
             f"of the series ({len(y)}).")
        )

    X_data = np.full(shape=(n_splits, len(self.lags)), fill_value=np.nan, dtype=float)

    for i, lag in enumerate(self.lags):
        X_data[:, i] = y[self.max_lag - lag: -lag]

    y_data = y[self.max_lag:]

    return X_data, y_data

create_train_X_y(y, exog=None)

Create training matrices from univariate time series and exogenous variables.

Parameters:

Name Type Description Default
y pandas Series

Training time series.

required
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s. Must have the same number of observations as y and their indexes must be aligned.

`None`

Returns:

Name Type Description
X_train pandas DataFrame

Training values (predictors). Shape: (len(y) - self.max_lag, len(self.lags))

y_train pandas Series

Values (target) of the time series related to each row of X_train. Shape: (len(y) - self.max_lag, )

Source code in skforecast\ForecasterAutoreg\ForecasterAutoreg.py
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
def create_train_X_y(
    self,
    y: pd.Series,
    exog: Optional[Union[pd.Series, pd.DataFrame]]=None
) -> Tuple[pd.DataFrame, pd.Series]:
    """
    Create training matrices from univariate time series and exogenous
    variables.

    Parameters
    ----------
    y : pandas Series
        Training time series.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s. Must have the same
        number of observations as `y` and their indexes must be aligned.

    Returns
    -------
    X_train : pandas DataFrame
        Training values (predictors).
        Shape: (len(y) - self.max_lag, len(self.lags))
    y_train : pandas Series
        Values (target) of the time series related to each row of `X_train`.
        Shape: (len(y) - self.max_lag, )

    """

    check_y(y=y)
    fit_transformer = False if self.fitted else True
    y = transform_series(
            series            = y,
            transformer       = self.transformer_y,
            fit               = fit_transformer,
            inverse_transform = False
        )
    y_values, y_index = preprocess_y(y=y)

    if self.differentiation is not None:
        if not self.fitted:
            y_values = self.differentiator.fit_transform(y_values)
        else:
            differentiator = clone(self.differentiator)
            y_values = differentiator.fit_transform(y_values)

    if exog is not None:

        check_exog(exog=exog, allow_nan=True)
        if len(exog) != len(y):
            raise ValueError(
                (f"`exog` must have same number of samples as `y`. "
                 f"length `exog`: ({len(exog)}), length `y`: ({len(y)})")
            )

        if isinstance(exog, pd.Series):
            exog = transform_series(
                       series            = exog,
                       transformer       = self.transformer_exog,
                       fit               = fit_transformer,
                       inverse_transform = False
                   )
        else:
            exog = transform_dataframe(
                       df                = exog,
                       transformer       = self.transformer_exog,
                       fit               = fit_transformer,
                       inverse_transform = False
                   )

        check_exog_dtypes(exog, call_check_exog=True)

        _, exog_index = preprocess_exog(exog=exog, return_values=False)
        if not (exog_index[:len(y_index)] == y_index).all():
            raise ValueError(
                ("Different index for `y` and `exog`. They must be equal "
                 "to ensure the correct alignment of values.")
            )

    X_train, y_train = self._create_lags(y=y_values)
    X_train_col_names = [f"lag_{i}" for i in self.lags]
    X_train = pd.DataFrame(
                  data    = X_train,
                  columns = X_train_col_names,
                  index   = y_index[self.max_lag: ]
              )

    if exog is not None:
        # The first `self.max_lag` positions have to be removed from exog
        # since they are not in X_train.
        exog_to_train = exog.iloc[self.max_lag:, ]
        exog_to_train.index = exog_index[self.max_lag:]
        X_train = pd.concat((X_train, exog_to_train), axis=1)

    # TODO: move self to fit method and make X_train_col_names a return
    if not self.fitted:
        self.X_train_col_names = X_train.columns.to_list()

    y_train = pd.Series(
                  data  = y_train,
                  index = y_index[self.max_lag: ],
                  name  = 'y'
              )

    if self.differentiation is not None:
        X_train = X_train.iloc[self.differentiation: ]
        y_train = y_train.iloc[self.differentiation: ]

    return X_train, y_train

create_sample_weights(X_train)

Crate weights for each observation according to the forecaster's attribute weight_func.

Parameters:

Name Type Description Default
X_train pandas DataFrame

Dataframe created with the create_train_X_y method, first return.

required

Returns:

Name Type Description
sample_weight numpy ndarray

Weights to use in fit method.

Source code in skforecast\ForecasterAutoreg\ForecasterAutoreg.py
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
def create_sample_weights(
    self,
    X_train: pd.DataFrame,
)-> np.ndarray:
    """
    Crate weights for each observation according to the forecaster's attribute
    `weight_func`.

    Parameters
    ----------
    X_train : pandas DataFrame
        Dataframe created with the `create_train_X_y` method, first return.

    Returns
    -------
    sample_weight : numpy ndarray
        Weights to use in `fit` method.

    """

    sample_weight = None

    if self.weight_func is not None:
        sample_weight = self.weight_func(X_train.index)

    if sample_weight is not None:
        if np.isnan(sample_weight).any():
            raise ValueError(
                "The resulting `sample_weight` cannot have NaN values."
            )
        if np.any(sample_weight < 0):
            raise ValueError(
                "The resulting `sample_weight` cannot have negative values."
            )
        if np.sum(sample_weight) == 0:
            raise ValueError(
                ("The resulting `sample_weight` cannot be normalized because "
                 "the sum of the weights is zero.")
            )

    return sample_weight

fit(y, exog=None, store_last_window=True, store_in_sample_residuals=True)

Training Forecaster.

Additional arguments to be passed to the fit method of the regressor can be added with the fit_kwargs argument when initializing the forecaster.

Parameters:

Name Type Description Default
y pandas Series

Training time series.

required
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s. Must have the same number of observations as y and their indexes must be aligned so that y[i] is regressed on exog[i].

`None`
store_last_window bool

Whether or not to store the last window of training data.

`True`
store_in_sample_residuals bool

If True, in-sample residuals will be stored in the forecaster object after fitting.

`True`

Returns:

Type Description
None
Source code in skforecast\ForecasterAutoreg\ForecasterAutoreg.py
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
def fit(
    self,
    y: pd.Series,
    exog: Optional[Union[pd.Series, pd.DataFrame]]=None,
    store_last_window: bool=True,
    store_in_sample_residuals: bool=True
) -> None:
    """
    Training Forecaster.

    Additional arguments to be passed to the `fit` method of the regressor 
    can be added with the `fit_kwargs` argument when initializing the forecaster.

