Skip to content

preprocessing

skforecast.preprocessing.preprocessing.RollingFeatures

RollingFeatures(
    stats,
    window_sizes,
    min_periods=None,
    features_names=None,
    fillna=None,
    kwargs_stats={"ewm": {"alpha": 0.3}},
)

This class computes rolling features. To avoid data leakage, the last point in the window is excluded from calculations, ('closed': 'left' and 'center': False).

Currently, the following statistics are supported: 'mean', 'std', 'min', 'max', 'sum', 'median', 'ratio_min_max', 'coef_variation', 'ewm'. For 'ewm', the alpha parameter can be set in the kwargs_stats dictionary, default is {'ewm': {'alpha': 0.3}}.

Parameters:

Name Type Description Default
stats (str, list)

Statistics to compute over the rolling window. Can be a string or a list, and can have repeats. Available statistics are: 'mean', 'std', 'min', 'max', 'sum', 'median', 'ratio_min_max', 'coef_variation', 'ewm'. For 'ewm', the alpha parameter can be set in the kwargs_stats dictionary, default is {'ewm': {'alpha': 0.3}}.

required
window_sizes (int, list)

Size of the rolling window for each statistic. If an int, all stats share the same window size. If a list, it should have the same length as stats.

required
min_periods (int, list)

Minimum number of observations in window required to have a value. Same as the min_periods argument of pandas rolling. If None, defaults to window_sizes.

None
features_names list

Names of the output features. If None, default names will be used in the format 'roll_stat_window_size', for example 'roll_mean_7'.

None
fillna (str, float)

Fill missing values in transform_batch method. Available methods are: 'mean', 'median', 'ffill', 'bfill', or a float value.

None
kwargs_stats dict

Dictionary with additional arguments for the statistics. The keys are the statistic names and the values are dictionaries with the arguments for the corresponding statistic. For example, {'ewm': {'alpha': 0.3}}.

{'ewm': {'alpha': 0.3}}

Attributes:

Name Type Description
stats list

Statistics to compute over the rolling window.

n_stats int

Number of statistics to compute.

window_sizes list

Size of the rolling window for each statistic.

max_window_size int

Maximum window size.

min_periods list

Minimum number of observations in window required to have a value.

features_names list

Names of the output features.

fillna (str, float)

Method to fill missing values in transform_batch method.

unique_rolling_windows dict

Dictionary containing unique rolling window parameters and the corresponding statistics.

kwargs_stats dict

Dictionary with additional arguments for the statistics.

Methods:

Name Description
transform_batch

Transform an entire pandas Series using rolling windows and compute the

transform

Transform a numpy array using rolling windows and compute the

Source code in skforecast\preprocessing\preprocessing.py
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
def __init__(
    self, 
    stats: str | list[str],
    window_sizes: int | list[int],
    min_periods: int | list[int] | None = None,
    features_names: list[str] | None = None, 
    fillna: str | float | None = None,
    kwargs_stats: dict[str, dict[str, object]] | None = {'ewm': {'alpha': 0.3}}
) -> None:

    self._validate_params(
        stats          = stats,
        window_sizes   = window_sizes,
        min_periods    = min_periods,
        features_names = features_names,
        fillna         = fillna,
        kwargs_stats   = kwargs_stats
    )

    if isinstance(stats, str):
        stats = [stats]
    self.stats = stats
    self.n_stats = len(stats)

    if isinstance(window_sizes, int):
        window_sizes = [window_sizes] * self.n_stats
    self.window_sizes = window_sizes
    self.max_window_size = max(window_sizes)

    if min_periods is None:
        min_periods = self.window_sizes
    elif isinstance(min_periods, int):
        min_periods = [min_periods] * self.n_stats
    self.min_periods = min_periods

    if features_names is None:
        features_names = []
        for stat, window_size in zip(self.stats, self.window_sizes):
            if stat not in kwargs_stats:
                features_names.append(f"roll_{stat}_{window_size}")
            else:
                kwargs_suffix = "_".join([f"{k}_{v}" for k, v in kwargs_stats[stat].items()])
                features_names.append(f"roll_{stat}_{window_size}_{kwargs_suffix}")
    self.features_names = features_names

    self.fillna = fillna
    self.kwargs_stats = kwargs_stats if kwargs_stats is not None else {}

    window_params_list = []
    for i in range(len(self.stats)):
        window_params = (self.window_sizes[i], self.min_periods[i])
        window_params_list.append(window_params)

    # Find unique window parameter combinations
    unique_rolling_windows = {}
    for i, params in enumerate(window_params_list):
        key = f"{params[0]}_{params[1]}"
        if key not in unique_rolling_windows:
            unique_rolling_windows[key] = {
                'params': {
                    'window': params[0], 
                    'min_periods': params[1], 
                    'center': False,
                    'closed': 'left'
                },
                'stats_idx': [], 
                'stats_names': [], 
                'rolling_obj': None
            }
        unique_rolling_windows[key]['stats_idx'].append(i)
        unique_rolling_windows[key]['stats_names'].append(self.features_names[i])

    self.unique_rolling_windows = unique_rolling_windows

stats instance-attribute

stats = stats

n_stats instance-attribute

n_stats = len(stats)

window_sizes instance-attribute

window_sizes = window_sizes

max_window_size instance-attribute

max_window_size = max(window_sizes)

min_periods instance-attribute

min_periods = min_periods

features_names instance-attribute

features_names = features_names

fillna instance-attribute

fillna = fillna

kwargs_stats instance-attribute

kwargs_stats = (
    kwargs_stats if kwargs_stats is not None else {}
)

unique_rolling_windows instance-attribute

unique_rolling_windows = unique_rolling_windows

_repr_html_

_repr_html_()

HTML representation of the object. The "General Information" section is expanded by default.

Source code in skforecast\preprocessing\preprocessing.py
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
def _repr_html_(self) -> str:
    """
    HTML representation of the object.
    The "General Information" section is expanded by default.
    """

    style, unique_id = get_style_repr_html()
    content = f"""
    <div class="container-{unique_id}">
        <p style="font-size: 1.5em; font-weight: bold; margin-block-start: 0.83em; margin-block-end: 0.83em;">{type(self).__name__}</p>
        <details open>
            <summary>General Information</summary>
            <ul>
                <li><strong>Stats:</strong> {self.stats}</li>
                <li><strong>Window size:</strong> {self.window_sizes}</li>
                <li><strong>Maximum window size:</strong> {self.max_window_size}</li>
                <li><strong>Minimum periods:</strong> {self.min_periods}</li>
                <li><strong>Features names:</strong> {self.features_names}</li>
                <li><strong>Fill na strategy:</strong> {self.fillna}</li>
                <li><strong>Kwargs stats:</strong> {self.kwargs_stats}</li>
            </ul>
        </details>
        <p>
            <a href="https://skforecast.org/{__version__}/api/preprocessing.html#skforecast.preprocessing.preprocessing.RollingFeatures">&#128712 <strong>API Reference</strong></a>
            &nbsp;&nbsp;
            <a href="https://skforecast.org/{__version__}/user_guides/window-features-and-custom-features.html">&#128462 <strong>User Guide</strong></a>
        </p>
    </div>
    """

    return style + content

_validate_params

_validate_params(
    stats,
    window_sizes,
    min_periods=None,
    features_names=None,
    fillna=None,
    kwargs_stats=None,
)

Validate the parameters of the RollingFeatures class.

Parameters:

Name Type Description Default
stats (str, list)

Statistics to compute over the rolling window. Can be a string or a list, and can have repeats. Available statistics are: 'mean', 'std', 'min', 'max', 'sum', 'median', 'ratio_min_max', 'coef_variation', 'ewm'.

required
window_sizes (int, list)

Size of the rolling window for each statistic. If an int, all stats share the same window size. If a list, it should have the same length as stats.

required
min_periods (int, list)

Minimum number of observations in window required to have a value. Same as the min_periods argument of pandas rolling. If None, defaults to window_sizes.

None
features_names list

Names of the output features. If None, default names will be used in the format 'roll_stat_window_size', for example 'roll_mean_7'.

None
fillna (str, float)

Fill missing values in transform_batch method. Available methods are: 'mean', 'median', 'ffill', 'bfill', or a float value.

None
kwargs_stats dict

Dictionary with additional arguments for the statistics. The keys are the statistic names and the values are dictionaries with the arguments for the corresponding statistic. For example, {'ewm': {'alpha': 0.3}}.

None

Returns:

Type Description
None
Source code in skforecast\preprocessing\preprocessing.py
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
def _validate_params(
    self, 
    stats: str | list[str], 
    window_sizes: int | list[int],
    min_periods: int | list[int] | None = None,
    features_names: list[str] | None = None, 
    fillna: str | float | None = None,
    kwargs_stats: dict[str, dict[str, object]] | None = None
) -> None:
    """
    Validate the parameters of the RollingFeatures class.

    Parameters
    ----------
    stats : str, list
        Statistics to compute over the rolling window. Can be a `string` or a `list`,
        and can have repeats. Available statistics are: 'mean', 'std', 'min', 'max',
        'sum', 'median', 'ratio_min_max', 'coef_variation', 'ewm'.
    window_sizes : int, list
        Size of the rolling window for each statistic. If an `int`, all stats share 
        the same window size. If a `list`, it should have the same length as stats.
    min_periods : int, list, default None
        Minimum number of observations in window required to have a value. 
        Same as the `min_periods` argument of pandas rolling. If `None`, 
        defaults to `window_sizes`.
    features_names : list, default None
        Names of the output features. If `None`, default names will be used in the 
        format 'roll_stat_window_size', for example 'roll_mean_7'.
    fillna : str, float, default None
        Fill missing values in `transform_batch` method. Available 
        methods are: 'mean', 'median', 'ffill', 'bfill', or a float value.
    kwargs_stats : dict, default None
        Dictionary with additional arguments for the statistics. The keys are the
        statistic names and the values are dictionaries with the arguments for the
        corresponding statistic. For example, {'ewm': {'alpha': 0.3}}.

