Skip to content

model_selection

skforecast.model_selection._validation.backtesting_forecaster

backtesting_forecaster(
    forecaster,
    y,
    cv,
    metric,
    exog=None,
    interval=None,
    interval_method="bootstrapping",
    n_boot=250,
    use_in_sample_residuals=True,
    use_binned_residuals=True,
    random_state=123,
    return_predictors=False,
    n_jobs="auto",
    verbose=False,
    show_progress=True,
)

Backtesting of forecaster model following the folds generated by the TimeSeriesFold class and using the metric(s) provided.

If forecaster is already trained and initial_train_size is set to None in the TimeSeriesFold class, no initial train will be done and all data will be used to evaluate the model. However, the first len(forecaster.last_window) observations are needed to create the initial predictors, so no predictions are calculated for them.

A copy of the original forecaster is created so that it is not modified during the process.

Parameters:

Name Type Description Default
forecaster (ForecasterRecursive, ForecasterDirect, ForecasterEquivalentDate)

Forecaster model.

required
y pandas Series

Training time series.

required
cv TimeSeriesFold

TimeSeriesFold object with the information needed to split the data into folds.

required
metric (str, Callable, list)

Metric used to quantify the goodness of fit of the model.

  • If string: {'mean_squared_error', 'mean_absolute_error', 'mean_absolute_percentage_error', 'mean_squared_log_error', 'mean_absolute_scaled_error', 'root_mean_squared_scaled_error'}
  • If Callable: Function with arguments y_true, y_pred and y_train (Optional) that returns a float.
  • If list: List containing multiple strings and/or Callables.
required
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s. Must have the same number of observations as y and should be aligned so that y[i] is regressed on exog[i].

None
interval (float, list, tuple, str, object)

Specifies whether probabilistic predictions should be estimated and the method to use. The following options are supported:

  • If float, represents the nominal (expected) coverage (between 0 and 1). For instance, interval=0.95 corresponds to [2.5, 97.5] percentiles.
  • If list or tuple: Sequence of percentiles to compute, each value must be between 0 and 100 inclusive. For example, a 95% confidence interval can be specified as interval = [2.5, 97.5] or multiple percentiles (e.g. 10, 50 and 90) as interval = [10, 50, 90].
  • If 'bootstrapping' (str): n_boot bootstrapping predictions will be generated.
  • If scipy.stats distribution object, the distribution parameters will be estimated for each prediction.
  • If None, no probabilistic predictions are estimated.
None
interval_method str

Technique used to estimate prediction intervals. Available options:

  • 'bootstrapping': Bootstrapping is used to generate prediction intervals [1]_.
  • 'conformal': Employs the conformal prediction split method for interval estimation [2]_.
'bootstrapping'
n_boot int

Number of bootstrapping iterations to perform when estimating prediction intervals.

250
use_in_sample_residuals bool

If True, residuals from the training data are used as proxy of prediction error to create predictions. If False, out of sample residuals (calibration) are used. Out-of-sample residuals must be precomputed using Forecaster's set_out_sample_residuals() method.

True
use_binned_residuals bool

If True, residuals are selected based on the predicted values (binned selection). If False, residuals are selected randomly.

True
random_state int

Seed for the random number generator to ensure reproducibility.

123
return_predictors bool

If True, the predictors used to make the predictions are also returned.

False
n_jobs (int, 'auto')

The number of jobs to run in parallel. If -1, then the number of jobs is set to the number of cores. If 'auto', n_jobs is set using the function skforecast.utils.select_n_jobs_backtesting.

'auto'
verbose bool

Print number of folds and index of training and validation sets used for backtesting.

False
show_progress bool

Whether to show a progress bar.

True

Returns:

Name Type Description
metric_values pandas DataFrame

Value(s) of the metric(s).

backtest_predictions pandas DataFrame

Value of predictions. The DataFrame includes the following columns:

  • fold: Indicates the fold number where the prediction was made.
  • pred: Predicted values for the corresponding series and time steps.