    Parameters
    ----------
    y : pandas Series
        Training time series.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s. Must have the same
        number of observations as `y` and their indexes must be aligned so
        that y[i] is regressed on exog[i].
    store_last_window : bool, default `True`
        Whether or not to store the last window of training data.
    store_in_sample_residuals : bool, default `True`
        If `True`, in-sample residuals will be stored in the forecaster object
        after fitting.

    Returns
    -------
    None

    """

    # Reset values in case the forecaster has already been fitted.
    self.index_type          = None
    self.index_freq          = None
    self.last_window         = None
    self.included_exog       = False
    self.exog_type           = None
    self.exog_dtypes         = None
    self.exog_col_names      = None
    self.X_train_col_names   = None
    self.in_sample_residuals = None
    self.fitted              = False
    self.training_range      = None

    X_train, y_train = self.create_train_X_y(y=y, exog=exog)
    sample_weight = self.create_sample_weights(X_train=X_train)

    if sample_weight is not None:
        self.regressor.fit(X=X_train, y=y_train, sample_weight=sample_weight,
                           **self.fit_kwargs)
    else:
        self.regressor.fit(X=X_train, y=y_train, **self.fit_kwargs)

    self.fitted = True
    self.fit_date = pd.Timestamp.today().strftime('%Y-%m-%d %H:%M:%S')
    self.training_range = preprocess_y(y=y, return_values=False)[1][[0, -1]]
    self.index_type = type(X_train.index)
    if isinstance(X_train.index, pd.DatetimeIndex):
        self.index_freq = X_train.index.freqstr
    else: 
        self.index_freq = X_train.index.step

    if exog is not None:
        self.included_exog = True
        self.exog_type = type(exog)
        self.exog_dtypes = get_exog_dtypes(exog=exog)
        self.exog_col_names = \
             exog.columns.to_list() if isinstance(exog, pd.DataFrame) else exog.name

    # This is done to save time during fit in functions such as backtesting()
    if store_in_sample_residuals:
        in_sample_predictions = pd.Series(
                                    data  = self.regressor.predict(X_train),
                                    index = X_train.index
                                )
        self._binning_in_sample_residuals(
            y_true = y_train,
            y_pred = in_sample_predictions
        )

    # The last time window of training data is stored so that lags needed as
    # predictors in the first iteration of `predict()` can be calculated. It
    # also includes the values need to calculate the diferenctiation.
    if store_last_window:
        self.last_window = y.iloc[-self.window_size_diff:].copy()

_binning_in_sample_residuals(y_true, y_pred)

Binning residuals according to the predicted value each residual is associated with. First a sklearn.preprocessing.KBinsDiscretizer is fitted to the predicted values. Then, residuals are binned according to the predicted value each residual is associated with. Residuals are stored in the forecaster object as in_sample_residuals and in_sample_residuals_by_bin. Only up to 200 residuals are stored per bin.

Parameters:

Name Type Description Default
y_true pandas Series

True values of the time series.

required
y_pred pandas Series

Predicted values of the time series.

required

Returns:

Type Description
None
Source code in skforecast\ForecasterAutoreg\ForecasterAutoreg.py
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
def _binning_in_sample_residuals(
    self,
    y_true: pd.Series,
    y_pred: pd.Series,
) -> None:
    """
    Binning residuals according to the predicted value each residual is
    associated with. First a sklearn.preprocessing.KBinsDiscretizer
    is fitted to the predicted values. Then, residuals are binned according
    to the predicted value each residual is associated with. Residuals are
    stored in the forecaster object as `in_sample_residuals` and
    `in_sample_residuals_by_bin`. Only up to 200 residuals are stored per bin.

    Parameters
    ----------
    y_true : pandas Series
        True values of the time series.
    y_pred : pandas Series
        Predicted values of the time series.     

    Returns
    -------
    None

    """

    y_pred = y_pred.rename('prediction')
    residuals = (y_true - y_pred).rename('residual')
    data = pd.merge(
               residuals,
               y_pred,
               left_index  = True,
               right_index = True
           )
    self.binner.fit(data[['prediction']].to_numpy())
    data['bin'] = self.binner.transform(data[['prediction']].to_numpy()).astype(int)
    self.in_sample_residuals_by_bin = (
        data.groupby('bin')['residual'].apply(np.array).to_dict()
    )

    # Only up to 200 residuals are stored per bin
    for k, v in self.in_sample_residuals_by_bin.items():
        # TODO: Include `random_state` in fit method to allow the user 
        # change the residual sample stored.
        rng = np.random.default_rng(seed=95123)
        if len(v) > 200:
            sample = rng.choice(a=v, size=200, replace=False)
            self.in_sample_residuals_by_bin[k] = sample

    self.in_sample_residuals = np.concatenate(list(
        self.in_sample_residuals_by_bin.values()
    ))

    self.binner_intervals = {
        i: (
            self.binner.bin_edges_[0][i],
            (
                self.binner.bin_edges_[0][i + 1]
                if i + 1 < len(self.binner.bin_edges_[0])
                else None
            ),
        )
        for i in range(len(self.binner.bin_edges_[0]) - 1)
    }

_recursive_predict(steps, last_window, exog=None)

Predict n steps ahead. It is an iterative process in which, each prediction, is used as a predictor for the next step.

Parameters:

Name Type Description Default
steps int

Number of future steps predicted.

required
last_window numpy ndarray

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1).

required
exog numpy ndarray

Exogenous variable/s included as predictor/s.

`None`

Returns:

Name Type Description
predictions numpy ndarray

Predicted values.

Source code in skforecast\ForecasterAutoreg\ForecasterAutoreg.py
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
def _recursive_predict(
    self,
    steps: int,
    last_window: np.ndarray,
    exog: Optional[np.ndarray]=None
) -> np.ndarray:
    """
    Predict n steps ahead. It is an iterative process in which, each prediction,
    is used as a predictor for the next step.

    Parameters
    ----------
    steps : int
        Number of future steps predicted.
    last_window : numpy ndarray
        Series values used to create the predictors (lags) needed in the 
        first iteration of the prediction (t + 1).
    exog : numpy ndarray, default `None`
        Exogenous variable/s included as predictor/s.

    Returns
    -------
    predictions : numpy ndarray
        Predicted values.