    Returns
    -------
    None

    """

    # stats
    allowed_stats = [
        'mean', 'std', 'min', 'max', 'sum', 'median', 'ratio_min_max', 
        'coef_variation', 'ewm'
    ]

    if not isinstance(stats, (str, list)):
        raise TypeError(
            f"`stats` must be a string or a list of strings. Got {type(stats)}."
        )        
    if isinstance(stats, str):
        stats = [stats]

    for stat in set(stats):
        if stat not in allowed_stats:
            raise ValueError(
                f"Statistic '{stat}' is not allowed. Allowed stats are: {allowed_stats}."
            )
    n_stats = len(stats)

    # window_sizes
    if not isinstance(window_sizes, (int, list)):
        raise TypeError(
            f"`window_sizes` must be an int or a list of ints. Got {type(window_sizes)}."
        )

    if isinstance(window_sizes, list):
        n_window_sizes = len(window_sizes)
        if n_window_sizes != n_stats:
            raise ValueError(
                f"Length of `window_sizes` list ({n_window_sizes}) "
                f"must match length of `stats` list ({n_stats})."
            )

    # Check duplicates (stats, window_sizes)
    if isinstance(window_sizes, int):
        window_sizes = [window_sizes] * n_stats
    if len(set(zip(stats, window_sizes))) != n_stats:
        raise ValueError(
            f"Duplicate (stat, window_size) pairs are not allowed.\n"
            f"    `stats`        : {stats}\n"
            f"    `window_sizes` : {window_sizes}"
        )

    # min_periods
    if not isinstance(min_periods, (int, list, type(None))):
        raise TypeError(
            f"`min_periods` must be an int, list of ints, or None. Got {type(min_periods)}."
        )

    if min_periods is not None:
        if isinstance(min_periods, int):
            min_periods = [min_periods] * n_stats
        elif isinstance(min_periods, list):
            n_min_periods = len(min_periods)
            if n_min_periods != n_stats:
                raise ValueError(
                    f"Length of `min_periods` list ({n_min_periods}) "
                    f"must match length of `stats` list ({n_stats})."
                )

        for i, min_period in enumerate(min_periods):
            if min_period > window_sizes[i]:
                raise ValueError(
                    "Each `min_period` must be less than or equal to its "
                    "corresponding `window_size`."
                )

    # features_names
    if not isinstance(features_names, (list, type(None))):
        raise TypeError(
            f"`features_names` must be a list of strings or None. Got {type(features_names)}."
        )

    if isinstance(features_names, list):
        n_features_names = len(features_names)
        if n_features_names != n_stats:
            raise ValueError(
                f"Length of `features_names` list ({n_features_names}) "
                f"must match length of `stats` list ({n_stats})."
            )

    # fillna
    if fillna is not None:
        if not isinstance(fillna, (int, float, str)):
            raise TypeError(
                f"`fillna` must be a float, string, or None. Got {type(fillna)}."
            )

        if isinstance(fillna, str):
            allowed_fill_strategy = ['mean', 'median', 'ffill', 'bfill']
            if fillna not in allowed_fill_strategy:
                raise ValueError(
                    f"'{fillna}' is not allowed. Allowed `fillna` "
                    f"values are: {allowed_fill_strategy} or a float value."
                )

    # kwargs_stats
    allowed_kwargs_stats = ['ewm']
    if kwargs_stats is not None:
        if not isinstance(kwargs_stats, dict):
            raise TypeError(
                f"`kwargs_stats` must be a dictionary or None. Got {type(kwargs_stats)}."
            )

        for stat in kwargs_stats.keys():
            if stat not in allowed_kwargs_stats:
                raise ValueError(
                    f"Invalid statistic '{stat}' found in `kwargs_stats`. "
                    f"Allowed statistics with additional arguments are: "
                    f"{allowed_kwargs_stats}. Please ensure all keys in "
                    f"`kwargs_stats` are among the allowed statistics."
                )

_apply_stat_pandas

_apply_stat_pandas(rolling_obj, stat)

Apply the specified statistic to a pandas rolling object.

Parameters:

Name Type Description Default
rolling_obj pandas Rolling

Rolling object to apply the statistic.

required
stat str

Statistic to compute.

required

Returns:

Name Type Description
stat_series pandas Series

Series with the computed statistic.

Source code in skforecast\preprocessing\preprocessing.py
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
def _apply_stat_pandas(
    self, 
    rolling_obj: pd.core.window.rolling.Rolling, 
    stat: str
) -> pd.Series:
    """
    Apply the specified statistic to a pandas rolling object.

    Parameters
    ----------
    rolling_obj : pandas Rolling
        Rolling object to apply the statistic.
    stat : str
        Statistic to compute.

    Returns
    -------
    stat_series : pandas Series
        Series with the computed statistic.

    """

    if stat == 'mean':
        return rolling_obj.mean()
    elif stat == 'std':
        return rolling_obj.std()
    elif stat == 'min':
        return rolling_obj.min()
    elif stat == 'max':
        return rolling_obj.max()
    elif stat == 'sum':
        return rolling_obj.sum()
    elif stat == 'median':
        return rolling_obj.median()
    elif stat == 'ratio_min_max':
        return rolling_obj.min() / rolling_obj.max()
    elif stat == 'coef_variation':
        return rolling_obj.std() / rolling_obj.mean()
    elif stat == 'ewm':
        kwargs = self.kwargs_stats.get(stat, {})
        return rolling_obj.apply(lambda x: _ewm_jit(x, **kwargs), raw=True)
    else:
        raise ValueError(f"Statistic '{stat}' is not implemented.")

transform_batch

transform_batch(X)

Transform an entire pandas Series using rolling windows and compute the specified statistics.

Parameters:

Name Type Description Default
X pandas Series

The input data series to transform.

required

Returns:

Name Type Description
rolling_features pandas DataFrame

A DataFrame containing the rolling features.

Source code in skforecast\preprocessing\preprocessing.py
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
def transform_batch(
    self, 
    X: pd.Series
) -> pd.DataFrame:
    """
    Transform an entire pandas Series using rolling windows and compute the 
    specified statistics.

    Parameters
    ----------
    X : pandas Series
        The input data series to transform.

    Returns
    -------
    rolling_features : pandas DataFrame
        A DataFrame containing the rolling features.

    """

    for k in self.unique_rolling_windows.keys():
        rolling_obj = X.rolling(**self.unique_rolling_windows[k]['params'])
        self.unique_rolling_windows[k]['rolling_obj'] = rolling_obj

    rolling_features = []
    for i, stat in enumerate(self.stats):
        window_size = self.window_sizes[i]
        min_periods = self.min_periods[i]

        key = f"{window_size}_{min_periods}"
        rolling_obj = self.unique_rolling_windows[key]['rolling_obj']

        stat_series = self._apply_stat_pandas(rolling_obj=rolling_obj, stat=stat)            
        rolling_features.append(stat_series)

    rolling_features = pd.concat(rolling_features, axis=1)
    rolling_features.columns = self.features_names
    rolling_features = rolling_features.iloc[self.max_window_size:]

    if self.fillna is not None:
        if self.fillna == 'mean':
            rolling_features = rolling_features.fillna(rolling_features.mean())
        elif self.fillna == 'median':
            rolling_features = rolling_features.fillna(rolling_features.median())
        elif self.fillna == 'ffill':
            rolling_features = rolling_features.ffill()
        elif self.fillna == 'bfill':
            rolling_features = rolling_features.bfill()
        else:
            rolling_features = rolling_features.fillna(self.fillna)

    return rolling_features

_apply_stat_numpy_jit

_apply_stat_numpy_jit(X_window, stat)

Apply the specified statistic to a numpy array using Numba JIT.

Parameters:

Name Type Description Default
X_window numpy array

Array with the rolling window.

required
stat str

Statistic to compute.

required

Returns:

Name Type Description
stat_value float

Value of the computed statistic.

Source code in skforecast\preprocessing\preprocessing.py
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
def _apply_stat_numpy_jit(
    self, 
    X_window: np.ndarray, 
    stat: str
) -> float:
    """
    Apply the specified statistic to a numpy array using Numba JIT.

    Parameters
    ----------
    X_window : numpy array
        Array with the rolling window.
    stat : str
        Statistic to compute.

    Returns
    -------
    stat_value : float
        Value of the computed statistic.

    """

    if stat == 'mean':
        return _np_mean_jit(X_window)
    elif stat == 'std':
        return _np_std_jit(X_window)
    elif stat == 'min':
        return _np_min_jit(X_window)
    elif stat == 'max':
        return _np_max_jit(X_window)
    elif stat == 'sum':
        return _np_sum_jit(X_window)
    elif stat == 'median':
        return _np_median_jit(X_window)
    elif stat == 'ratio_min_max':
        return _np_min_max_ratio_jit(X_window)
    elif stat == 'coef_variation':
        return _np_cv_jit(X_window)
    elif stat == 'ewm':
        kwargs = self.kwargs_stats.get(stat, {})
        return _ewm_jit(X_window, **kwargs)
    else:
        raise ValueError(f"Statistic '{stat}' is not implemented.")

transform

transform(X)

Transform a numpy array using rolling windows and compute the specified statistics. The returned array will have the shape (X.shape[1] if exists, n_stats). For example, if X is a flat array, the output will have shape (n_stats,). If X is a 2D array, the output will have shape (X.shape[1], n_stats).

Parameters:

Name Type Description Default
X numpy ndarray

The input data array to transform.

required

Returns:

Name Type Description
rolling_features numpy ndarray

An array containing the computed statistics.

Source code in skforecast\preprocessing\preprocessing.py
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
def transform(
    self, 
    X: np.ndarray
) -> np.ndarray:
    """
    Transform a numpy array using rolling windows and compute the 
    specified statistics. The returned array will have the shape 
    (X.shape[1] if exists, n_stats). For example, if X is a flat
    array, the output will have shape (n_stats,). If X is a 2D array,
    the output will have shape (X.shape[1], n_stats).

    Parameters
    ----------
    X : numpy ndarray
        The input data array to transform.

    Returns
    -------
    rolling_features : numpy ndarray
        An array containing the computed statistics.

    """

    array_ndim = X.ndim
    if array_ndim == 1:
        X = X[:, np.newaxis]

    rolling_features = np.full(
        shape=(X.shape[1], self.n_stats), fill_value=np.nan, dtype=float
    )
    for i in range(X.shape[1]):
        for j, stat in enumerate(self.stats):
            X_window = X[-self.window_sizes[j]:, i]
            X_window = X_window[~np.isnan(X_window)]
            if len(X_window) > 0: 
                rolling_features[i, j] = self._apply_stat_numpy_jit(X_window, stat)
            else:
                rolling_features[i, j] = np.nan

    if array_ndim == 1:
        rolling_features = rolling_features.ravel()

    return rolling_features

skforecast.preprocessing.preprocessing.RollingFeaturesClassification

RollingFeaturesClassification(
    stats,
    window_sizes,
    min_periods=None,
    features_names=None,
    fillna=None,
)

This class computes rolling features for classification problems. To avoid data leakage, the last point in the window is excluded from calculations, ('closed': 'left' and 'center': False).

Currently, the following statistics are supported: 'proportion', 'mode', 'entropy', 'n_changes', 'n_unique'.

Parameters:

Name Type Description Default
stats (str, list)

Statistics to compute over the rolling window. Can be a string or a list, and can have repeats. Available statistics are: 'proportion', 'mode', 'entropy', 'n_changes', 'n_unique'.

required
window_sizes (int, list)

Size of the rolling window for each statistic. If an int, all stats share the same window size. If a list, it should have the same length as stats.

required
min_periods (int, list)

Minimum number of observations in window required to have a value. Same as the min_periods argument of pandas rolling. If None, defaults to window_sizes.

None
features_names list

Names of the output features. If None, default names will be used in the format 'roll_stat_window_size', for example 'roll_mode_7'. For 'proportion', class-specific names are appended, e.g., 'roll_proportion_7_class_0'.

None
fillna (str, float)

Fill missing values in transform_batch method. Available methods are: 'mean', 'median', 'ffill', 'bfill', or a float value.

None

Attributes:

Name Type Description
stats list

Statistics to compute over the rolling window.

n_stats int

Number of statistics to compute.

window_sizes list

Size of the rolling window for each statistic.

max_window_size int

Maximum window size.

min_periods list

Minimum number of observations in window required to have a value.

classes list

Unique classes found in the data. Inferred during transform_batch.

features_names list

Names of the output features.

fillna (str, float)

Method to fill missing values in transform_batch method.

unique_rolling_windows dict

Dictionary containing unique rolling window parameters and the corresponding statistics.