If interval is not None, additional columns are included depending on the method:

  • For float: Columns lower_bound and upper_bound.
  • For list or tuple of 2 elements: Columns lower_bound and upper_bound.
  • For list or tuple with multiple percentiles: One column per percentile (e.g., p_10, p_50, p_90).
  • For 'bootstrapping': One column per bootstrapping iteration (e.g., pred_boot_0, pred_boot_1, ..., pred_boot_n).
  • For scipy.stats distribution objects: One column for each estimated parameter of the distribution (e.g., loc, scale).

If return_predictors is True, one column per predictor is created.

Depending on the relation between steps and fold_stride, the output may include repeated indexes (if fold_stride < steps) or gaps (if fold_stride > steps). See Notes below for more details.

Notes

Note on fold_stride vs. steps:

  • If fold_stride == steps, test sets are placed back-to-back without overlap. Each observation appears only once in the output DataFrame, so the index is unique.
  • If fold_stride < steps, test sets overlap. Multiple forecasts are generated for the same observations and, therefore, the output DataFrame contains repeated indexes.
  • If fold_stride > steps, there are gaps between consecutive test sets. Some observations in the series will not have associated predictions, so the output DataFrame has non-contiguous indexes.
References

.. [1] Forecasting: Principles and Practice (3rd ed) Rob J Hyndman and George Athanasopoulos. https://otexts.com/fpp3/prediction-intervals.html

.. [2] MAPIE - Model Agnostic Prediction Interval Estimator. https://mapie.readthedocs.io/en/stable/theoretical_description_regression.html#the-split-method

Source code in skforecast\model_selection\_validation.py
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
def backtesting_forecaster(
    forecaster: object,
    y: pd.Series,
    cv: TimeSeriesFold,
    metric: str | Callable | list[str | Callable],
    exog: pd.Series | pd.DataFrame | None = None,
    interval: float | list[float] | tuple[float] | str | object | None = None,
    interval_method: str = 'bootstrapping',
    n_boot: int = 250,
    use_in_sample_residuals: bool = True,
    use_binned_residuals: bool = True,
    random_state: int = 123,
    return_predictors: bool = False,
    n_jobs: int | str = 'auto',
    verbose: bool = False,
    show_progress: bool = True
) -> tuple[pd.DataFrame, pd.DataFrame]:
    """
    Backtesting of forecaster model following the folds generated by the TimeSeriesFold
    class and using the metric(s) provided.

    If `forecaster` is already trained and `initial_train_size` is set to `None` in the
    TimeSeriesFold class, no initial train will be done and all data will be used
    to evaluate the model. However, the first `len(forecaster.last_window)` observations
    are needed to create the initial predictors, so no predictions are calculated for
    them.

    A copy of the original forecaster is created so that it is not modified during 
    the process.

    Parameters
    ----------
    forecaster : ForecasterRecursive, ForecasterDirect, ForecasterEquivalentDate
        Forecaster model.
    y : pandas Series
        Training time series.
    cv : TimeSeriesFold
        TimeSeriesFold object with the information needed to split the data into folds.
    metric : str, Callable, list
        Metric used to quantify the goodness of fit of the model.

        - If `string`: {'mean_squared_error', 'mean_absolute_error',
        'mean_absolute_percentage_error', 'mean_squared_log_error',
        'mean_absolute_scaled_error', 'root_mean_squared_scaled_error'}
        - If `Callable`: Function with arguments `y_true`, `y_pred` and `y_train`
        (Optional) that returns a float.
        - If `list`: List containing multiple strings and/or Callables.
    exog : pandas Series, pandas DataFrame, default None
        Exogenous variable/s included as predictor/s. Must have the same
        number of observations as `y` and should be aligned so that y[i] is
        regressed on exog[i].
    interval : float, list, tuple, str, object, default None
        Specifies whether probabilistic predictions should be estimated and the 
        method to use. The following options are supported:

        - If `float`, represents the nominal (expected) coverage (between 0 and 1). 
        For instance, `interval=0.95` corresponds to `[2.5, 97.5]` percentiles.
        - If `list` or `tuple`: Sequence of percentiles to compute, each value must 
        be between 0 and 100 inclusive. For example, a 95% confidence interval can 
        be specified as `interval = [2.5, 97.5]` or multiple percentiles (e.g. 10, 
        50 and 90) as `interval = [10, 50, 90]`.
        - If 'bootstrapping' (str): `n_boot` bootstrapping predictions will be generated.
        - If scipy.stats distribution object, the distribution parameters will
        be estimated for each prediction.
        - If None, no probabilistic predictions are estimated.
    interval_method : str, default 'bootstrapping'
        Technique used to estimate prediction intervals. Available options:

        - 'bootstrapping': Bootstrapping is used to generate prediction 
        intervals [1]_.
        - 'conformal': Employs the conformal prediction split method for 
        interval estimation [2]_.
    n_boot : int, default 250
        Number of bootstrapping iterations to perform when estimating prediction
        intervals.
    use_in_sample_residuals : bool, default True
        If `True`, residuals from the training data are used as proxy of
        prediction error to create predictions. 
        If `False`, out of sample residuals (calibration) are used. 
        Out-of-sample residuals must be precomputed using Forecaster's
        `set_out_sample_residuals()` method.
    use_binned_residuals : bool, default True
        If `True`, residuals are selected based on the predicted values 
        (binned selection).
        If `False`, residuals are selected randomly.
    random_state : int, default 123
        Seed for the random number generator to ensure reproducibility.
    return_predictors : bool, default False
        If `True`, the predictors used to make the predictions are also returned.
    n_jobs : int, 'auto', default 'auto'
        The number of jobs to run in parallel. If `-1`, then the number of jobs is 
        set to the number of cores. If 'auto', `n_jobs` is set using the function
        skforecast.utils.select_n_jobs_backtesting.
    verbose : bool, default False
        Print number of folds and index of training and validation sets used 
        for backtesting.
    show_progress : bool, default True
        Whether to show a progress bar.

    Returns
    -------
    metric_values : pandas DataFrame
        Value(s) of the metric(s).
    backtest_predictions : pandas DataFrame
        Value of predictions. The  DataFrame includes the following columns:

        - fold: Indicates the fold number where the prediction was made.
        - pred: Predicted values for the corresponding series and time steps.

        If `interval` is not `None`, additional columns are included depending on the method:

        - For `float`: Columns `lower_bound` and `upper_bound`.
        - For `list` or `tuple` of 2 elements: Columns `lower_bound` and `upper_bound`.
        - For `list` or `tuple` with multiple percentiles: One column per percentile 
        (e.g., `p_10`, `p_50`, `p_90`).
        - For `'bootstrapping'`: One column per bootstrapping iteration 
        (e.g., `pred_boot_0`, `pred_boot_1`, ..., `pred_boot_n`).
        - For `scipy.stats` distribution objects: One column for each estimated 
        parameter of the distribution (e.g., `loc`, `scale`).

        If `return_predictors` is `True`, one column per predictor is created.

        Depending on the relation between `steps` and `fold_stride`, the output
        may include repeated indexes (if `fold_stride < steps`) or gaps
        (if `fold_stride > steps`). See Notes below for more details.

    Notes
    -----
    Note on `fold_stride` vs. `steps`:

    - If `fold_stride == steps`, test sets are placed back-to-back without overlap. 
    Each observation appears only once in the output DataFrame, so the index is unique.
    - If `fold_stride < steps`, test sets overlap. Multiple forecasts are generated 
    for the same observations and, therefore, the output DataFrame contains repeated 
    indexes.
    - If `fold_stride > steps`, there are gaps between consecutive test sets. 
    Some observations in the series will not have associated predictions, so 
    the output DataFrame has non-contiguous indexes.