    """

    predictions = np.full(shape=steps, fill_value=np.nan)

    for i in range(steps):
        X = last_window[-self.lags].reshape(1, -1)
        if exog is not None:
            X = np.column_stack((X, exog[i, ].reshape(1, -1)))
        with warnings.catch_warnings():
            # Suppress scikit-learn warning: "X does not have valid feature names,
            # but NoOpTransformer was fitted with feature names".
            warnings.simplefilter("ignore")
            prediction = self.regressor.predict(X)
            predictions[i] = prediction.ravel()[0]

        # Update `last_window` values. The first position is discarded and 
        # the new prediction is added at the end.
        last_window = np.append(last_window[1:], prediction)

    return predictions

predict(steps, last_window=None, exog=None)

Predict n steps ahead. It is an recursive process in which, each prediction, is used as a predictor for the next step.

Parameters:

Name Type Description Default
steps int

Number of future steps predicted.

required
last_window pandas Series

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1). If last_window = None, the values stored in self.last_window are used to calculate the initial predictors, and the predictions start right after training data.

`None`
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s.

`None`

Returns:

Name Type Description
predictions pandas Series

Predicted values.

Source code in skforecast\ForecasterAutoreg\ForecasterAutoreg.py
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
def predict(
    self,
    steps: int,
    last_window: Optional[pd.Series]=None,
    exog: Optional[Union[pd.Series, pd.DataFrame]]=None
) -> pd.Series:
    """
    Predict n steps ahead. It is an recursive process in which, each prediction,
    is used as a predictor for the next step.

    Parameters
    ----------
    steps : int
        Number of future steps predicted.
    last_window : pandas Series, default `None`
        Series values used to create the predictors (lags) needed in the 
        first iteration of the prediction (t + 1).
        If `last_window = None`, the values stored in `self.last_window` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s.

    Returns
    -------
    predictions : pandas Series
        Predicted values.

    """

    if last_window is None:
        last_window = self.last_window

    check_predict_input(
        forecaster_name  = type(self).__name__,
        steps            = steps,
        fitted           = self.fitted,
        included_exog    = self.included_exog,
        index_type       = self.index_type,
        index_freq       = self.index_freq,
        window_size      = self.window_size_diff,
        last_window      = last_window,
        last_window_exog = None,
        exog             = exog,
        exog_type        = self.exog_type,
        exog_col_names   = self.exog_col_names,
        interval         = None,
        alpha            = None,
        max_steps        = None,
        levels           = None,
        series_col_names = None
    )

    last_window = last_window.iloc[-self.window_size_diff:].copy()

    if exog is not None:
        if isinstance(exog, pd.DataFrame):
            exog = transform_dataframe(
                       df                = exog,
                       transformer       = self.transformer_exog,
                       fit               = False,
                       inverse_transform = False
                   )
        else:
            exog = transform_series(
                       series            = exog,
                       transformer       = self.transformer_exog,
                       fit               = False,
                       inverse_transform = False
                   )
        check_exog_dtypes(exog=exog)
        exog_values = exog.to_numpy()[:steps]
    else:
        exog_values = None

    last_window = transform_series(
                      series            = last_window,
                      transformer       = self.transformer_y,
                      fit               = False,
                      inverse_transform = False
                  )
    last_window_values, last_window_index = preprocess_last_window(
                                                last_window = last_window
                                            )
    if self.differentiation is not None:
        last_window_values = self.differentiator.fit_transform(last_window_values)

    predictions = self._recursive_predict(
                      steps       = steps,
                      last_window = last_window_values,
                      exog        = exog_values
                  )

    if self.differentiation is not None:
        predictions = self.differentiator.inverse_transform_next_window(predictions)

    predictions = pd.Series(
                      data  = predictions,
                      index = expand_index(
                                  index = last_window_index,
                                  steps = steps
                              ),
                      name = 'pred'
                  )

    predictions = transform_series(
                      series            = predictions,
                      transformer       = self.transformer_y,
                      fit               = False,
                      inverse_transform = True
                  )

    return predictions

predict_bootstrapping(steps, last_window=None, exog=None, n_boot=250, random_state=123, in_sample_residuals=True, binned_residuals=False)

Generate multiple forecasting predictions using a bootstrapping process. By sampling from a collection of past observed errors (the residuals), each iteration of bootstrapping generates a different set of predictions. See the Notes section for more information.

Parameters:

Name Type Description Default
steps int

Number of future steps predicted.

required
last_window pandas Series

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1). If last_window = None, the values stored in self.last_window are used to calculate the initial predictors, and the predictions start right after training data.

`None`
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s.

`None`
n_boot int

Number of bootstrapping iterations used to estimate predictions.

`500`
random_state int

Sets a seed to the random generator, so that boot predictions are always deterministic.

`123`
in_sample_residuals bool

If True, residuals from the training data are used as proxy of prediction error to create predictions. If False, out of sample residuals are used. In the latter case, the user should have calculated and stored the residuals within the forecaster (see set_out_sample_residuals()).

`True`
binned_residuals bool

If True, residuals used in each bootstrapping iteration are selected conditioning on the predicted values. If False, residuals are selected randomly without conditioning on the predicted values. WARNING: This argument is newly introduced and requires special attention. It is still experimental and may undergo changes. New in version 0.12.0

`False`

Returns:

Name Type Description
boot_predictions pandas DataFrame

Predictions generated by bootstrapping. Shape: (steps, n_boot)

Notes

More information about prediction intervals in forecasting: https://otexts.com/fpp3/prediction-intervals.html#prediction-intervals-from-bootstrapped-residuals Forecasting: Principles and Practice (3nd ed) Rob J Hyndman and George Athanasopoulos.

Source code in skforecast\ForecasterAutoreg\ForecasterAutoreg.py
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
def predict_bootstrapping(
    self,
    steps: int,
    last_window: Optional[pd.Series]=None,
    exog: Optional[Union[pd.Series, pd.DataFrame]]=None,
    n_boot: int=250,
    random_state: int=123,
    in_sample_residuals: bool=True,
    binned_residuals: bool=False,
) -> pd.DataFrame:
    """
    Generate multiple forecasting predictions using a bootstrapping process. 
    By sampling from a collection of past observed errors (the residuals),
    each iteration of bootstrapping generates a different set of predictions. 
    See the Notes section for more information. 