Methods:

Name Description
transform_batch

Transform an entire pandas Series using rolling windows and compute the

transform

Transform a numpy array using rolling windows and compute the

Source code in skforecast\preprocessing\preprocessing.py
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
def __init__(
    self, 
    stats: str | list[str],
    window_sizes: int | list[int],
    min_periods: int | list[int] | None = None,
    features_names: list[str] | None = None, 
    fillna: str | float | None = None
) -> None:

    self._validate_params(
        stats          = stats,
        window_sizes   = window_sizes,
        min_periods    = min_periods,
        features_names = features_names,
        fillna         = fillna
    )

    if isinstance(stats, str):
        stats = [stats]
    self.stats = stats
    self.n_stats = len(stats)

    if isinstance(window_sizes, int):
        window_sizes = [window_sizes] * self.n_stats
    self.window_sizes = window_sizes
    self.max_window_size = max(window_sizes)

    if min_periods is None:
        min_periods = self.window_sizes
    elif isinstance(min_periods, int):
        min_periods = [min_periods] * self.n_stats
    self.min_periods = min_periods

    self.classes = None
    if features_names is None:
        features_names = []
        for stat, window_size in zip(self.stats, self.window_sizes):
            features_names.append(f"roll_{stat}_{window_size}")
    self.features_names = features_names

    self.fillna = fillna

    window_params_list = []
    for i in range(len(self.stats)):
        window_params = (self.window_sizes[i], self.min_periods[i])
        window_params_list.append(window_params)

    # Find unique window parameter combinations
    unique_rolling_windows = {}
    for i, params in enumerate(window_params_list):
        key = f"{params[0]}_{params[1]}"
        if key not in unique_rolling_windows:
            unique_rolling_windows[key] = {
                'params': {
                    'window': params[0], 
                    'min_periods': params[1], 
                    'center': False,
                    'closed': 'left'
                },
                'stats_idx': [], 
                'stats_names': [], 
                'rolling_obj': None
            }
        unique_rolling_windows[key]['stats_idx'].append(i)
        unique_rolling_windows[key]['stats_names'].append(self.features_names[i])

    self.unique_rolling_windows = unique_rolling_windows

stats instance-attribute

stats = stats

n_stats instance-attribute

n_stats = len(stats)

window_sizes instance-attribute

window_sizes = window_sizes

max_window_size instance-attribute

max_window_size = max(window_sizes)

min_periods instance-attribute

min_periods = min_periods

classes instance-attribute

classes = None

features_names instance-attribute

features_names = features_names

fillna instance-attribute

fillna = fillna

unique_rolling_windows instance-attribute

unique_rolling_windows = unique_rolling_windows

_repr_html_

_repr_html_()

HTML representation of the object. The "General Information" section is expanded by default.

Source code in skforecast\preprocessing\preprocessing.py
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
def _repr_html_(self) -> str:
    """
    HTML representation of the object.
    The "General Information" section is expanded by default.
    """

    style, unique_id = get_style_repr_html()
    content = f"""
    <div class="container-{unique_id}">
        <p style="font-size: 1.5em; font-weight: bold; margin-block-start: 0.83em; margin-block-end: 0.83em;">{type(self).__name__}</p>
        <details open>
            <summary>General Information</summary>
            <ul>
                <li><strong>Stats:</strong> {self.stats}</li>
                <li><strong>Window size:</strong> {self.window_sizes}</li>
                <li><strong>Maximum window size:</strong> {self.max_window_size}</li>
                <li><strong>Minimum periods:</strong> {self.min_periods}</li>
                <li><strong>Classes:</strong> {self.classes}</li>
                <li><strong>Features names:</strong> {self.features_names}</li>
                <li><strong>Fill na strategy:</strong> {self.fillna}</li>
            </ul>
        </details>
        <p>
            <a href="https://skforecast.org/{__version__}/api/preprocessing.html#skforecast.preprocessing.preprocessing.RollingFeaturesClassification">&#128712 <strong>API Reference</strong></a>
            &nbsp;&nbsp;
            <a href="https://skforecast.org/{__version__}/user_guides/autoregressive-classification-forecasting.html">&#128462 <strong>User Guide</strong></a>
        </p>
    </div>
    """

    return style + content

_validate_params

_validate_params(
    stats,
    window_sizes,
    min_periods=None,
    features_names=None,
    fillna=None,
)

Validate the parameters of the RollingFeaturesClassification class.

Parameters:

Name Type Description Default
stats (str, list)

Statistics to compute over the rolling window. Can be a string or a list, and can have repeats. Available statistics are: 'proportion', 'mode', 'entropy', 'n_changes', 'n_unique'.

required
window_sizes (int, list)

Size of the rolling window for each statistic. If an int, all stats share the same window size. If a list, it should have the same length as stats.

required
min_periods (int, list)

Minimum number of observations in window required to have a value. Same as the min_periods argument of pandas rolling. If None, defaults to window_sizes.

None
features_names list

Names of the output features. If None, default names will be used in the format 'roll_stat_window_size', for example 'roll_mode_7'. For 'proportion', class-specific names are appended, e.g., 'roll_proportion_7_class_0'.

None
fillna (str, float)

Fill missing values in transform_batch method. Available methods are: 'mean', 'median', 'ffill', 'bfill', or a float value.

None

Returns:

Type Description
None
Source code in skforecast\preprocessing\preprocessing.py
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
def _validate_params(
    self, 
    stats: str | list[str], 
    window_sizes: int | list[int],
    min_periods: int | list[int] | None = None,
    features_names: list[str] | None = None, 
    fillna: str | float | None = None
) -> None:
    """
    Validate the parameters of the RollingFeaturesClassification class.

    Parameters
    ----------
    stats : str, list
        Statistics to compute over the rolling window. Can be a `string` or a `list`,
        and can have repeats. Available statistics are: 'proportion', 'mode', 
        'entropy', 'n_changes', 'n_unique'.
    window_sizes : int, list
        Size of the rolling window for each statistic. If an `int`, all stats share 
        the same window size. If a `list`, it should have the same length as `stats`.
    min_periods : int, list, default None
        Minimum number of observations in window required to have a value. 
        Same as the `min_periods` argument of pandas rolling. If `None`, 
        defaults to `window_sizes`.
    features_names : list, default None
        Names of the output features. If `None`, default names will be used in the 
        format 'roll_stat_window_size', for example 'roll_mode_7'. For 'proportion',
        class-specific names are appended, e.g., 'roll_proportion_7_class_0'.
    fillna : str, float, default None
        Fill missing values in `transform_batch` method. Available 
        methods are: 'mean', 'median', 'ffill', 'bfill', or a float value.

    Returns
    -------
    None

    """

    # stats
    allowed_stats = [
        'proportion', 'mode', 'entropy', 'n_changes', 'n_unique'
    ]

    if not isinstance(stats, (str, list)):
        raise TypeError(
            f"`stats` must be a string or a list of strings. Got {type(stats)}."
        )        
    if isinstance(stats, str):
        stats = [stats]

    for stat in set(stats):
        if stat not in allowed_stats:
            raise ValueError(
                f"Statistic '{stat}' is not allowed. Allowed stats are: {allowed_stats}."
            )
    n_stats = len(stats)

    # window_sizes
    if not isinstance(window_sizes, (int, list)):
        raise TypeError(
            f"`window_sizes` must be an int or a list of ints. Got {type(window_sizes)}."
        )

    if isinstance(window_sizes, list):
        n_window_sizes = len(window_sizes)
        if n_window_sizes != n_stats:
            raise ValueError(
                f"Length of `window_sizes` list ({n_window_sizes}) "
                f"must match length of `stats` list ({n_stats})."
            )

    # Check duplicates (stats, window_sizes)
    if isinstance(window_sizes, int):
        window_sizes = [window_sizes] * n_stats
    if len(set(zip(stats, window_sizes))) != n_stats:
        raise ValueError(
            f"Duplicate (stat, window_size) pairs are not allowed.\n"
            f"    `stats`        : {stats}\n"
            f"    `window_sizes` : {window_sizes}"
        )

    # min_periods
    if not isinstance(min_periods, (int, list, type(None))):
        raise TypeError(
            f"`min_periods` must be an int, list of ints, or None. Got {type(min_periods)}."
        )

    if min_periods is not None:
        if isinstance(min_periods, int):
            min_periods = [min_periods] * n_stats
        elif isinstance(min_periods, list):
            n_min_periods = len(min_periods)
            if n_min_periods != n_stats:
                raise ValueError(
                    f"Length of `min_periods` list ({n_min_periods}) "
                    f"must match length of `stats` list ({n_stats})."
                )

        for i, min_period in enumerate(min_periods):
            if min_period > window_sizes[i]:
                raise ValueError(
                    "Each `min_period` must be less than or equal to its "
                    "corresponding `window_size`."
                )

    # features_names
    if not isinstance(features_names, (list, type(None))):
        raise TypeError(
            f"`features_names` must be a list of strings or None. Got {type(features_names)}."
        )

    if isinstance(features_names, list):
        n_features_names = len(features_names)
        if n_features_names != n_stats:
            raise ValueError(
                f"Length of `features_names` list ({n_features_names}) "
                f"must match length of `stats` list ({n_stats})."
            )

    # TODO: Not used as ForecasterRecursiveClassifier doesn't allow NaNs. Check
    # when creating ForecasterRecursiveMultiSeriesClassifier
    # fillna
    if fillna is not None:
        if not isinstance(fillna, (int, float, str)):
            raise TypeError(
                f"`fillna` must be a float, string, or None. Got {type(fillna)}."
            )

        if isinstance(fillna, str):
            allowed_fill_strategy = ['mean', 'median', 'ffill', 'bfill']
            if fillna not in allowed_fill_strategy:
                raise ValueError(
                    f"'{fillna}' is not allowed. Allowed `fillna` "
                    f"values are: {allowed_fill_strategy} or a float value."
                )

_apply_stat_pandas

_apply_stat_pandas(X, rolling_obj, stat)

Apply the specified statistic to a pandas rolling object.

Parameters:

Name Type Description Default
rolling_obj pandas Rolling

Rolling object to apply the statistic.

required
stat str

Statistic to compute.

required

Returns:

Name Type Description
stat_series pandas Series

Series with the computed statistic.

Source code in skforecast\preprocessing\preprocessing.py
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
def _apply_stat_pandas(
    self, 
    X: pd.Series,
    rolling_obj: pd.core.window.rolling.Rolling, 
    stat: str
) -> pd.Series:
    """
    Apply the specified statistic to a pandas rolling object.

    Parameters
    ----------
    rolling_obj : pandas Rolling
        Rolling object to apply the statistic.
    stat : str
        Statistic to compute.

    Returns
    -------
    stat_series : pandas Series
        Series with the computed statistic.

    """

    if stat == 'proportion':
        rolling_params = {
            'window': rolling_obj.window, 
            'min_periods': rolling_obj.min_periods, 
            'center': rolling_obj.center,
            'closed': rolling_obj.closed
        }
        dummies = pd.get_dummies(X, prefix='class')
        proportions = dummies.rolling(**rolling_params).sum() / rolling_obj.window

        return proportions

    elif stat == 'mode':
        return rolling_obj.apply(lambda x: scipy_mode(x)[0], raw=True)
    elif stat == 'entropy':
        return rolling_obj.apply(_entropy, raw=True)
    elif stat == 'n_changes':
        return rolling_obj.apply(_n_changes_jit, raw=True)
    elif stat == 'n_unique':
        return rolling_obj.apply(_n_unique_jit, raw=True)
    else:
        raise ValueError(f"Statistic '{stat}' is not implemented.")

transform_batch

transform_batch(X)

Transform an entire pandas Series using rolling windows and compute the specified statistics.

Parameters:

Name Type Description Default
X pandas Series

The input data series to transform.

required

Returns:

Name Type Description
rolling_features pandas DataFrame

A DataFrame containing the rolling features.

Source code in skforecast\preprocessing\preprocessing.py
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
def transform_batch(
    self, 
    X: pd.Series
) -> pd.DataFrame:
    """
    Transform an entire pandas Series using rolling windows and compute the 
    specified statistics.

    Parameters
    ----------
    X : pandas Series
        The input data series to transform.

    Returns
    -------
    rolling_features : pandas DataFrame
        A DataFrame containing the rolling features.