    References
    ----------
    .. [1] Forecasting: Principles and Practice (3rd ed) Rob J Hyndman and George Athanasopoulos.
           https://otexts.com/fpp3/prediction-intervals.html

    .. [2] MAPIE - Model Agnostic Prediction Interval Estimator.
           https://mapie.readthedocs.io/en/stable/theoretical_description_regression.html#the-split-method

    """

    forecaters_allowed = [
        'ForecasterRecursive', 
        'ForecasterDirect',
        'ForecasterEquivalentDate',
        'ForecasterRecursiveClassifier'
    ]

    if type(forecaster).__name__ not in forecaters_allowed:
        raise TypeError(
            f"`forecaster` must be of type {forecaters_allowed}, for all other types of "
            f" forecasters use the functions available in the other `model_selection` "
            f"modules."
        )

    check_backtesting_input(
        forecaster              = forecaster,
        cv                      = cv,
        y                       = y,
        metric                  = metric,
        interval                = interval,
        interval_method         = interval_method,
        n_boot                  = n_boot,
        use_in_sample_residuals = use_in_sample_residuals,
        use_binned_residuals    = use_binned_residuals,
        random_state            = random_state,
        return_predictors       = return_predictors,
        n_jobs                  = n_jobs,
        show_progress           = show_progress
    )

    metric_values, backtest_predictions = _backtesting_forecaster(
        forecaster              = forecaster,
        y                       = y,
        cv                      = cv,
        metric                  = metric,
        exog                    = exog,
        interval                = interval,
        interval_method         = interval_method,
        n_boot                  = n_boot,
        use_in_sample_residuals = use_in_sample_residuals,
        use_binned_residuals    = use_binned_residuals,
        random_state            = random_state,
        return_predictors       = return_predictors,
        n_jobs                  = n_jobs,
        verbose                 = verbose,
        show_progress           = show_progress
    )

    return metric_values, backtest_predictions

skforecast.model_selection._search.grid_search_forecaster

grid_search_forecaster(
    forecaster,
    y,
    cv,
    param_grid,
    metric,
    exog=None,
    lags_grid=None,
    return_best=True,
    n_jobs="auto",
    verbose=False,
    show_progress=True,
    output_file=None,
)

Exhaustive search over specified parameter values for a Forecaster object. Validation is done using time series backtesting.

Parameters:

Name Type Description Default
forecaster (ForecasterRecursive, ForecasterDirect)

Forecaster model.

required
y pandas Series

Training time series.

required
cv (TimeSeriesFold, OneStepAheadFold)

TimeSeriesFold or OneStepAheadFold object with the information needed to split the data into folds. New in version 0.14.0

required
param_grid dict

Dictionary with parameters names (str) as keys and lists of parameter settings to try as values.

required
metric (str, Callable, list)

Metric used to quantify the goodness of fit of the model.

  • If string: {'mean_squared_error', 'mean_absolute_error', 'mean_absolute_percentage_error', 'mean_squared_log_error', 'mean_absolute_scaled_error', 'root_mean_squared_scaled_error'}
  • If Callable: Function with arguments y_true, y_pred and y_train (Optional) that returns a float.
  • If list: List containing multiple strings and/or Callables.
required
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s. Must have the same number of observations as y and should be aligned so that y[i] is regressed on exog[i].

None
lags_grid (list, dict)

Lists of lags to try, containing int, lists, numpy ndarray, or range objects. If dict, the keys are used as labels in the results DataFrame, and the values are used as the lists of lags to try.

None
return_best bool

Refit the forecaster using the best found parameters on the whole data.

True
n_jobs (int, 'auto')

The number of jobs to run in parallel. If -1, then the number of jobs is set to the number of cores. If 'auto', n_jobs is set using the function skforecast.utils.select_n_jobs_backtesting.

'auto'
verbose bool

Print number of folds used for cv or backtesting.

False
show_progress bool

Whether to show a progress bar.

True
output_file str

Specifies the filename or full path where the results should be saved. The results will be saved in a tab-separated values (TSV) format. If None, the results will not be saved to a file.

None

Returns:

Name Type Description
results pandas DataFrame

Results for each combination of parameters.