    Parameters
    ----------
    steps : int
        Number of future steps predicted.
    last_window : pandas Series, default `None`
        Series values used to create the predictors (lags) needed in the 
        first iteration of the prediction (t + 1).
        If `last_window = None`, the values stored in `self.last_window` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s.
    n_boot : int, default `500`
        Number of bootstrapping iterations used to estimate predictions.
    random_state : int, default `123`
        Sets a seed to the random generator, so that boot predictions are always 
        deterministic.
    in_sample_residuals : bool, default `True`
        If `True`, residuals from the training data are used as proxy of
        prediction error to create predictions. If `False`, out of sample 
        residuals are used. In the latter case, the user should have
        calculated and stored the residuals within the forecaster (see
        `set_out_sample_residuals()`).
    binned_residuals : bool, default `False`
        If `True`, residuals used in each bootstrapping iteration are selected
        conditioning on the predicted values. If `False`, residuals are selected
        randomly without conditioning on the predicted values.
        **WARNING: This argument is newly introduced and requires special attention.
        It is still experimental and may undergo changes.**
        **New in version 0.12.0**

    Returns
    -------
    boot_predictions : pandas DataFrame
        Predictions generated by bootstrapping.
        Shape: (steps, n_boot)

    Notes
    -----
    More information about prediction intervals in forecasting:
    https://otexts.com/fpp3/prediction-intervals.html#prediction-intervals-from-bootstrapped-residuals
    Forecasting: Principles and Practice (3nd ed) Rob J Hyndman and George Athanasopoulos.

    """

    # TODO: Move to check_predict_input(), validate why it was not there.
    if not in_sample_residuals:
        if not binned_residuals and self.out_sample_residuals is None:
            raise ValueError(
                ("`forecaster.out_sample_residuals` is `None`. Use "
                 "`in_sample_residuals=True` or method `set_out_sample_residuals()` "
                 "before `predict_interval()`, `predict_bootstrapping()`, "
                 "`predict_quantiles()` or `predict_dist()`.")
            )
        if binned_residuals and self.out_sample_residuals_by_bin is None:
            raise ValueError(
                ("`forecaster.out_sample_residuals_by_bin` is `None`. Use "
                 "`in_sample_residuals=True` or method `set_out_sample_residuals()` "
                 "before `predict_interval()`, `predict_bootstrapping()`, "
                 "`predict_quantiles()` or `predict_dist()`.")
            )

    if last_window is None:
        last_window = self.last_window

    check_predict_input(
        forecaster_name  = type(self).__name__,
        steps            = steps,
        fitted           = self.fitted,
        included_exog    = self.included_exog,
        index_type       = self.index_type,
        index_freq       = self.index_freq,
        window_size      = self.window_size_diff,
        last_window      = last_window,
        last_window_exog = None,
        exog             = exog,
        exog_type        = self.exog_type,
        exog_col_names   = self.exog_col_names,
        interval         = None,
        alpha            = None,
        max_steps        = None,
        levels           = None,
        series_col_names = None
    )

    last_window = last_window.iloc[-self.window_size_diff:]

    if exog is not None:
        if isinstance(exog, pd.DataFrame):
            exog = transform_dataframe(
                       df                = exog,
                       transformer       = self.transformer_exog,
                       fit               = False,
                       inverse_transform = False
                   )
        else:
            exog = transform_series(
                       series            = exog,
                       transformer       = self.transformer_exog,
                       fit               = False,
                       inverse_transform = False
                   )
        exog_values = exog.to_numpy()[:steps]
    else:
        exog_values = None

    last_window = transform_series(
                      series            = last_window,
                      transformer       = self.transformer_y,
                      fit               = False,
                      inverse_transform = False
                  )
    last_window_values, last_window_index = preprocess_last_window(
                                                last_window = last_window
                                            )
    if self.differentiation is not None:
        last_window_values = self.differentiator.fit_transform(last_window_values)

    boot_predictions = np.full(
                           shape      = (steps, n_boot),
                           fill_value = np.nan,
                           dtype      = float
                       )
    rng = np.random.default_rng(seed=random_state)
    seeds = rng.integers(low=0, high=10000, size=n_boot)

    if in_sample_residuals:
        residuals = self.in_sample_residuals
        residuals_by_bin = self.in_sample_residuals_by_bin
    else:
        residuals = self.out_sample_residuals
        residuals_by_bin = self.out_sample_residuals_by_bin

    for i in range(n_boot):
        # In each bootstraping iteration the initial last_window and exog 
        # need to be restored.
        last_window_boot = last_window_values.copy()
        exog_boot = exog_values.copy() if exog is not None else None

        rng = np.random.default_rng(seed=seeds[i])
        if not binned_residuals:
            sampled_residuals = rng.choice(
                                    a       = residuals,
                                    size    = steps,
                                    replace = True
                                )

        for step in range(steps):

            prediction = self._recursive_predict(
                             steps       = 1,
                             last_window = last_window_boot,
                             exog        = exog_boot 
                         )
            if binned_residuals:
                predicted_bin = (
                    self.binner.transform(prediction.reshape(1, -1)).astype(int)[0][0]
                )
                sampled_residual = rng.choice(a=residuals_by_bin[predicted_bin], size=1)
            else:
                sampled_residual = sampled_residuals[step]

            prediction_with_residual  = prediction + sampled_residual
            boot_predictions[step, i] = prediction_with_residual[0]
            last_window_boot = np.append(
                                   last_window_boot[1:],
                                   prediction_with_residual
                               )
            if exog is not None:
                exog_boot = exog_boot[1:]

        if self.differentiation is not None:
            boot_predictions[:, i] = (
                self.differentiator.inverse_transform_next_window(boot_predictions[:, i])
            )

    boot_predictions = pd.DataFrame(
                           data    = boot_predictions,
                           index   = expand_index(last_window_index, steps=steps),
                           columns = [f"pred_boot_{i}" for i in range(n_boot)]
                       )

    if self.transformer_y:
        for col in boot_predictions.columns:
            boot_predictions[col] = transform_series(
                                        series            = boot_predictions[col],
                                        transformer       = self.transformer_y,
                                        fit               = False,
                                        inverse_transform = True
                                    )

    return boot_predictions

predict_interval(steps, last_window=None, exog=None, interval=[5, 95], n_boot=250, random_state=123, in_sample_residuals=True, binned_residuals=False)

Iterative process in which each prediction is used as a predictor for the next step, and bootstrapping is used to estimate prediction intervals. Both predictions and intervals are returned.

Parameters:

Name Type Description Default
steps int

Number of future steps predicted.

required
last_window pandas Series

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1). If last_window = None, the values stored inself.last_window are used to calculate the initial predictors, and the predictions start right after training data.

`None`
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s.

`None`
interval list

Confidence of the prediction interval estimated. Sequence of percentiles to compute, which must be between 0 and 100 inclusive. For example, interval of 95% should be as interval = [2.5, 97.5].

`[5, 95]`
n_boot int

Number of bootstrapping iterations used to estimate predictions.

`500`
random_state int

Sets a seed to the random generator, so that boot predictions are always deterministic.

`123`
in_sample_residuals bool

If True, residuals from the training data are used as proxy of prediction error to create predictions. If False, out of sample residuals are used. In the latter case, the user should have calculated and stored the residuals within the forecaster (see set_out_sample_residuals()).