    """

    if self.classes is None:
        self.classes = list(np.sort(X.unique()))

        features_names = []
        for stat, feature_name in zip(self.stats, self.features_names):
            if stat != 'proportion':
                features_names.append(feature_name)
            else:
                for cls in self.classes:
                    feature_name_class = f"{feature_name}_class_{cls}"
                    features_names.append(feature_name_class)

        self.features_names = features_names

    for k in self.unique_rolling_windows.keys():
        rolling_obj = X.rolling(**self.unique_rolling_windows[k]['params'])
        self.unique_rolling_windows[k]['rolling_obj'] = rolling_obj

    rolling_features = []
    for i, stat in enumerate(self.stats):
        window_size = self.window_sizes[i]
        min_periods = self.min_periods[i]

        key = f"{window_size}_{min_periods}"
        rolling_obj = self.unique_rolling_windows[key]['rolling_obj']

        stat_series = self._apply_stat_pandas(X=X, rolling_obj=rolling_obj, stat=stat)     
        rolling_features.append(stat_series)

    rolling_features = pd.concat(rolling_features, axis=1)
    rolling_features.columns = self.features_names
    rolling_features = rolling_features.iloc[self.max_window_size:]

    if self.fillna is not None:
        if self.fillna == 'mean':
            rolling_features = rolling_features.fillna(rolling_features.mean())
        elif self.fillna == 'median':
            rolling_features = rolling_features.fillna(rolling_features.median())
        elif self.fillna == 'ffill':
            rolling_features = rolling_features.ffill()
        elif self.fillna == 'bfill':
            rolling_features = rolling_features.bfill()
        else:
            rolling_features = rolling_features.fillna(self.fillna)

    return rolling_features

_apply_stat_numpy_jit

_apply_stat_numpy_jit(X_window, stat)

Apply the specified statistic to a numpy array using Numba JIT.

Parameters:

Name Type Description Default
X_window numpy array

Array with the rolling window.

required
stat str

Statistic to compute.

required

Returns:

Name Type Description
stat_value float

Value of the computed statistic.

Source code in skforecast\preprocessing\preprocessing.py
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
def _apply_stat_numpy_jit(
    self, 
    X_window: np.ndarray, 
    stat: str
) -> float:
    """
    Apply the specified statistic to a numpy array using Numba JIT.

    Parameters
    ----------
    X_window : numpy array
        Array with the rolling window.
    stat : str
        Statistic to compute.

    Returns
    -------
    stat_value : float
        Value of the computed statistic.

    """

    if stat == 'proportion':
        # Calculate proportions for each class
        proportions = np.zeros(len(self.classes))
        len_window = len(X_window)
        for i, cls in enumerate(self.classes):
            proportions[i] = np.sum(X_window == cls) / len_window
        return proportions

    elif stat == 'mode':
        return scipy_mode(X_window)[0]
    elif stat == 'entropy':
        return _entropy(X_window)
    elif stat == 'n_changes':
        return _n_changes_jit(X_window)
    elif stat == 'n_unique':
        return _n_unique_jit(X_window)
    else:
        raise ValueError(f"Statistic '{stat}' is not implemented.")

transform

transform(X)

Transform a numpy array using rolling windows and compute the specified statistics. The returned array will have the shape (X.shape[1] if exists, n_stats). For example, if X is a flat array, the output will have shape (n_stats,). If X is a 2D array, the output will have shape (X.shape[1], n_stats).

Parameters:

Name Type Description Default
X numpy ndarray

The input data array to transform.

required

Returns:

Name Type Description
rolling_features numpy ndarray

An array containing the computed statistics.

Source code in skforecast\preprocessing\preprocessing.py
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
def transform(
    self, 
    X: np.ndarray
) -> np.ndarray:
    """
    Transform a numpy array using rolling windows and compute the 
    specified statistics. The returned array will have the shape 
    (X.shape[1] if exists, n_stats). For example, if X is a flat
    array, the output will have shape (n_stats,). If X is a 2D array,
    the output will have shape (X.shape[1], n_stats).

    Parameters
    ----------
    X : numpy ndarray
        The input data array to transform.

    Returns
    -------
    rolling_features : numpy ndarray
        An array containing the computed statistics.

    """

    if self.classes is None:
        raise ValueError(
            "Classes must be specified before calling transform. "
            "Call `transform_batch` first to infer classes from data."
        )

    array_ndim = X.ndim
    if array_ndim == 1:
        X = X[:, np.newaxis]

    # TODO: If more than one columns 2d Array, maybe the classes doesn't come
    # from the same column. Col 1 has classes [0, 1], col 2 has classes [3, 4].
    n_classes = len(self.classes)
    n_output_features = 0
    for stat in self.stats:
        if stat == 'proportion':
            n_output_features += n_classes
        else:
            n_output_features += 1

    rolling_features = np.full(
        shape=(X.shape[1], n_output_features), fill_value=np.nan, dtype=float
    )
    for i in range(X.shape[1]):
        feature_idx = 0
        for j, stat in enumerate(self.stats):
            X_window = X[-self.window_sizes[j]:, i]
            X_window = X_window[~np.isnan(X_window)]

            if len(X_window) >= 0:
                result = self._apply_stat_numpy_jit(X_window, stat)

                if stat == 'proportion':
                    # Result is an array with one value per class
                    rolling_features[i, feature_idx:feature_idx + n_classes] = result
                    feature_idx += n_classes
                else:
                    # Result is a single value
                    rolling_features[i, feature_idx] = result
                    feature_idx += 1
            else:
                if stat == 'proportion':
                    rolling_features[i, feature_idx:feature_idx + n_classes] = np.nan
                    feature_idx += n_classes
                else:
                    rolling_features[i, feature_idx] = np.nan
                    feature_idx += 1

    if array_ndim == 1:
        rolling_features = rolling_features.ravel()

    return rolling_features

skforecast.preprocessing.preprocessing.reshape_series_wide_to_long

reshape_series_wide_to_long(data, return_multi_index=True)

Convert a pandas DataFrame where each column represents a different time series into a long format DataFrame with a MultiIndex. The index of the input DataFrame must be a pandas DatetimeIndex with a defined frequency. The function reshapes the DataFrame from wide format to long format, where each row corresponds to a specific time point and series ID. The resulting DataFrame will have a MultiIndex with the series IDs as the first level and a pandas DatetimeIndex as the second level. If return_multi_index is set to False, the returned DataFrame have three columns: 'series_id', 'datetime' and 'value', with a regular index.

Parameters:

Name Type Description Default
data DataFrame

Wide format series. The index must be a pandas DatetimeIndex with a defined frequency and each column must represent a different time series.

required
return_multi_index bool

If True, the returned DataFrame will have a MultiIndex with the series IDs as the first level and a pandas DatetimeIndex as the second level. If False, the returned DataFrame will have a regular index.

True

Returns:

Name Type Description
data pandas DataFrame

Long format series with a MultiIndex. The first level contains the series IDs, and the second level contains a pandas DatetimeIndex with the same frequency for each series.

Source code in skforecast\preprocessing\preprocessing.py
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
def reshape_series_wide_to_long(
    data: pd.DataFrame,
    return_multi_index: bool = True
) -> pd.DataFrame:
    """
    Convert a pandas DataFrame where each column represents a different time series
    into a long format DataFrame with a MultiIndex. The index of the input DataFrame
    must be a pandas DatetimeIndex with a defined frequency. The function reshapes the
    DataFrame from wide format to long format, where each row corresponds to a
    specific time point and series ID. The resulting DataFrame will have a MultiIndex
    with the series IDs as the first level and a pandas DatetimeIndex as the second
    level. If `return_multi_index` is set to False, the returned DataFrame have three
    columns: 'series_id', 'datetime' and 'value', with a regular index.

    Parameters
    ----------
    data: pandas DataFrame
        Wide format series. The index must be a pandas DatetimeIndex with a 
        defined frequency and each column must represent a different time series.
    return_multi_index: bool, default True
        If True, the returned DataFrame will have a MultiIndex with the series IDs
        as the first level and a pandas DatetimeIndex as the second level. If False,
        the returned DataFrame will have a regular index.

    Returns
    -------
    data: pandas DataFrame
        Long format series with a MultiIndex. The first level contains the series IDs,
        and the second level contains a pandas DatetimeIndex with the same frequency
        for each series.

    """

    if not isinstance(data, pd.DataFrame):
        raise TypeError("`data` must be a pandas DataFrame.")

    if not isinstance(data.index, pd.DatetimeIndex):
        raise TypeError("`data` index must be a pandas DatetimeIndex.")

    freq = data.index.freq
    data.index.name = "datetime"
    data = data.reset_index()
    data = pd.melt(data, id_vars="datetime", var_name="series_id", value_name="value")
    data = data.groupby("series_id", sort=False).apply(
        lambda x: x.set_index("datetime").asfreq(freq), include_groups=False
    )

    if not return_multi_index:
        data = data.reset_index()

    return data

skforecast.preprocessing.preprocessing.reshape_series_long_to_dict

reshape_series_long_to_dict(
    data,
    freq,
    series_id=None,
    index=None,
    values=None,
    suppress_warnings=False,
)

Convert a long-format DataFrame into a dictionary of pandas Series with the specified frequency. Supports two input formats:

  • A pandas DataFrame with explicit columns for the series identifier, time index, and values.
  • A pandas DataFrame with a MultiIndex, where the first level contains the series IDs, and the second level contains a pandas DatetimeIndex.

Parameters:

Name Type Description Default
data DataFrame

Long-format series.

required
freq str

Frequency of the series.

required
series_id str | None

Column name with the series identifier. Not needed if the input data is a pandas DataFrame with MultiIndex.

None
index str | None

Column name with the time index. Not needed if the input data is a pandas DataFrame with MultiIndex.

None
values str | None

Column name with the values. Not needed if the input data is a pandas DataFrame with MultiIndex.

None
suppress_warnings bool

If True, suppress warnings when a series is incomplete after setting the frequency.

False

Returns:

Name Type Description
series_dict dict

Dictionary with the series.

Source code in skforecast\preprocessing\preprocessing.py
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
def reshape_series_long_to_dict(
    data: pd.DataFrame,
    freq: str,
    series_id: str | None = None,
    index: str | None = None,
    values: str | None = None,
    suppress_warnings: bool = False
) -> dict[str, pd.Series]:
    """
    Convert a long-format DataFrame into a dictionary of pandas Series with the 
    specified frequency. Supports two input formats:

    - A pandas DataFrame with explicit columns for the series identifier, time 
    index, and values.
    - A pandas DataFrame with a MultiIndex, where the first level contains the 
    series IDs, and the second level contains a pandas DatetimeIndex.

    Parameters
    ----------
    data: pandas DataFrame
        Long-format series.
    freq: str
        Frequency of the series.
    series_id: str, default None
        Column name with the series identifier. Not needed if the input data
        is a pandas DataFrame with MultiIndex.
    index: str, default None
        Column name with the time index. Not needed if the input data is a pandas
        DataFrame with MultiIndex.
    values: str, default None
        Column name with the values. Not needed if the input data is a pandas
        DataFrame with MultiIndex.
    suppress_warnings: bool, default False
        If True, suppress warnings when a series is incomplete after setting the
        frequency.

    Returns
    -------
    series_dict: dict
        Dictionary with the series.