  • column lags: lags configuration for each iteration.
  • column lags_label: descriptive label or alias for the lags.
  • column params: parameters configuration for each iteration.
  • column metric: metric value estimated for each iteration.
  • additional n columns with param = value.
Source code in skforecast\model_selection\_search.py
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
def grid_search_forecaster(
    forecaster: object,
    y: pd.Series,
    cv: TimeSeriesFold | OneStepAheadFold,
    param_grid: dict,
    metric: str | Callable | list[str | Callable],
    exog: pd.Series | pd.DataFrame | None = None,
    lags_grid: (
        list[int | list[int] | np.ndarray[int] | range[int]]
        | dict[str, list[int | list[int] | np.ndarray[int] | range[int]]]
        | None
    ) = None,
    return_best: bool = True,
    n_jobs: int | str = 'auto',
    verbose: bool = False,
    show_progress: bool = True,
    output_file: str | None = None
) -> pd.DataFrame:
    """
    Exhaustive search over specified parameter values for a Forecaster object.
    Validation is done using time series backtesting.

    Parameters
    ----------
    forecaster : ForecasterRecursive, ForecasterDirect
        Forecaster model.
    y : pandas Series
        Training time series.
    cv : TimeSeriesFold, OneStepAheadFold
        TimeSeriesFold or OneStepAheadFold object with the information needed to split
        the data into folds.
        **New in version 0.14.0**
    param_grid : dict
        Dictionary with parameters names (`str`) as keys and lists of parameter
        settings to try as values.
    metric : str, Callable, list
        Metric used to quantify the goodness of fit of the model.

        - If `string`: {'mean_squared_error', 'mean_absolute_error',
        'mean_absolute_percentage_error', 'mean_squared_log_error',
        'mean_absolute_scaled_error', 'root_mean_squared_scaled_error'}
        - If `Callable`: Function with arguments `y_true`, `y_pred` and `y_train`
        (Optional) that returns a float.
        - If `list`: List containing multiple strings and/or Callables.
    exog : pandas Series, pandas DataFrame, default None
        Exogenous variable/s included as predictor/s. Must have the same
        number of observations as `y` and should be aligned so that y[i] is
        regressed on exog[i].
    lags_grid : list, dict, default None
        Lists of lags to try, containing int, lists, numpy ndarray, or range 
        objects. If `dict`, the keys are used as labels in the `results` 
        DataFrame, and the values are used as the lists of lags to try.
    return_best : bool, default True
        Refit the `forecaster` using the best found parameters on the whole data.
    n_jobs : int, 'auto', default 'auto'
        The number of jobs to run in parallel. If `-1`, then the number of jobs is 
        set to the number of cores. If 'auto', `n_jobs` is set using the function
        skforecast.utils.select_n_jobs_backtesting.
    verbose : bool, default False
        Print number of folds used for cv or backtesting.
    show_progress : bool, default True
        Whether to show a progress bar.
    output_file : str, default None
        Specifies the filename or full path where the results should be saved. 
        The results will be saved in a tab-separated values (TSV) format. If 
        `None`, the results will not be saved to a file.

    Returns
    -------
    results : pandas DataFrame
        Results for each combination of parameters.

        - column lags: lags configuration for each iteration.
        - column lags_label: descriptive label or alias for the lags.
        - column params: parameters configuration for each iteration.
        - column metric: metric value estimated for each iteration.
        - additional n columns with param = value.

    """

    param_grid = list(ParameterGrid(param_grid))

    results = _evaluate_grid_hyperparameters(
                  forecaster    = forecaster,
                  y             = y,
                  cv            = cv,
                  param_grid    = param_grid,
                  metric        = metric,
                  exog          = exog,
                  lags_grid     = lags_grid,
                  return_best   = return_best,
                  n_jobs        = n_jobs,
                  verbose       = verbose,
                  show_progress = show_progress,
                  output_file   = output_file
              )

    return results

skforecast.model_selection._search.random_search_forecaster

random_search_forecaster(
    forecaster,
    y,
    cv,
    param_distributions,
    metric,
    exog=None,
    lags_grid=None,
    n_iter=10,
    random_state=123,
    return_best=True,
    n_jobs="auto",
    verbose=False,
    show_progress=True,
    output_file=None,
)

Random search over specified parameter values or distributions for a Forecaster object. Validation is done using time series backtesting.