`True`
binned_residuals bool

If True, residuals used in each bootstrapping iteration are selected conditioning on the predicted values. If False, residuals are selected randomly without conditioning on the predicted values. WARNING: This argument is newly introduced and requires special attention. It is still experimental and may undergo changes. New in version 0.12.0

`False`

Returns:

Name Type Description
predictions pandas DataFrame

Values predicted by the forecaster and their estimated interval.

  • pred: predictions.
  • lower_bound: lower bound of the interval.
  • upper_bound: upper bound of the interval.
Notes

More information about prediction intervals in forecasting: https://otexts.com/fpp2/prediction-intervals.html Forecasting: Principles and Practice (2nd ed) Rob J Hyndman and George Athanasopoulos.

Source code in skforecast\ForecasterAutoreg\ForecasterAutoreg.py
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
def predict_interval(
    self,
    steps: int,
    last_window: Optional[pd.Series]=None,
    exog: Optional[Union[pd.Series, pd.DataFrame]]=None,
    interval: list=[5, 95],
    n_boot: int=250,
    random_state: int=123,
    in_sample_residuals: bool=True,
    binned_residuals: bool=False
) -> pd.DataFrame:
    """
    Iterative process in which each prediction is used as a predictor
    for the next step, and bootstrapping is used to estimate prediction
    intervals. Both predictions and intervals are returned.

    Parameters
    ----------
    steps : int
        Number of future steps predicted.
    last_window : pandas Series, default `None`
        Series values used to create the predictors (lags) needed in the 
        first iteration of the prediction (t + 1).
        If `last_window = None`, the values stored in` self.last_window` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s.
    interval : list, default `[5, 95]`
        Confidence of the prediction interval estimated. Sequence of 
        percentiles to compute, which must be between 0 and 100 inclusive. 
        For example, interval of 95% should be as `interval = [2.5, 97.5]`.
    n_boot : int, default `500`
        Number of bootstrapping iterations used to estimate predictions.
    random_state : int, default `123`
        Sets a seed to the random generator, so that boot predictions are always 
        deterministic.
    in_sample_residuals : bool, default `True`
        If `True`, residuals from the training data are used as proxy of
        prediction error to create predictions. If `False`, out of sample 
        residuals are used. In the latter case, the user should have
        calculated and stored the residuals within the forecaster (see
        `set_out_sample_residuals()`).
    binned_residuals : bool, default `False`
        If `True`, residuals used in each bootstrapping iteration are selected
        conditioning on the predicted values. If `False`, residuals are selected
        randomly without conditioning on the predicted values.
        **WARNING: This argument is newly introduced and requires special attention.
        It is still experimental and may undergo changes.**
        **New in version 0.12.0**

    Returns
    -------
    predictions : pandas DataFrame
        Values predicted by the forecaster and their estimated interval.

        - pred: predictions.
        - lower_bound: lower bound of the interval.
        - upper_bound: upper bound of the interval.

    Notes
    -----
    More information about prediction intervals in forecasting:
    https://otexts.com/fpp2/prediction-intervals.html
    Forecasting: Principles and Practice (2nd ed) Rob J Hyndman and
    George Athanasopoulos.

    """

    check_interval(interval=interval)

    predictions = self.predict(
                      steps       = steps,
                      last_window = last_window,
                      exog        = exog
                  )

    boot_predictions = self.predict_bootstrapping(
                           steps               = steps,
                           last_window         = last_window,
                           exog                = exog,
                           n_boot              = n_boot,
                           random_state        = random_state,
                           in_sample_residuals = in_sample_residuals,
                           binned_residuals    = binned_residuals
                       )

    interval = np.array(interval)/100
    predictions_interval = boot_predictions.quantile(q=interval, axis=1).transpose()
    predictions_interval.columns = ['lower_bound', 'upper_bound']
    predictions = pd.concat((predictions, predictions_interval), axis=1)

    return predictions

predict_quantiles(steps, last_window=None, exog=None, quantiles=[0.05, 0.5, 0.95], n_boot=250, random_state=123, in_sample_residuals=True, binned_residuals=False)

Calculate the specified quantiles for each step. After generating multiple forecasting predictions through a bootstrapping process, each quantile is calculated for each step.

Parameters:

Name Type Description Default
steps int

Number of future steps predicted.

required
last_window pandas Series

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1). If last_window = None, the values stored inself.last_window are used to calculate the initial predictors, and the predictions start right after training data.

`None`
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s.

`None`
quantiles list

Sequence of quantiles to compute, which must be between 0 and 1 inclusive. For example, quantiles of 0.05, 0.5 and 0.95 should be as quantiles = [0.05, 0.5, 0.95].

`[0.05, 0.5, 0.95]`
n_boot int

Number of bootstrapping iterations used to estimate quantiles.

`500`
random_state int

Sets a seed to the random generator, so that boot quantiles are always deterministic.

`123`
in_sample_residuals bool

If True, residuals from the training data are used as proxy of prediction error to create prediction quantiles. If False, out of sample residuals are used. In the latter case, the user should have calculated and stored the residuals within the forecaster (see set_out_sample_residuals()).

`True`
binned_residuals bool

If True, residuals used in each bootstrapping iteration are selected conditioning on the predicted values. If False, residuals are selected randomly without conditioning on the predicted values. WARNING: This argument is newly introduced and requires special attention. It is still experimental and may undergo changes. New in version 0.12.0

`False`

Returns:

Name Type Description
predictions pandas DataFrame

Quantiles predicted by the forecaster.

Notes

More information about prediction intervals in forecasting: https://otexts.com/fpp2/prediction-intervals.html Forecasting: Principles and Practice (2nd ed) Rob J Hyndman and George Athanasopoulos.

Source code in skforecast\ForecasterAutoreg\ForecasterAutoreg.py
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
def predict_quantiles(
    self,
    steps: int,
    last_window: Optional[pd.Series]=None,
    exog: Optional[Union[pd.Series, pd.DataFrame]]=None,
    quantiles: list=[0.05, 0.5, 0.95],
    n_boot: int=250,
    random_state: int=123,
    in_sample_residuals: bool=True,
    binned_residuals: bool=False
) -> pd.DataFrame:
    """
    Calculate the specified quantiles for each step. After generating 
    multiple forecasting predictions through a bootstrapping process, each 
    quantile is calculated for each step.