    """

    if not isinstance(data, pd.DataFrame):
        raise TypeError("`data` must be a pandas DataFrame.")

    if isinstance(data.index, pd.MultiIndex):

        first_col = data.columns[0]
        data.index = data.index.set_names([data.index.names[0], None])
        series_dict = {
            id: data.loc[id][first_col].rename(id).asfreq(freq)
            for id in data.index.levels[0]
        }

    else:

        for col in [series_id, index, values]:
            if col is None:
                raise ValueError(
                    "Arguments `series_id`, `index`, and `values` must be "
                    "specified when the input DataFrame does not have a MultiIndex. "
                    "Please provide a value for each of these arguments."
                )
            if col not in data.columns:
                raise ValueError(f"Column '{col}' not found in `data`.")

        data_grouped = data.groupby(series_id, observed=True)   
        original_sizes = data_grouped.size()
        series_dict = {}
        for k, v in data_grouped:
            series_dict[k] = v.set_index(index)[values].asfreq(freq, fill_value=np.nan).rename(k)
            series_dict[k].index.name = None
            if not suppress_warnings and len(series_dict[k]) != original_sizes[k]:
                warnings.warn(
                    f"Series '{k}' is incomplete. NaNs have been introduced after "
                    f"setting the frequency.",
                    MissingValuesWarning
                )

    return series_dict

skforecast.preprocessing.preprocessing.reshape_exog_long_to_dict

reshape_exog_long_to_dict(
    data,
    freq,
    series_id=None,
    index=None,
    drop_all_nan_cols=False,
    consolidate_dtypes=True,
    suppress_warnings=False,
)

Convert a long-format DataFrame of exogenous variables into a dictionary of pandas DataFrames with the specified frequency. Supports two input formats:

  • A pandas DataFrame with explicit columns for the series identifier, time index, and exogenous variables.
  • A pandas DataFrame with a MultiIndex, where the first level contains the series IDs, and the second level contains a pandas DatetimeIndex.

Parameters:

Name Type Description Default
data DataFrame

Long format exogenous variables.

required
freq str

Frequency of the series.

required
series_id str | None

Column name with the series identifier. Not needed if the input data is a pandas DataFrame with MultiIndex.

None
index str | None

Column name with the time index. Not needed if the input data is a pandas DataFrame with MultiIndex.

None
drop_all_nan_cols bool

If True, drop columns with all values as NaN. This is useful when there are series without some exogenous variables.

False
consolidate_dtypes bool

Consolidate the data types of the exogenous variables if, after setting the frequency, NaNs have been introduced and the data types have changed to float.

True
suppress_warnings bool

If True, suppress warnings when exog is incomplete after setting the frequency.

False

Returns:

Name Type Description
exog_dict dict

Dictionary with the exogenous variables.

Source code in skforecast\preprocessing\preprocessing.py
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
def reshape_exog_long_to_dict(
    data: pd.DataFrame,
    freq: str,
    series_id: str | None = None,
    index: str | None = None,
    drop_all_nan_cols: bool = False,
    consolidate_dtypes: bool = True,
    suppress_warnings: bool = False
) -> dict[str, pd.DataFrame]:
    """
    Convert a long-format DataFrame of exogenous variables into a dictionary 
    of pandas DataFrames with the specified frequency. Supports two input formats:

    - A pandas DataFrame with explicit columns for the series identifier, time 
    index, and exogenous variables.
    - A pandas DataFrame with a MultiIndex, where the first level contains the 
    series IDs, and the second level contains a pandas DatetimeIndex.

    Parameters
    ----------
    data: pandas DataFrame
        Long format exogenous variables.
    freq: str
        Frequency of the series.
    series_id: str, default None
        Column name with the series identifier. Not needed if the input data
        is a pandas DataFrame with MultiIndex.
    index: str, default None
        Column name with the time index. Not needed if the input data is a pandas
        DataFrame with MultiIndex.
    drop_all_nan_cols: bool, default False
        If True, drop columns with all values as NaN. This is useful when
        there are series without some exogenous variables.
    consolidate_dtypes: bool, default True
        Consolidate the data types of the exogenous variables if, after setting
        the frequency, NaNs have been introduced and the data types have changed
        to float.
    suppress_warnings: bool, default False
        If True, suppress warnings when exog is incomplete after setting the
        frequency.

    Returns
    -------
    exog_dict: dict
        Dictionary with the exogenous variables.

    """

    if not isinstance(data, pd.DataFrame):
        raise TypeError("`data` must be a pandas DataFrame.")

    if isinstance(data.index, pd.MultiIndex):

        data.index = data.index.set_names([data.index.names[0], None])
        exog_dict = {
            id: data.loc[id].asfreq(freq) for id in data.index.levels[0]
        }

    else:

        for col in [series_id, index]:
            if col is None:
                raise ValueError(
                    "Arguments `series_id`, and `index` must be "
                    "specified when the input DataFrame does not have a MultiIndex. "
                    "Please provide a value for each of these arguments."
                )
            if col not in data.columns:
                raise ValueError(f"Column '{col}' not found in `data`.")

        cols_float_dtype = {
            col for col in data.columns 
            if pd.api.types.is_float_dtype(data[col])
        }

        data_grouped = data.groupby(series_id, observed=True) 
        original_sizes = data_grouped.size()
        exog_dict = dict(tuple(data_grouped))
        exog_dict = {
            k: v.set_index(index).asfreq(freq, fill_value=np.nan).drop(columns=series_id)
            for k, v in exog_dict.items()
        }

        for k in exog_dict.keys():
            exog_dict[k].index.name = None

        nans_introduced = False
        if not suppress_warnings or consolidate_dtypes:
            for k, v in exog_dict.items():
                if len(v) != original_sizes[k]:
                    nans_introduced = True
                    if not suppress_warnings:
                        warnings.warn(
                            f"Exogenous variables for series '{k}' are incomplete. "
                            f"NaNs have been introduced after setting the frequency.",
                            MissingValuesWarning
                        )
                    if consolidate_dtypes:
                        cols_float_dtype.update(
                            {
                                col for col in v.columns 
                                if pd.api.types.is_float_dtype(v[col])
                            }
                        )

        if consolidate_dtypes and nans_introduced:
            new_dtypes = {k: float for k in cols_float_dtype}
            exog_dict = {k: v.astype(new_dtypes) for k, v in exog_dict.items()}

    if drop_all_nan_cols:
        exog_dict = {k: v.dropna(how="all", axis=1) for k, v in exog_dict.items()}

    return exog_dict

skforecast.preprocessing.preprocessing.reshape_series_exog_dict_to_long

reshape_series_exog_dict_to_long(
    series,
    exog,
    series_col_name="series_value",
    index_names=["series_id", "datetime"],
    merge_how="left",
)

Convert dictionaries of series and exogenous variables to a long-format pandas DataFrame with MultiIndex. The first level of the MultiIndex contains the series identifiers, and the second level contains the temporal index. If both series and exog are provided, they are merged into a single DataFrame.

Parameters:

Name Type Description Default
series dict[str, Series] | None

Dictionary with multiple time series (expected: dict[str, pd.Series]).

required
exog dict[str, Series | DataFrame] | None

Dictionary with exogenous variables (expected: dict[str, pd.Series or pd.DataFrame]).

required
series_col_name str

Column name for the series values in the resulting DataFrame.

'series_value'
index_names list[str]

Names for the levels of the MultiIndex in the resulting DataFrame. The first name corresponds to the series identifier, and the second name corresponds to the temporal index.

['series_id', 'datetime']
merge_how str

Type of merge to perform when combining series and exog. Options are:

  • 'left': Keep only indices from series (default)
  • 'right': Keep only indices from exog
  • 'outer': Keep all indices from both series and exog
  • 'inner': Keep only indices present in both
'left'

Returns:

Name Type Description
long_df DataFrame

Long-format DataFrame with a MultiIndex of two levels: - First level: series identifier (named by index_names[0], default 'series_id') - Second level: temporal index (named by index_names[1], default 'datetime') Columns include: - Series values (named by series_col_name, default 'series_value') if series is provided. - Exogenous variable columns (from exog) if exog is provided. If both series and exog are provided, columns from both are present. If only one is provided, only its columns are present.

Source code in skforecast\preprocessing\preprocessing.py
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
def reshape_series_exog_dict_to_long(
    series: dict[str, pd.Series] | None,
    exog: dict[str, pd.Series | pd.DataFrame] | None,
    series_col_name: str = 'series_value',
    index_names: list[str] = ['series_id', 'datetime'],
    merge_how: str = 'left'
) -> pd.DataFrame:
    """
    Convert dictionaries of series and exogenous variables to a long-format
    pandas DataFrame with MultiIndex. The first level of the MultiIndex contains the
    series identifiers, and the second level contains the temporal index. If both
    series and exog are provided, they are merged into a single DataFrame.

    Parameters
    ----------
    series: dict, None
        Dictionary with multiple time series (expected: dict[str, pd.Series]).
    exog: dict, None
        Dictionary with exogenous variables (expected: dict[str, pd.Series or pd.DataFrame]).
    series_col_name: str, default 'series_value'
        Column name for the series values in the resulting DataFrame.
    index_names: list[str], default ['series_id', 'datetime']
        Names for the levels of the MultiIndex in the resulting DataFrame. The first
        name corresponds to the series identifier, and the second name corresponds
        to the temporal index.
    merge_how: str, default 'left'
        Type of merge to perform when combining `series` and `exog`. Options are:

        - 'left': Keep only indices from `series` (default)
        - 'right': Keep only indices from `exog`
        - 'outer': Keep all indices from both `series` and `exog`
        - 'inner': Keep only indices present in both

    Returns
    -------
    long_df : pandas.DataFrame
        Long-format DataFrame with a MultiIndex of two levels:
        - First level: series identifier (named by `index_names[0]`, default 'series_id')
        - Second level: temporal index (named by `index_names[1]`, default 'datetime')
        Columns include:
        - Series values (named by `series_col_name`, default 'series_value') if `series` is provided.
        - Exogenous variable columns (from `exog`) if `exog` is provided.
        If both `series` and `exog` are provided, columns from both are present.
        If only one is provided, only its columns are present.

    """

    if series is None and exog is None:
        raise ValueError("Both `series` and `exog` cannot be None.")

    if series is not None:
        if not isinstance(series, dict):
            raise TypeError(f"`series` must be a dictionary. Got {type(series)}.")
        for k, v in series.items():
            if not isinstance(v, pd.Series):
                raise TypeError(f"`series['{k}']` must be a pandas Series.")
        series = pd.concat(series, names=index_names).to_frame(series_col_name)

    if exog is not None:
        if not isinstance(exog, dict):
            raise TypeError(f"`exog` must be a dictionary. Got {type(exog)}.")
        for k, v in exog.items():
            if not isinstance(v, (pd.Series, pd.DataFrame)):
                raise TypeError(
                    f"`exog['{k}']` must be a pandas Series or a pandas DataFrame."
                )
        exog = pd.concat(exog, names=index_names)
        if isinstance(exog, pd.Series):
            exog = exog.to_frame(name='exog_value')

    if series is not None and exog is not None:
        series_idx_type = type(series.index.get_level_values(1))
        exog_idx_type = type(exog.index.get_level_values(1))

        if series_idx_type != exog_idx_type:
            raise TypeError(
                f"Index type mismatch: series has index of type "
                f"{series_idx_type}, but `exog` has {exog_idx_type}. "
                f"Ensure all indices are compatible."
            )

        if series_col_name in exog.columns:
            raise ValueError(
                f"Column name conflict: '{series_col_name}' already exists in `exog`. "
                f"Please choose a different `series_col_name` value."
            )

    if series is None:
        long_df = exog
    elif exog is None:
        long_df = series
    else:
        long_df = pd.merge(
            series, exog, left_index=True, right_index=True, how=merge_how
        )

    return long_df

skforecast.preprocessing.preprocessing.TimeSeriesDifferentiator

TimeSeriesDifferentiator(order=1, window_size=None)

Bases: BaseEstimator, TransformerMixin

Transforms a time series into a differentiated time series of a specified order and provides functionality to revert the differentiation.

When using a direct module Forecaster, the model in step 1 must be used if you want to reverse the differentiation of the training time series with the inverse_transform_training method.

Parameters:

Name Type Description Default
order int

The order of differentiation to be applied.