Parameters:

Name Type Description Default
forecaster (ForecasterRecursive, ForecasterDirect)

Forecaster model.

required
y pandas Series

Training time series.

required
cv (TimeSeriesFold, OneStepAheadFold)

TimeSeriesFold or OneStepAheadFold object with the information needed to split the data into folds. New in version 0.14.0

required
param_distributions dict

Dictionary with parameters names (str) as keys and distributions or lists of parameters to try.

required
metric (str, Callable, list)

Metric used to quantify the goodness of fit of the model.

  • If string: {'mean_squared_error', 'mean_absolute_error', 'mean_absolute_percentage_error', 'mean_squared_log_error', 'mean_absolute_scaled_error', 'root_mean_squared_scaled_error'}
  • If Callable: Function with arguments y_true, y_pred and y_train (Optional) that returns a float.
  • If list: List containing multiple strings and/or Callables.
required
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s. Must have the same number of observations as y and should be aligned so that y[i] is regressed on exog[i].

None
lags_grid (list, dict)

Lists of lags to try, containing int, lists, numpy ndarray, or range objects. If dict, the keys are used as labels in the results DataFrame, and the values are used as the lists of lags to try.

None
n_iter int

Number of parameter settings that are sampled per lags configuration. n_iter trades off runtime vs quality of the solution.

10
random_state int

Sets a seed to the random sampling for reproducible output.

123
return_best bool

Refit the forecaster using the best found parameters on the whole data.

True
n_jobs (int, 'auto')

The number of jobs to run in parallel. If -1, then the number of jobs is set to the number of cores. If 'auto', n_jobs is set using the function skforecast.utils.select_n_jobs_backtesting.

'auto'
verbose bool

Print number of folds used for cv or backtesting.

False
show_progress bool

Whether to show a progress bar.

True
output_file str

Specifies the filename or full path where the results should be saved. The results will be saved in a tab-separated values (TSV) format. If None, the results will not be saved to a file.

None

Returns:

Name Type Description
results pandas DataFrame

Results for each combination of parameters.

  • column lags: lags configuration for each iteration.
  • column lags_label: descriptive label or alias for the lags.
  • column params: parameters configuration for each iteration.
  • column metric: metric value estimated for each iteration.
  • additional n columns with param = value.
Source code in skforecast\model_selection\_search.py
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
def random_search_forecaster(
    forecaster: object,
    y: pd.Series,
    cv: TimeSeriesFold | OneStepAheadFold,
    param_distributions: dict,
    metric: str | Callable | list[str | Callable],
    exog: pd.Series | pd.DataFrame | None = None,
    lags_grid: (
        list[int | list[int] | np.ndarray[int] | range[int]]
        | dict[str, list[int | list[int] | np.ndarray[int] | range[int]]]
        | None
    ) = None,
    n_iter: int = 10,
    random_state: int = 123,
    return_best: bool = True,
    n_jobs: int | str = 'auto',
    verbose: bool = False,
    show_progress: bool = True,
    output_file: str | None = None
) -> pd.DataFrame:
    """
    Random search over specified parameter values or distributions for a Forecaster 
    object. Validation is done using time series backtesting.

    Parameters
    ----------
    forecaster : ForecasterRecursive, ForecasterDirect
        Forecaster model.
    y : pandas Series
        Training time series.
    cv : TimeSeriesFold, OneStepAheadFold
        TimeSeriesFold or OneStepAheadFold object with the information needed to split
        the data into folds.
        **New in version 0.14.0**
    param_distributions : dict
        Dictionary with parameters names (`str`) as keys and 
        distributions or lists of parameters to try.
    metric : str, Callable, list
        Metric used to quantify the goodness of fit of the model.