    Parameters
    ----------
    steps : int
        Number of future steps predicted.
    last_window : pandas Series, default `None`
        Series values used to create the predictors (lags) needed in the 
        first iteration of the prediction (t + 1).
        If `last_window = None`, the values stored in` self.last_window` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s.
    quantiles : list, default `[0.05, 0.5, 0.95]`
        Sequence of quantiles to compute, which must be between 0 and 1 
        inclusive. For example, quantiles of 0.05, 0.5 and 0.95 should be as 
        `quantiles = [0.05, 0.5, 0.95]`.
    n_boot : int, default `500`
        Number of bootstrapping iterations used to estimate quantiles.
    random_state : int, default `123`
        Sets a seed to the random generator, so that boot quantiles are always 
        deterministic.
    in_sample_residuals : bool, default `True`
        If `True`, residuals from the training data are used as proxy of
        prediction error to create prediction quantiles. If `False`, out of
        sample residuals are used. In the latter case, the user should have
        calculated and stored the residuals within the forecaster (see
        `set_out_sample_residuals()`).
    binned_residuals : bool, default `False`
        If `True`, residuals used in each bootstrapping iteration are selected
        conditioning on the predicted values. If `False`, residuals are selected
        randomly without conditioning on the predicted values.
        **WARNING: This argument is newly introduced and requires special attention.
        It is still experimental and may undergo changes.**
        **New in version 0.12.0**

    Returns
    -------
    predictions : pandas DataFrame
        Quantiles predicted by the forecaster.

    Notes
    -----
    More information about prediction intervals in forecasting:
    https://otexts.com/fpp2/prediction-intervals.html
    Forecasting: Principles and Practice (2nd ed) Rob J Hyndman and
    George Athanasopoulos.

    """

    check_interval(quantiles=quantiles)

    boot_predictions = self.predict_bootstrapping(
                           steps               = steps,
                           last_window         = last_window,
                           exog                = exog,
                           n_boot              = n_boot,
                           random_state        = random_state,
                           in_sample_residuals = in_sample_residuals,
                           binned_residuals    = binned_residuals
                       )

    predictions = boot_predictions.quantile(q=quantiles, axis=1).transpose()
    predictions.columns = [f'q_{q}' for q in quantiles]

    return predictions

predict_dist(steps, distribution, last_window=None, exog=None, n_boot=250, random_state=123, in_sample_residuals=True, binned_residuals=False)

Fit a given probability distribution for each step. After generating multiple forecasting predictions through a bootstrapping process, each step is fitted to the given distribution.

Parameters:

Name Type Description Default
steps int

Number of future steps predicted.

required
distribution Object

A distribution object from scipy.stats.

required
last_window pandas Series

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1).
If last_window = None, the values stored inself.last_window are used to calculate the initial predictors, and the predictions start right after training data.

`None`
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s.

`None`
n_boot int

Number of bootstrapping iterations used to estimate predictions.

`500`
random_state int

Sets a seed to the random generator, so that boot predictions are always deterministic.

`123`
in_sample_residuals bool

If True, residuals from the training data are used as proxy of prediction error to create predictions. If False, out of sample residuals are used. In the latter case, the user should have calculated and stored the residuals within the forecaster (see set_out_sample_residuals()).

`True`
binned_residuals bool

If True, residuals used in each bootstrapping iteration are selected conditioning on the predicted values. If False, residuals are selected randomly without conditioning on the predicted values. WARNING: This argument is newly introduced and requires special attention. It is still experimental and may undergo changes. New in version 0.12.0

`False`

Returns:

Name Type Description
predictions pandas DataFrame

Distribution parameters estimated for each step.

Source code in skforecast\ForecasterAutoreg\ForecasterAutoreg.py
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
def predict_dist(
    self,
    steps: int,
    distribution: object,
    last_window: Optional[pd.Series]=None,
    exog: Optional[Union[pd.Series, pd.DataFrame]]=None,
    n_boot: int=250,
    random_state: int=123,
    in_sample_residuals: bool=True,
    binned_residuals: bool=False
) -> pd.DataFrame:
    """
    Fit a given probability distribution for each step. After generating 
    multiple forecasting predictions through a bootstrapping process, each 
    step is fitted to the given distribution.

    Parameters
    ----------
    steps : int
        Number of future steps predicted.
    distribution : Object
        A distribution object from scipy.stats.
    last_window : pandas Series, default `None`
        Series values used to create the predictors (lags) needed in the 
        first iteration of the prediction (t + 1).  
        If `last_window = None`, the values stored in` self.last_window` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s.
    n_boot : int, default `500`
        Number of bootstrapping iterations used to estimate predictions.
    random_state : int, default `123`
        Sets a seed to the random generator, so that boot predictions are always 
        deterministic.
    in_sample_residuals : bool, default `True`
        If `True`, residuals from the training data are used as proxy of
        prediction error to create predictions. If `False`, out of sample 
        residuals are used. In the latter case, the user should have
        calculated and stored the residuals within the forecaster (see
        `set_out_sample_residuals()`).
    binned_residuals : bool, default `False`
        If `True`, residuals used in each bootstrapping iteration are selected
        conditioning on the predicted values. If `False`, residuals are selected
        randomly without conditioning on the predicted values.
        **WARNING: This argument is newly introduced and requires special attention.
        It is still experimental and may undergo changes.**
        **New in version 0.12.0**

    Returns
    -------
    predictions : pandas DataFrame
        Distribution parameters estimated for each step.

    """

    boot_samples = self.predict_bootstrapping(
                       steps               = steps,
                       last_window         = last_window,
                       exog                = exog,
                       n_boot              = n_boot,
                       random_state        = random_state,
                       in_sample_residuals = in_sample_residuals,
                       binned_residuals    = binned_residuals
                   )       

    param_names = [p for p in inspect.signature(distribution._pdf).parameters
                   if not p=='x'] + ["loc","scale"]
    param_values = np.apply_along_axis(
                       lambda x: distribution.fit(x),
                       axis = 1,
                       arr  = boot_samples
                   )
    predictions = pd.DataFrame(
                      data    = param_values,
                      columns = param_names,
                      index   = boot_samples.index
                  )

    return predictions

set_params(params)

Set new values to the parameters of the scikit learn model stored in the forecaster.

Parameters:

Name Type Description Default
params dict

Parameters values.

required

Returns:

Type Description
None
Source code in skforecast\ForecasterAutoreg\ForecasterAutoreg.py
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
def set_params(
    self, 
    params: dict
) -> None:
    """
    Set new values to the parameters of the scikit learn model stored in the
    forecaster.

    Parameters
    ----------
    params : dict
        Parameters values.

    Returns
    -------
    None

    """

    self.regressor = clone(self.regressor)
    self.regressor.set_params(**params)

set_fit_kwargs(fit_kwargs)

Set new values for the additional keyword arguments passed to the fit method of the regressor.