1
window_size int

The window size used by the forecaster. This is required to revert the differentiation for the target variable y or its predicted values.

None

Attributes:

Name Type Description
order int

The order of differentiation.

initial_values list

List with the first value of the time series before each differentiation. If order = 2, first value correspond with the first value of the original time series and the second value correspond with the first value of the differentiated time series of order 1. These values are necessary to revert the differentiation and reconstruct the original time series.

pre_train_values list

List with the first training value of the time series before each differentiation. For order = 1, the value correspond with the last value of the window used to create the predictors. For order > 1, the value correspond with the first value of the differentiated time series prior to the next differentiation. These values are necessary to revert the differentiation and reconstruct the training time series.

last_values list

List with the last value of the time series before each differentiation, used to revert differentiation on subsequent data windows. If order = 2, first value correspond with the last value of the original time series and the second value correspond with the last value of the differentiated time series of order 1. This is essential for correctly transforming a time series that follows immediately after the series used to fit the transformer.

Methods:

Name Description
fit

Fits the transformer. Stores the values needed to revert the

transform

Transforms a time series into a differentiated time series of order n.

inverse_transform

Reverts the differentiation. To do so, the input array is assumed to be

inverse_transform_training

Reverts the differentiation. To do so, the input array is assumed to be

inverse_transform_next_window

Reverts the differentiation. The input array X is assumed to be a

set_params

Set the parameters of the TimeSeriesDifferentiator.

Source code in skforecast\preprocessing\preprocessing.py
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
def __init__(
    self, 
    order: int = 1,
    window_size: int | None = None
) -> None:

    if not isinstance(order, (int, np.integer)):
        raise TypeError(
            f"Parameter `order` must be an integer greater than 0. Found {type(order)}."
        )
    if order < 1:
        raise ValueError(
            f"Parameter `order` must be an integer greater than 0. Found {order}."
        )

    if window_size is not None:
        if not isinstance(window_size, (int, np.integer)):
            raise TypeError(
                f"Parameter `window_size` must be an integer greater than 0. "
                f"Found {type(window_size)}."
            )
        if window_size < 1:
            raise ValueError(
                f"Parameter `window_size` must be an integer greater than 0. "
                f"Found {window_size}."
            )

    self.order = order
    self.window_size = window_size
    self.initial_values = []
    self.pre_train_values = []
    self.last_values = []

order instance-attribute

order = order

window_size instance-attribute

window_size = window_size

initial_values instance-attribute

initial_values = []

pre_train_values instance-attribute

pre_train_values = []

last_values instance-attribute

last_values = []

fit

fit(X, y=None)

Fits the transformer. Stores the values needed to revert the differentiation of different window of the time series, original time series, training time series, and a time series that follows immediately after the series used to fit the transformer.

Parameters:

Name Type Description Default
X numpy ndarray

Time series to be differentiated.

required
y Ignored

Not used, present here for API consistency by convention.

None

Returns:

Name Type Description
self TimeSeriesDifferentiator
Source code in skforecast\preprocessing\preprocessing.py
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
@_check_X_numpy_ndarray_1d()
def fit(
    self, 
    X: np.ndarray, 
    y: Any = None
) -> Self:
    """
    Fits the transformer. Stores the values needed to revert the 
    differentiation of different window of the time series, original 
    time series, training time series, and a time series that follows
    immediately after the series used to fit the transformer.

    Parameters
    ----------
    X : numpy ndarray
        Time series to be differentiated.
    y : Ignored
        Not used, present here for API consistency by convention.

    Returns
    -------
    self : TimeSeriesDifferentiator

    """

    self.initial_values = []
    self.pre_train_values = []
    self.last_values = []

    for i in range(self.order):
        if i == 0:
            self.initial_values.append(X[0])
            if self.window_size is not None:
                self.pre_train_values.append(X[self.window_size - self.order])
            self.last_values.append(X[-1])
            X_diff = np.diff(X, n=1)
        else:
            self.initial_values.append(X_diff[0])
            if self.window_size is not None:
                self.pre_train_values.append(X_diff[self.window_size - self.order])
            self.last_values.append(X_diff[-1])
            X_diff = np.diff(X_diff, n=1)

    return self

transform

transform(X, y=None)

Transforms a time series into a differentiated time series of order n.

Parameters:

Name Type Description Default
X numpy ndarray

Time series to be differentiated.

required
y Ignored

Not used, present here for API consistency by convention.

None

Returns:

Name Type Description
X_diff numpy ndarray

Differentiated time series. The length of the array is the same as the original time series but the first n order values are nan.

Source code in skforecast\preprocessing\preprocessing.py
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
@_check_X_numpy_ndarray_1d()
def transform(
    self, 
    X: np.ndarray, 
    y: Any = None
) -> np.ndarray:
    """
    Transforms a time series into a differentiated time series of order n.

    Parameters
    ----------
    X : numpy ndarray
        Time series to be differentiated.
    y : Ignored
        Not used, present here for API consistency by convention.

    Returns
    -------
    X_diff : numpy ndarray
        Differentiated time series. The length of the array is the same as
        the original time series but the first n `order` values are nan.

    """

    X_diff = np.diff(X, n=self.order)
    X_diff = np.append((np.full(shape=self.order, fill_value=np.nan)), X_diff)

    return X_diff

inverse_transform

inverse_transform(X, y=None)

Reverts the differentiation. To do so, the input array is assumed to be the same time series used to fit the transformer but differentiated.

Parameters:

Name Type Description Default
X numpy ndarray

Differentiated time series.

required
y Ignored

Not used, present here for API consistency by convention.

None

Returns:

Name Type Description
X_diff numpy ndarray

Reverted differentiated time series.

Source code in skforecast\preprocessing\preprocessing.py
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
@_check_X_numpy_ndarray_1d()
def inverse_transform(
    self, 
    X: np.ndarray, 
    y: Any = None
) -> np.ndarray:
    """
    Reverts the differentiation. To do so, the input array is assumed to be
    the same time series used to fit the transformer but differentiated.

    Parameters
    ----------
    X : numpy ndarray
        Differentiated time series.
    y : Ignored
        Not used, present here for API consistency by convention.

    Returns
    -------
    X_diff : numpy ndarray
        Reverted differentiated time series.

    """

    # Remove initial nan values if present
    X = X[np.argmax(~np.isnan(X)):]
    for i in range(self.order):
        if i == 0:
            X_undiff = np.insert(X, 0, self.initial_values[-1])
            X_undiff = np.cumsum(X_undiff, dtype=float)
        else:
            X_undiff = np.insert(X_undiff, 0, self.initial_values[-(i + 1)])
            X_undiff = np.cumsum(X_undiff, dtype=float)

    return X_undiff

inverse_transform_training

inverse_transform_training(X, y=None)

Reverts the differentiation. To do so, the input array is assumed to be the differentiated training time series generated with the original time series used to fit the transformer.

When using a direct module Forecaster, the model in step 1 must be used if you want to reverse the differentiation of the training time series with the inverse_transform_training method.

Parameters:

Name Type Description Default
X numpy ndarray

Differentiated time series.

required
y Ignored

Not used, present here for API consistency by convention.

None

Returns:

Name Type Description
X_diff numpy ndarray

Reverted differentiated time series.

Source code in skforecast\preprocessing\preprocessing.py
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
@_check_X_numpy_ndarray_1d()
def inverse_transform_training(
    self, 
    X: np.ndarray, 
    y: Any = None
) -> np.ndarray:
    """
    Reverts the differentiation. To do so, the input array is assumed to be
    the differentiated training time series generated with the original 
    time series used to fit the transformer.

    When using a `direct` module Forecaster, the model in step 1 must be 
    used if you want to reverse the differentiation of the training time 
    series with the `inverse_transform_training` method.

    Parameters
    ----------
    X : numpy ndarray
        Differentiated time series.
    y : Ignored
        Not used, present here for API consistency by convention.

    Returns
    -------
    X_diff : numpy ndarray
        Reverted differentiated time series.

    """

    if not self.pre_train_values:
        raise ValueError(
            "The `window_size` parameter must be set before fitting the "
            "transformer to revert the differentiation of the training "
            "time series."
        )

    # Remove initial nan values if present
    X = X[np.argmax(~np.isnan(X)):]
    for i in range(self.order):
        if i == 0:
            X_undiff = np.insert(X, 0, self.pre_train_values[-1])
            X_undiff = np.cumsum(X_undiff, dtype=float)
        else:
            X_undiff = np.insert(X_undiff, 0, self.pre_train_values[-(i + 1)])
            X_undiff = np.cumsum(X_undiff, dtype=float)

    # Remove initial values as they are not part of the training time series
    X_undiff = X_undiff[self.order:]

    return X_undiff

inverse_transform_next_window

inverse_transform_next_window(X, y=None)

Reverts the differentiation. The input array X is assumed to be a differentiated time series of order n that starts right after the the time series used to fit the transformer.

Parameters:

Name Type Description Default
X numpy ndarray

Differentiated time series. It is assumed o start right after the time series used to fit the transformer.

required
y Ignored

Not used, present here for API consistency by convention.

None

Returns:

Name Type Description
X_undiff numpy ndarray

Reverted differentiated time series.

Source code in skforecast\preprocessing\preprocessing.py
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
@_check_X_numpy_ndarray_1d(ensure_1d=False)
def inverse_transform_next_window(
    self,
    X: np.ndarray,
    y: Any = None
) -> np.ndarray:
    """
    Reverts the differentiation. The input array `X` is assumed to be a 
    differentiated time series of order n that starts right after the
    the time series used to fit the transformer.

    Parameters
    ----------
    X : numpy ndarray
        Differentiated time series. It is assumed o start right after
        the time series used to fit the transformer.
    y : Ignored
        Not used, present here for API consistency by convention.

    Returns
    -------
    X_undiff : numpy ndarray
        Reverted differentiated time series.

    """

    array_ndim = X.ndim
    if array_ndim == 1:
        X = X[:, np.newaxis]

    # Remove initial rows with nan values if present
    X = X[~np.isnan(X).any(axis=1)]

    for i in range(self.order):
        if i == 0:
            X_undiff = np.cumsum(X, axis=0, dtype=float) + self.last_values[-1]
        else:
            X_undiff = np.cumsum(X_undiff, axis=0, dtype=float) + self.last_values[-(i + 1)]

    if array_ndim == 1:
        X_undiff = X_undiff.ravel()

    return X_undiff

set_params

set_params(**params)

Set the parameters of the TimeSeriesDifferentiator.

Parameters:

Name Type Description Default
params dict

A dictionary of the parameters to set.

{}

Returns:

Type Description
None
Source code in skforecast\preprocessing\preprocessing.py
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
def set_params(self, **params):
    """
    Set the parameters of the TimeSeriesDifferentiator.

    Parameters
    ----------
    params : dict
        A dictionary of the parameters to set.

    Returns
    -------
    None

    """

    for param, value in params.items():
        setattr(self, param, value)

skforecast.preprocessing.preprocessing.QuantileBinner

QuantileBinner(
    n_bins,
    method="linear",
    subsample=200000,
    dtype=np.float64,
    random_state=789654,
)

QuantileBinner class to bin data into quantile-based bins using numpy.percentile. This class is similar to KBinsDiscretizer but faster for binning data into quantile-based bins. Bin intervals are defined following the convention: bins[i-1] <= x < bins[i]. See more information in numpy.percentile and numpy.digitize.

Parameters:

Name Type Description Default
n_bins int

The number of quantile-based bins to create.

required
method str

The method used to compute the quantiles. This parameter is passed to numpy.percentile. Default is 'linear'. Valid values are "inverse_cdf", "averaged_inverse_cdf", "closest_observation", "interpolated_inverse_cdf", "hazen", "weibull", "linear", "median_unbiased", "normal_unbiased".