        - If `string`: {'mean_squared_error', 'mean_absolute_error',
        'mean_absolute_percentage_error', 'mean_squared_log_error',
        'mean_absolute_scaled_error', 'root_mean_squared_scaled_error'}
        - If `Callable`: Function with arguments `y_true`, `y_pred` and `y_train`
        (Optional) that returns a float.
        - If `list`: List containing multiple strings and/or Callables.
    exog : pandas Series, pandas DataFrame, default None
        Exogenous variable/s included as predictor/s. Must have the same
        number of observations as `y` and should be aligned so that y[i] is
        regressed on exog[i]. 
    lags_grid : list, dict, default None
        Lists of lags to try, containing int, lists, numpy ndarray, or range 
        objects. If `dict`, the keys are used as labels in the `results` 
        DataFrame, and the values are used as the lists of lags to try.
    n_iter : int, default 10
        Number of parameter settings that are sampled per lags configuration. 
        n_iter trades off runtime vs quality of the solution.
    random_state : int, default 123
        Sets a seed to the random sampling for reproducible output.
    return_best : bool, default True
        Refit the `forecaster` using the best found parameters on the whole data.
    n_jobs : int, 'auto', default 'auto'
        The number of jobs to run in parallel. If `-1`, then the number of jobs is 
        set to the number of cores. If 'auto', `n_jobs` is set using the function
        skforecast.utils.select_n_jobs_backtesting.
    verbose : bool, default False
        Print number of folds used for cv or backtesting.
    show_progress : bool, default True
        Whether to show a progress bar.
    output_file : str, default None
        Specifies the filename or full path where the results should be saved. 
        The results will be saved in a tab-separated values (TSV) format. If 
        `None`, the results will not be saved to a file.

    Returns
    -------
    results : pandas DataFrame
        Results for each combination of parameters.

        - column lags: lags configuration for each iteration.
        - column lags_label: descriptive label or alias for the lags.
        - column params: parameters configuration for each iteration.
        - column metric: metric value estimated for each iteration.
        - additional n columns with param = value.

    """

    param_grid = list(ParameterSampler(param_distributions, n_iter=n_iter, random_state=random_state))

    results = _evaluate_grid_hyperparameters(
                  forecaster    = forecaster,
                  y             = y,
                  cv            = cv,
                  param_grid    = param_grid,
                  metric        = metric,
                  exog          = exog,
                  lags_grid     = lags_grid,
                  return_best   = return_best,
                  n_jobs        = n_jobs,
                  verbose       = verbose,
                  show_progress = show_progress,
                  output_file   = output_file
              )

    return results

skforecast.model_selection._search.bayesian_search_forecaster

bayesian_search_forecaster(
    forecaster,
    y,
    cv,
    search_space,
    metric,
    exog=None,
    n_trials=10,
    random_state=123,
    return_best=True,
    n_jobs="auto",
    verbose=False,
    show_progress=True,
    output_file=None,
    kwargs_create_study={},
    kwargs_study_optimize={},
)

Bayesian search for hyperparameters of a Forecaster object.

Parameters:

Name Type Description Default
forecaster (ForecasterRecursive, ForecasterDirect)

Forecaster model.

required
y pandas Series

Training time series.

required
cv (TimeSeriesFold, OneStepAheadFold)

TimeSeriesFold or OneStepAheadFold object with the information needed to split the data into folds. New in version 0.14.0

required
search_space Callable(optuna)

Function with argument trial which returns a dictionary with parameters names (str) as keys and Trial object from optuna (trial.suggest_float, trial.suggest_int, trial.suggest_categorical) as values.

required
metric (str, Callable, list)

Metric used to quantify the goodness of fit of the model.

  • If string: {'mean_squared_error', 'mean_absolute_error', 'mean_absolute_percentage_error', 'mean_squared_log_error', 'mean_absolute_scaled_error', 'root_mean_squared_scaled_error'}
  • If Callable: Function with arguments y_true, y_pred and y_train (Optional) that returns a float.
  • If list: List containing multiple strings and/or Callables.
required
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s. Must have the same number of observations as y and should be aligned so that y[i] is regressed on exog[i].