Parameters:

Name Type Description Default
fit_kwargs dict

Dict of the form {"argument": new_value}.

required

Returns:

Type Description
None
Source code in skforecast\ForecasterAutoreg\ForecasterAutoreg.py
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
def set_fit_kwargs(
    self, 
    fit_kwargs: dict
) -> None:
    """
    Set new values for the additional keyword arguments passed to the `fit` 
    method of the regressor.

    Parameters
    ----------
    fit_kwargs : dict
        Dict of the form {"argument": new_value}.

    Returns
    -------
    None

    """

    self.fit_kwargs = check_select_fit_kwargs(self.regressor, fit_kwargs=fit_kwargs)

set_lags(lags)

Set new value to the attribute lags. Attributes max_lag, window_size and window_size_diff are also updated.

Parameters:

Name Type Description Default
lags int, list, numpy ndarray, range

Lags used as predictors. Index starts at 1, so lag 1 is equal to t-1.

  • int: include lags from 1 to lags (included).
  • list, 1d numpy ndarray or range: include only lags present in lags, all elements must be int.
required

Returns:

Type Description
None
Source code in skforecast\ForecasterAutoreg\ForecasterAutoreg.py
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
def set_lags(
    self, 
    lags: Union[int, list, np.ndarray, range]
) -> None:
    """
    Set new value to the attribute `lags`. Attributes `max_lag`, 
    `window_size` and  `window_size_diff` are also updated.

    Parameters
    ----------
    lags : int, list, numpy ndarray, range
        Lags used as predictors. Index starts at 1, so lag 1 is equal to t-1.

        - `int`: include lags from 1 to `lags` (included).
        - `list`, `1d numpy ndarray` or `range`: include only lags present in 
        `lags`, all elements must be int.

    Returns
    -------
    None

    """

    self.lags = initialize_lags(type(self).__name__, lags)
    self.max_lag = max(self.lags)
    self.window_size = max(self.lags)
    self.window_size_diff = max(self.lags)
    if self.differentiation is not None:
        self.window_size_diff += self.differentiation        

set_out_sample_residuals(residuals, y_pred=None, append=True, transform=True, random_state=123)

Set new values to the attribute out_sample_residuals. Out of sample residuals are meant to be calculated using observations that did not participate in the training process. If y_pred is provided, residuals are binned according to the predicted value they are associated with. If y_pred is None, residuals are stored without binning. Only up to 200 residuals are stored per bin.

Parameters:

Name Type Description Default
residuals pandas Series, numpy ndarray

Values of residuals. If y_pred is None, at most 1000 values are stored. If y_pred is not None, at most 200 * n_bins values are stored, where n_bins is the number of bins used in self.binner.

required
y_pred pandas Series, numpy ndarray

Predicted values of the time series from which the residuals have been calculated. This argument is used to bin residuals according to the predicted values. y_pred and residuals must be of the same class (both pandas Series or both numpy ndarray) must have the same length and, if they are pandas Series, the same index.

  • If y_pred is None, residuals are not binned.
  • If affter binning, a bin has more than 200 residuals, only a random sample of 200 residuals is stored.
  • If affter binning, a bin binning is empty, it is filled with a random sample of residuals from other bins. This is done to ensure that all bins have at least one residual and can be used in the prediction process. New in version 0.12.0
`None`
append bool

If True, new residuals are added to the once already stored in the forecaster. Once the limit of 200 values per bin is reached, no more values are appended. If False, stored residuals are overwritten with the new residuals.

`True`
transform bool

If True, new residuals are transformed using self.transformer_y.

`True`
random_state int

Sets a seed to the random sampling for reproducible output.

`123`

Returns:

Type Description
None
Source code in skforecast\ForecasterAutoreg\ForecasterAutoreg.py
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
def set_out_sample_residuals(
    self, 
    residuals: Union[pd.Series, np.ndarray],
    y_pred: Optional[Union[pd.Series, np.ndarray]]=None,
    append: bool=True,
    transform: bool=True,
    random_state: int=123
)-> None:
    """
    Set new values to the attribute `out_sample_residuals`. Out of sample
    residuals are meant to be calculated using observations that did not
    participate in the training process. If `y_pred` is provided, residuals
    are binned according to the predicted value they are associated with. If
    `y_pred` is `None`, residuals are stored without binning. Only up to 200
    residuals are stored per bin.

    Parameters
    ----------
    residuals : pandas Series, numpy ndarray
        Values of residuals. If `y_pred` is `None`, at most 1000 values are
        stored. If `y_pred` is not `None`, at most 200 * n_bins values are
        stored, where `n_bins` is the number of bins used in `self.binner`.
    y_pred : pandas Series, numpy ndarray, default `None`
        Predicted values of the time series from which the residuals have been
        calculated. This argument is used to bin residuals according to the
        predicted values. `y_pred` and `residuals` must be of the same class
        (both pandas Series or both numpy ndarray) must have the same length
        and, if they are pandas Series, the same index. 

        - If `y_pred` is `None`, residuals are not binned.
        - If affter binning, a bin has more than 200 residuals, only a random
            sample of 200 residuals is stored.
        - If affter binning, a bin binning is empty, it is filled with a
        random sample of residuals from other bins. This is done to ensure
        that all bins have at least one residual and can be used in the
        prediction process.
        **New in version 0.12.0**
    append : bool, default `True`
        If `True`, new residuals are added to the once already stored in the
        forecaster. Once the limit of 200 values per bin is reached, no more values
        are appended. If False, stored residuals are overwritten with the new
        residuals.
    transform : bool, default `True`
        If `True`, new residuals are transformed using self.transformer_y.
    random_state : int, default `123`
        Sets a seed to the random sampling for reproducible output.