'linear'
subsample int

The number of samples to use for computing quantiles. If the dataset has more samples than subsample, a random subset will be used.

200000
dtype data type

The data type to use for the bin indices. Default is numpy.float64.

numpy.float64
random_state int

The random seed to use for generating a random subset of the data.

789654

Attributes:

Name Type Description
n_bins int

The number of quantile-based bins to create.

method str

The method used to compute the quantiles. This parameter is passed to numpy.percentile. Default is 'linear'. Valid values are 'linear', 'lower', 'higher', 'midpoint', 'nearest'.

subsample int

The number of samples to use for computing quantiles. If the dataset has more samples than subsample, a random subset will be used.

dtype data type

The data type to use for the bin indices. Default is numpy.float64.

random_state int

The random seed to use for generating a random subset of the data.

n_bins_ int

The number of bins learned during fitting.

bin_edges_ numpy ndarray

The edges of the bins learned during fitting.

intervals_ dict

A dictionary with the bin indices as keys and the corresponding bin intervals as values.

Methods:

Name Description
fit

Learn the bin edges based on quantiles from the training data.

transform

Assign new data to the learned bins.

fit_transform

Fit the model to the data and return the bin indices for the same data.

get_params

Get the parameters of the quantile binner.

set_params

Set the parameters of the QuantileBinner.

Source code in skforecast\preprocessing\preprocessing.py
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
def __init__(
    self,
    n_bins: int,
    method: str = "linear",
    subsample: int = 200000,
    dtype: type = np.float64,
    random_state: int = 789654
) -> None:

    self._validate_params(
        n_bins,
        method,
        subsample,
        dtype,
        random_state
    )

    self.n_bins       = n_bins
    self.method       = method
    self.subsample    = subsample
    self.dtype        = dtype
    self.random_state = random_state
    self.n_bins_      = None
    self.bin_edges_   = None
    self.intervals_   = None

n_bins instance-attribute

n_bins = n_bins

method instance-attribute

method = method

subsample instance-attribute

subsample = subsample

dtype instance-attribute

dtype = dtype

random_state instance-attribute

random_state = random_state

n_bins_ instance-attribute

n_bins_ = None

bin_edges_ instance-attribute

bin_edges_ = None

intervals_ instance-attribute

intervals_ = None

_validate_params

_validate_params(
    n_bins, method, subsample, dtype, random_state
)

Validate the parameters passed to the class initializer.

Source code in skforecast\preprocessing\preprocessing.py
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
def _validate_params(
    self,
    n_bins: int,
    method: str,
    subsample: int,
    dtype: type,
    random_state: int
):
    """
    Validate the parameters passed to the class initializer.
    """

    if not isinstance(n_bins, int) or n_bins < 2:
        raise ValueError(
            f"`n_bins` must be an int greater than 1. Got {n_bins}."
        )

    valid_methods = [
        "inverse_cdf",
        "averaged_inverse_cdf",
        "closest_observation",
        "interpolated_inverse_cdf",
        "hazen",
        "weibull",
        "linear",
        "median_unbiased",
        "normal_unbiased",
    ]
    if method not in valid_methods:
        raise ValueError(
            f"`method` must be one of {valid_methods}. Got {method}."
        )
    if not isinstance(subsample, int) or subsample < 1:
        raise ValueError(
            f"`subsample` must be an integer greater than or equal to 1. "
            f"Got {subsample}."
        )
    if not isinstance(random_state, int) or random_state < 0:
        raise ValueError(
            f"`random_state` must be an integer greater than or equal to 0. "
            f"Got {random_state}."
        )
    if not isinstance(dtype, type):
        raise ValueError(
            f"`dtype` must be a valid numpy dtype. Got {dtype}."
        )

fit

fit(X)

Learn the bin edges based on quantiles from the training data.

Parameters:

Name Type Description Default
X numpy ndarray

The training data used to compute the quantiles.

required

Returns:

Type Description
None
Source code in skforecast\preprocessing\preprocessing.py
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
def fit(self, X: np.ndarray):
    """
    Learn the bin edges based on quantiles from the training data.

    Parameters
    ----------
    X : numpy ndarray
        The training data used to compute the quantiles.

    Returns
    -------
    None

    """

    if X.size == 0:
        raise ValueError("Input data `X` cannot be empty.")
    if len(X) > self.subsample:
        rng = np.random.default_rng(self.random_state)
        X = X[rng.integers(0, len(X), self.subsample)]

    self.bin_edges_ = np.percentile(
        a      = X,
        q      = np.linspace(0, 100, self.n_bins + 1),
        method = self.method
    )

    self.n_bins_ = len(self.bin_edges_) - 1
    self.intervals_ = {
        int(i): (float(self.bin_edges_[i]), float(self.bin_edges_[i + 1]))
        for i in range(self.n_bins_)
    }

transform

transform(X)

Assign new data to the learned bins.

Parameters:

Name Type Description Default
X numpy ndarray

The data to assign to the bins.

required

Returns:

Name Type Description
bin_indices numpy ndarray

The indices of the bins each value belongs to. Values less than the smallest bin edge are assigned to the first bin, and values greater than the largest bin edge are assigned to the last bin.

Source code in skforecast\preprocessing\preprocessing.py
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
def transform(self, X: np.ndarray):
    """
    Assign new data to the learned bins.

    Parameters
    ----------
    X : numpy ndarray
        The data to assign to the bins.

    Returns
    -------
    bin_indices : numpy ndarray 
        The indices of the bins each value belongs to.
        Values less than the smallest bin edge are assigned to the first bin,
        and values greater than the largest bin edge are assigned to the last bin.

    """

    if self.bin_edges_ is None:
        raise NotFittedError(
            "The model has not been fitted yet. Call 'fit' with training data first."
        )

    bin_indices = np.digitize(X, bins=self.bin_edges_, right=False)
    bin_indices = np.clip(bin_indices, 1, self.n_bins_).astype(self.dtype) - 1

    return bin_indices

fit_transform

fit_transform(X)

Fit the model to the data and return the bin indices for the same data.

Parameters:

Name Type Description Default
X ndarray

The data to fit and transform.

required

Returns:

Name Type Description
bin_indices ndarray

The indices of the bins each value belongs to. Values less than the smallest bin edge are assigned to the first bin, and values greater than the largest bin edge are assigned to the last bin.

Source code in skforecast\preprocessing\preprocessing.py
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
def fit_transform(self, X):
    """
    Fit the model to the data and return the bin indices for the same data.

    Parameters
    ----------
    X : numpy.ndarray
        The data to fit and transform.

    Returns
    -------
    bin_indices : numpy.ndarray
        The indices of the bins each value belongs to.
        Values less than the smallest bin edge are assigned to the first bin,
        and values greater than the largest bin edge are assigned to the last bin.

    """

    self.fit(X)

    return self.transform(X)

get_params

get_params()

Get the parameters of the quantile binner.

Parameters:

Name Type Description Default
self
required

Returns:

Name Type Description
params dict

A dictionary of the parameters of the quantile binner.

Source code in skforecast\preprocessing\preprocessing.py
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
def get_params(self):
    """
    Get the parameters of the quantile binner.

    Parameters
    ----------
    self

    Returns
    -------
    params : dict
        A dictionary of the parameters of the quantile binner.

    """

    return {
        "n_bins": self.n_bins,
        "method": self.method,
        "subsample": self.subsample,
        "dtype": self.dtype,
        "random_state": self.random_state,
    }

set_params

set_params(**params)

Set the parameters of the QuantileBinner.

Parameters:

Name Type Description Default
params dict

A dictionary of the parameters to set.

{}

Returns:

Type Description
None
Source code in skforecast\preprocessing\preprocessing.py
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
def set_params(self, **params):
    """
    Set the parameters of the QuantileBinner.

    Parameters
    ----------
    params : dict
        A dictionary of the parameters to set.

    Returns
    -------
    None

    """

    for param, value in params.items():
        setattr(self, param, value)

skforecast.preprocessing.preprocessing.ConformalIntervalCalibrator

ConformalIntervalCalibrator(
    nominal_coverage=0.8, symmetric_calibration=True
)

Transformer that calibrates the prediction interval to achieve the desired coverage based on conformity scores. It uses the conformal split method.

Parameters:

Name Type Description Default
nominal_coverage float

Desired coverage. This is the desired probability that the true value falls within the calibrated interval.

0.8
symmetric_calibration bool

If True, the calibration factor is the same for the lower and upper bounds. If False, the calibration factor is different for the lower and upper bounds.

True

Attributes:

Name Type Description
nominal_coverage float

Desired coverage. This is the desired probability that the true value falls within the calibrated interval.

symmetric_calibration bool, default True

If True, the calibration factor is the same for the lower and upper bounds. If False, the calibration factor is different for the lower and upper bounds.

correction_factor_ dict

Correction factor to achieve the desired coverage. This is the correction factor used when symmetric_calibration is True.

correction_factor_lower_ dict

Correction factor for the lower bound to achieve the desired coverage. It is used when symmetric_calibration is False.

correction_factor_upper_ dict

Correction factor for the upper bound to achieve the desired coverage. It is used when symmetric_calibration is False.

fit_coverage_ dict

Coverage observed in the data used to fit the transformer. This is the empirical coverage from which the correction factor is learned.

fit_input_type_ str

Type of input data used to fit the transformer. Can be 'single' or 'multi'.

fit_series_names_ list

Names of the series used to fit the transformer.

Methods:

Name Description
fit

Learn the correction factor needed to achieve the desired coverage.

transform

Apply the correction factor to the prediction interval to achieve the desired

Source code in skforecast\preprocessing\preprocessing.py
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
def __init__(
    self,
    nominal_coverage: float = 0.8,
    symmetric_calibration: bool = True
) -> None:

    if nominal_coverage < 0 or nominal_coverage > 1:
        raise ValueError(
            f"`nominal_coverage` must be a float between 0 and 1. Got {nominal_coverage}"
        )

    self.nominal_coverage         = nominal_coverage
    self.symmetric_calibration    = symmetric_calibration
    self.correction_factor_       = {}
    self.correction_factor_lower_ = {}
    self.correction_factor_upper_ = {}
    self.fit_coverage_            = {}
    self.fit_input_type_          = None
    self.fit_series_names_        = None
    self.is_fitted                = False

nominal_coverage instance-attribute

nominal_coverage = nominal_coverage

symmetric_calibration instance-attribute

symmetric_calibration = symmetric_calibration

correction_factor_ instance-attribute

correction_factor_ = {}

correction_factor_lower_ instance-attribute

correction_factor_lower_ = {}

correction_factor_upper_ instance-attribute

correction_factor_upper_ = {}

fit_coverage_ instance-attribute

fit_coverage_ = {}

fit_input_type_ instance-attribute

fit_input_type_ = None

fit_series_names_ instance-attribute

fit_series_names_ = None

is_fitted instance-attribute

is_fitted = False

_repr_html_

_repr_html_()

HTML representation of the object. The "General Information" section is expanded by default.

