=================
ForecasterAutoreg
=================
Regressor: XGBRegressor(base_score=0.5, booster='gbtree', colsample_bylevel=1,
colsample_bynode=1, colsample_bytree=1, gamma=0, gpu_id=-1,
importance_type='gain', interaction_constraints='',
learning_rate=0.300000012, max_delta_step=0, max_depth=6,
min_child_weight=1, missing=nan, monotone_constraints='()',
n_estimators=100, n_jobs=8, num_parallel_tree=1, random_state=0,
reg_alpha=0, reg_lambda=1, scale_pos_weight=1, subsample=1,
tree_method='exact', validate_parameters=1, verbosity=None)
Lags: [1 2 3 4 5 6 7 8]
Window size: 8
Included exogenous: True
Type of exogenous variable: <class 'pandas.core.frame.DataFrame'>
Exogenous variables names: ['exog_1', 'exog_2']
Training range: [Timestamp('1992-04-01 00:00:00'), Timestamp('2008-06-01 00:00:00')]
Training index type: DatetimeIndex
Training index frequency: MS
Regressor parameters: {'objective': 'reg:squarederror', 'base_score': 0.5, 'booster': 'gbtree', 'colsample_bylevel': 1, 'colsample_bynode': 1, 'colsample_bytree': 1, 'gamma': 0, 'gpu_id': -1, 'importance_type': 'gain', 'interaction_constraints': '', 'learning_rate': 0.300000012, 'max_delta_step': 0, 'max_depth': 6, 'min_child_weight': 1, 'missing': nan, 'monotone_constraints': '()', 'n_estimators': 100, 'n_jobs': 8, 'num_parallel_tree': 1, 'random_state': 0, 'reg_alpha': 0, 'reg_lambda': 1, 'scale_pos_weight': 1, 'subsample': 1, 'tree_method': 'exact', 'validate_parameters': 1, 'verbosity': None}
Creation date: 2022-01-02 16:49:14
Last fit date: 2022-01-02 16:49:14
Skforecast version: 0.4.2