    Returns
    -------
    None

    """

    if not isinstance(residuals, (np.ndarray, pd.Series)):
        raise TypeError(
            (f"`residuals` argument must be `numpy ndarray` or `pandas Series`, "
             f"but found {type(residuals)}.")
        )

    if not isinstance(y_pred, (np.ndarray, pd.Series, type(None))):
        raise TypeError(
            (f"`y_pred` argument must be `numpy ndarray`, `pandas Series` or `None`, "
             f"but found {type(y_pred)}.")
        )

    if y_pred is not None and len(residuals) != len(y_pred):
        raise ValueError(
            (f"`residuals` and `y_pred` must have the same length, but found "
             f"{len(residuals)} and {len(y_pred)}.")
        )

    if isinstance(residuals, pd.Series) and isinstance(y_pred, pd.Series):
        if not residuals.index.equals(y_pred.index):
            raise ValueError(
                (f"`residuals` and `y_pred` must have the same index, but found "
                 f"{residuals.index} and {y_pred.index}.")
            )

    if y_pred is not None and not self.fitted:
        raise NotFittedError(
            ("This forecaster is not fitted yet. Call `fit` with appropriate "
             "arguments before using `set_out_sample_residuals()`.")
        )

    if isinstance(residuals, np.ndarray):
        residuals = pd.Series(residuals, name='residuals')
    else:
        residuals = residuals.rename('residuals').reset_index(drop=True)

    if isinstance(y_pred, np.ndarray):
        y_pred = pd.Series(y_pred, name='prediction')
    elif isinstance(y_pred, pd.Series):
        y_pred = y_pred.rename('prediction').reset_index(drop=True)

    if not transform and self.transformer_y is not None:
        warnings.warn(
            (f"Argument `transform` is set to `False` but forecaster was trained "
             f"using a transformer {self.transformer_y}. Ensure that the new residuals "
             f"are already transformed or set `transform=True`.")
        )

    if transform and self.transformer_y is not None:
        warnings.warn(
            (f"Residuals will be transformed using the same transformer used "
             f"when training the forecaster ({self.transformer_y}). Ensure that the "
             f"new residuals are on the same scale as the original time series.")
        )

        residuals = transform_series(
                        series            = residuals,
                        transformer       = self.transformer_y,
                        fit               = False,
                        inverse_transform = False
                    ).to_numpy()

    if y_pred is None:
        # Residuals are not binned.
        if len(residuals) > 1000:
            rng = np.random.default_rng(seed=random_state)
            residuals = rng.choice(a=residuals, size=1000, replace=False)
        if append and self.out_sample_residuals is not None:
            free_space = max(0, 1000 - len(self.out_sample_residuals))
            if len(residuals) < free_space:
                residuals = np.hstack((
                                self.out_sample_residuals,
                                residuals
                            ))
            else:
                residuals = np.hstack((
                                self.out_sample_residuals,
                                residuals[:free_space]
                            ))
        self.out_sample_residuals = residuals
    else:
        # Residuals are binned according to the predicted values.
        data = pd.merge(
                   residuals,
                   y_pred,
                   left_index  = True,
                   right_index = True
               )
        data['bin'] = self.binner.transform(data[['prediction']].to_numpy()).astype(int)
        residuals_by_bin = data.groupby('bin')['residuals'].apply(np.array).to_dict()

        if append and self.out_sample_residuals_by_bin is not None:
            for k, v in residuals_by_bin.items():
                if k in self.out_sample_residuals_by_bin:
                    free_space = max(0, 200 - len(self.out_sample_residuals_by_bin[k]))
                    if len(v) < free_space:
                        self.out_sample_residuals_by_bin[k] = np.hstack((
                            self.out_sample_residuals_by_bin[k],
                            v
                        ))
                    else:
                        self.out_sample_residuals_by_bin[k] = np.hstack((
                            self.out_sample_residuals_by_bin[k],
                            v[:free_space]
                        ))
                else:
                    self.out_sample_residuals_by_bin[k] = v
        else:
            self.out_sample_residuals_by_bin = residuals_by_bin

        for k, v in self.out_sample_residuals_by_bin.items():
            rng = np.random.default_rng(seed=123)
            if len(v) > 200:
                # Only up to 200 residuals are stored per bin
                sample = rng.choice(a=v, size=200, replace=False)
                self.out_sample_residuals_by_bin[k] = sample

        self.out_sample_residuals = np.concatenate(list(
                                        self.out_sample_residuals_by_bin.values()
                                    ))

        for k in self.in_sample_residuals_by_bin.keys():
            if k not in self.out_sample_residuals_by_bin:
                self.out_sample_residuals_by_bin[k] = np.array([])

        empty_bins = [k for k, v in self.out_sample_residuals_by_bin.items() if len(v) == 0]
        if empty_bins:
            warnings.warn(
                (f"The following bins have no out of sample residuals: {empty_bins}. "
                 f"No predicted values fall in the interval "
                 f"{[self.binner_intervals[bin] for bin in empty_bins]}. "
                 f"Empty bins will be filled with a random sample of residuals from "
                 f"the other bins.")
            )
            for k in empty_bins:
                rng = np.random.default_rng(seed=123)
                self.out_sample_residuals_by_bin[k] = rng.choice(
                                                          a       = self.out_sample_residuals,
                                                          size    = 200,
                                                          replace = True
                                                      )

get_feature_importances(sort_importance=True)

Return feature importances of the regressor stored in the forecaster. Only valid when regressor stores internally the feature importances in the attribute feature_importances_ or coef_. Otherwise, returns None.

Parameters:

Name Type Description Default
sort_importance bool

If True, sorts the feature importances in descending order.

True

Returns:

Name Type Description
feature_importances pandas DataFrame

Feature importances associated with each predictor.

Source code in skforecast\ForecasterAutoreg\ForecasterAutoreg.py
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
def get_feature_importances(
    self,
    sort_importance: bool=True
) -> pd.DataFrame:
    """
    Return feature importances of the regressor stored in the forecaster.
    Only valid when regressor stores internally the feature importances in the
    attribute `feature_importances_` or `coef_`. Otherwise, returns `None`.

    Parameters
    ----------
    sort_importance: bool, default `True`
        If `True`, sorts the feature importances in descending order.

    Returns
    -------
    feature_importances : pandas DataFrame
        Feature importances associated with each predictor.

    """

    if not self.fitted:
        raise NotFittedError(
            ("This forecaster is not fitted yet. Call `fit` with appropriate "
             "arguments before using `get_feature_importances()`.")
        )

    if isinstance(self.regressor, Pipeline):
        estimator = self.regressor[-1]
    else:
        estimator = self.regressor

    if hasattr(estimator, 'feature_importances_'):
        feature_importances = estimator.feature_importances_
    elif hasattr(estimator, 'coef_'):
        feature_importances = estimator.coef_
    else:
        warnings.warn(
            (f"Impossible to access feature importances for regressor of type "
             f"{type(estimator)}. This method is only valid when the "
             f"regressor stores internally the feature importances in the "
             f"attribute `feature_importances_` or `coef_`.")
        )
        feature_importances = None

    if feature_importances is not None:
        feature_importances = pd.DataFrame({
                                  'feature': self.X_train_col_names,
                                  'importance': feature_importances
                              })
        if sort_importance:
            feature_importances = feature_importances.sort_values(
                                      by='importance', ascending=False
                                  )

    return feature_importances