Source code in skforecast\preprocessing\preprocessing.py
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
def _repr_html_(self) -> str:
    """
    HTML representation of the object.
    The "General Information" section is expanded by default.
    """

    style, unique_id = get_style_repr_html(is_fitted=self.is_fitted)

    content = f"""
    <div class="container-{unique_id}">
        <p style="font-size: 1.5em; font-weight: bold; margin-block-start: 0.83em; margin-block-end: 0.83em;">{type(self).__name__}</p>
        <details open>
            <summary>General Information</summary>
            <ul>
                <li><strong>Nominal coverage:</strong> {self.nominal_coverage}</li>
                <li><strong>Coverage in fit data:</strong> {self.fit_coverage_}</li>
                <li><strong>Symmetric interval:</strong> {self.symmetric_calibration}</li>
                <li><strong>Symmetric correction factor:</strong> {self.correction_factor_}</li>
                <li><strong>Asymmetric correction factor lower:</strong> {self.correction_factor_lower_}</li>
                <li><strong>Asymmetric correction factor upper:</strong> {self.correction_factor_upper_}</li>
                <li><strong>Fitted series:</strong> {self.fit_series_names_}</li>
            </ul>
        </details>
        <p>
            <a href="https://skforecast.org/{__version__}/api/preprocessing#skforecast.preprocessing.preprocessing.ConformalIntervalCalibrator">&#128712 <strong>API Reference</strong></a>
            &nbsp;&nbsp;
            <a href="https://skforecast.org/{__version__}/user_guides/probabilistic-forecasting-conformal-calibration.html">&#128462 <strong>User Guide</strong></a>
        </p>
    </div>
    """

    return style + content

fit

fit(y_true, y_pred_interval)

Learn the correction factor needed to achieve the desired coverage.

Parameters:

Name Type Description Default
y_true pandas Series, pandas DataFrame, dict

True values of the time series.

  • If pandas Series, it is assumed that only one series is available.
  • If pandas DataFrame, it is assumed that each column is a different series which will be calibrated separately. The column names are used as series names.
  • If dict, it is assumed that each key is a series name and the corresponding value is a pandas Series with the true values.
required
y_pred_interval pandas DataFrame

Prediction interval estimated for the time series.

  • If y_true contains only one series, y_pred_interval must have two columns, 'lower_bound' and 'upper_bound'.
  • If y_true contains multiple series, y_pred_interval must be a long-format DataFrame with three columns: 'level', 'lower_bound', and 'upper_bound'. The 'level' column identifies the series to which each interval belongs.
required

Returns:

Type Description
None
Source code in skforecast\preprocessing\preprocessing.py
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
def fit(
    self,
    y_true: pd.Series | pd.DataFrame | dict[str, pd.Series],
    y_pred_interval: pd.DataFrame,
) -> None:
    """
    Learn the correction factor needed to achieve the desired coverage.

    Parameters
    ----------
    y_true : pandas Series, pandas DataFrame, dict
        True values of the time series.

        - If pandas Series, it is assumed that only one series is available.
        - If pandas DataFrame, it is assumed that each column is a different 
        series which will be calibrated separately. The column names are 
        used as series names.
        - If dict, it is assumed that each key is a series name and the 
        corresponding value is a pandas Series with the true values.
    y_pred_interval : pandas DataFrame
        Prediction interval estimated for the time series. 

        - If `y_true` contains only one series, `y_pred_interval` must have 
        two columns, 'lower_bound' and 'upper_bound'.
        - If `y_true` contains multiple series, `y_pred_interval` must be
        a long-format DataFrame with three columns: 'level', 'lower_bound',
        and 'upper_bound'. The 'level' column identifies the series to which
        each interval belongs.

    Returns
    -------
    None

    """

    self.correction_factor_       = {}
    self.correction_factor_lower_ = {}
    self.correction_factor_upper_ = {}
    self.fit_coverage_            = {}
    self.fit_input_type_          = None
    self.fit_series_names_        = None
    self.is_fitted                = False

    if not isinstance(y_true, (pd.Series, pd.DataFrame, dict)):
        raise TypeError(
            "`y_true` must be a pandas Series, pandas DataFrame, or a dictionary."
        )

    if not isinstance(y_pred_interval, (pd.DataFrame)):
        raise TypeError(
            "`y_pred_interval` must be a pandas DataFrame."
        )

    if not set(["lower_bound", "upper_bound"]).issubset(y_pred_interval.columns):
        raise ValueError(
            "`y_pred_interval` must have columns 'lower_bound' and 'upper_bound'."
        )

    if isinstance(y_true, (pd.DataFrame, dict)) and 'level' not in y_pred_interval.columns:
        raise ValueError(
            "If `y_true` is a pandas DataFrame or a dictionary, `y_pred_interval` "
            "must have an additional column 'level' to identify each series."
        )

    if isinstance(y_true, pd.Series):
        name = y_true.name if y_true.name is not None else 'y'
        self.fit_input_type_ = "single_series"    
        y_true = {name: y_true}

        if "level" not in y_pred_interval.columns:
            y_pred_interval = y_pred_interval.copy()
            y_pred_interval["level"] = name
        else:
            if y_pred_interval["level"].nunique() > 1:
                raise ValueError(
                    "If `y_true` is a pandas Series, `y_pred_interval` must have "
                    "only one series. Found multiple values in column 'level'."
                )
            if y_pred_interval["level"].iat[0] != name:
                raise ValueError(
                    f"Series name in `y_true`, '{name}', does not match the level "
                    f"name in `y_pred_interval`, '{y_pred_interval['level'].iat[0]}'."
                )
    elif isinstance(y_true, pd.DataFrame):
        self.fit_input_type_ = "multiple_series"
        y_true = y_true.to_dict(orient='series')
    else:
        self.fit_input_type_ = "multiple_series"
        for k, v in y_true.items():
            if not isinstance(v, pd.Series):
                raise ValueError(
                    f"When `y_true` is a dict, all its values must be pandas "
                    f"Series. Got {type(v)} for series '{k}'."
                )

    y_pred_interval = {
        k: v[['lower_bound', 'upper_bound']]
        for k, v in y_pred_interval.groupby('level')
    }

    if not y_pred_interval.keys() == y_true.keys():
        raise ValueError(
            f"Series names in `y_true` and `y_pred_interval` do not match.\n"
            f"   `y_true` series names          : {list(y_true.keys())}\n"
            f"   `y_pred_interval` series names : {list(y_pred_interval.keys())}"
        )

    for k in y_true.keys():

        if not y_true[k].index.equals(y_pred_interval[k].index):
            raise IndexError(
                f"Index of `y_true` and `y_pred_interval` must match. Different "
                f"indices found for series '{k}'."
            )

        y_true_ = np.asarray(y_true[k])
        y_pred_interval_ = np.asarray(y_pred_interval[k])

        lower_bound = y_pred_interval_[:, 0]
        upper_bound = y_pred_interval_[:, 1]
        conformity_scores_lower = lower_bound - y_true_
        conformity_scores_upper = y_true_ - upper_bound
        conformity_scores = np.max(
            [
                conformity_scores_lower,
                conformity_scores_upper,
            ],
            axis=0,
        )

        self.correction_factor_[k] = float(np.quantile(conformity_scores, self.nominal_coverage))
        self.correction_factor_lower_[k] = float(
            -1 * np.quantile(-1 * conformity_scores_lower, (1 - self.nominal_coverage) / 2)
        )
        self.correction_factor_upper_[k] = float(
            np.quantile(conformity_scores_upper,  1 - (1 - self.nominal_coverage) / 2)
        )
        coverage_fit_ = calculate_coverage(
                            y_true      = y_true_,
                            lower_bound = lower_bound,
                            upper_bound = upper_bound,
                        )
        self.fit_coverage_[k] = float(coverage_fit_)

    self.is_fitted = True
    self.fit_series_names_ = list(y_true.keys())

transform

transform(y_pred_interval)

Apply the correction factor to the prediction interval to achieve the desired coverage.

Parameters:

Name Type Description Default
y_pred_interval pandas DataFrame

Prediction interval to be calibrated using conformal method.

  • If only intervals for one series are available, y_pred_interval must have two columns, 'lower_bound' and 'upper_bound'.
  • If multiple series are available, y_pred_interval must be a long-format DataFrame with three columns: 'level', 'lower_bound', and 'upper_bound'. The 'level' column identifies the series to which each interval belongs.
required

Returns:

Name Type Description
y_pred_interval_conformal pandas DataFrame

Prediction interval with the correction factor applied.

Source code in skforecast\preprocessing\preprocessing.py
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
def transform(
    self, 
    y_pred_interval: pd.DataFrame
) -> pd.DataFrame:
    """
    Apply the correction factor to the prediction interval to achieve the desired
    coverage.

    Parameters
    ----------
    y_pred_interval : pandas DataFrame
        Prediction interval to be calibrated using conformal method.

        - If only intervals for one series are available, `y_pred_interval` 
        must have two columns, 'lower_bound' and 'upper_bound'.
        - If multiple series are available, `y_pred_interval` must be
        a long-format DataFrame with three columns: 'level', 'lower_bound',
        and 'upper_bound'. The 'level' column identifies the series to which
        each interval belongs.

    Returns
    -------
    y_pred_interval_conformal : pandas DataFrame
        Prediction interval with the correction factor applied.

    """

    if not self.is_fitted:
        raise NotFittedError(
            "ConformalIntervalCalibrator not fitted yet. Call 'fit' with "
            "training data first."
        )
    if not isinstance(y_pred_interval, pd.DataFrame):
        raise TypeError(
            "`y_pred_interval` must be a pandas DataFrame."
        )

    if not set(["lower_bound", "upper_bound"]).issubset(y_pred_interval.columns):
        raise ValueError(
            "`y_pred_interval` must have columns 'lower_bound' and 'upper_bound'."
        )

    if self.fit_input_type_ == "single_series" and 'level' not in y_pred_interval.columns:
        y_pred_interval = y_pred_interval.copy()
        y_pred_interval["level"] = self.fit_series_names_[0]

    if self.fit_input_type_ == "multiple_series" and 'level' not in y_pred_interval.columns:
        raise ValueError(
            "The transformer was fitted with multiple series. `y_pred_interval` "
            "must be a long-format DataFrame with three columns: 'level', "
            "'lower_bound', and 'upper_bound'. The 'level' column identifies "
            "the series to which each interval belongs."
        )

    conformalized_intervals = []
    for k, y_pred_interval_ in y_pred_interval.groupby('level')[['lower_bound', 'upper_bound']]:

        if k not in self.fit_series_names_:
            raise ValueError(
                f"Series '{k}' was not seen during fit. Available series are: "
                f"{self.fit_series_names_}."
            )

        correction_factor = self.correction_factor_[k]   
        correction_factor_lower = self.correction_factor_lower_[k]
        correction_factor_upper = self.correction_factor_upper_[k]

        index = y_pred_interval_.index
        y_pred_interval_ = y_pred_interval_.to_numpy()
        y_pred_interval_conformal = y_pred_interval_.copy()

        if self.symmetric_calibration:
            y_pred_interval_conformal[:, 0] = (
                y_pred_interval_conformal[:, 0] - correction_factor
            )
            y_pred_interval_conformal[:, 1] = (
                y_pred_interval_conformal[:, 1] + correction_factor
            )
        else:
            y_pred_interval_conformal[:, 0] = (
                y_pred_interval_conformal[:, 0] - correction_factor_lower
            )
            y_pred_interval_conformal[:, 1] = (
                y_pred_interval_conformal[:, 1] + correction_factor_upper
            )

        # If upper bound is less than lower bound, swap them
        mask = (
            y_pred_interval_conformal[:, 1]
            < y_pred_interval_conformal[:, 0]
        )

        (
            y_pred_interval_conformal[mask, 0],
            y_pred_interval_conformal[mask, 1],
        ) = (
            y_pred_interval_conformal[mask, 1],
            y_pred_interval_conformal[mask, 0],
        )

        y_pred_interval_conformal = pd.DataFrame(
            data    = y_pred_interval_conformal,
            columns = ['lower_bound', 'upper_bound'],
            index   = index
        )
        y_pred_interval_conformal.insert(0, 'level', k)
        conformalized_intervals.append(y_pred_interval_conformal)

    conformalized_intervals = pd.concat(conformalized_intervals)

    return conformalized_intervals