None
n_trials int

Number of parameter settings that are sampled in each lag configuration.

10
random_state int

Sets a seed to the sampling for reproducible output. When a new sampler is passed in kwargs_create_study, the seed must be set within the sampler. For example {'sampler': TPESampler(seed=145)}.

123
return_best bool

Refit the forecaster using the best found parameters on the whole data.

True
n_jobs (int, 'auto')

The number of jobs to run in parallel. If -1, then the number of jobs is set to the number of cores. If 'auto', n_jobs is set using the function skforecast.utils.select_n_jobs_backtesting.

'auto'
verbose bool

Print number of folds used for cv or backtesting.

False
show_progress bool

Whether to show a progress bar.

True
output_file str

Specifies the filename or full path where the results should be saved. The results will be saved in a tab-separated values (TSV) format. If None, the results will not be saved to a file.

None
kwargs_create_study dict

Additional keyword arguments (key, value mappings) to pass to optuna.create_study(). If default, the direction is set to 'minimize' and a TPESampler(seed=123) sampler is used during optimization.

{}
kwargs_study_optimize dict

Additional keyword arguments (key, value mappings) to pass to study.optimize().

{}

Returns:

Name Type Description
results pandas DataFrame

Results for each combination of parameters.

  • column lags: lags configuration for each iteration.
  • column params: parameters configuration for each iteration.
  • column metric: metric value estimated for each iteration.
  • additional n columns with param = value.
best_trial optuna object

The best optimization result returned as a FrozenTrial optuna object.

Source code in skforecast\model_selection\_search.py
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
def bayesian_search_forecaster(
    forecaster: object,
    y: pd.Series,
    cv: TimeSeriesFold | OneStepAheadFold,
    search_space: Callable,
    metric: str | Callable | list[str | Callable],
    exog: pd.Series | pd.DataFrame | None = None,
    n_trials: int = 10,
    random_state: int = 123,
    return_best: bool = True,
    n_jobs: int | str = 'auto',
    verbose: bool = False,
    show_progress: bool = True,
    output_file: str | None = None,
    kwargs_create_study: dict = {},
    kwargs_study_optimize: dict = {}
) -> tuple[pd.DataFrame, object]:
    """
    Bayesian search for hyperparameters of a Forecaster object.

    Parameters
    ----------
    forecaster : ForecasterRecursive, ForecasterDirect
        Forecaster model.
    y : pandas Series
        Training time series.
    cv : TimeSeriesFold, OneStepAheadFold
        TimeSeriesFold or OneStepAheadFold object with the information needed to split
        the data into folds.
        **New in version 0.14.0**
    search_space : Callable (optuna)
        Function with argument `trial` which returns a dictionary with parameters names 
        (`str`) as keys and Trial object from optuna (trial.suggest_float, 
        trial.suggest_int, trial.suggest_categorical) as values.
    metric : str, Callable, list
        Metric used to quantify the goodness of fit of the model.

        - If `string`: {'mean_squared_error', 'mean_absolute_error',
        'mean_absolute_percentage_error', 'mean_squared_log_error',
        'mean_absolute_scaled_error', 'root_mean_squared_scaled_error'}
        - If `Callable`: Function with arguments `y_true`, `y_pred` and `y_train`
        (Optional) that returns a float.
        - If `list`: List containing multiple strings and/or Callables.
    exog : pandas Series, pandas DataFrame, default None
        Exogenous variable/s included as predictor/s. Must have the same
        number of observations as `y` and should be aligned so that y[i] is
        regressed on exog[i].
    n_trials : int, default 10
        Number of parameter settings that are sampled in each lag configuration.
    random_state : int, default 123
        Sets a seed to the sampling for reproducible output. When a new sampler 
        is passed in `kwargs_create_study`, the seed must be set within the 
        sampler. For example `{'sampler': TPESampler(seed=145)}`.
    return_best : bool, default True
        Refit the `forecaster` using the best found parameters on the whole data.
    n_jobs : int, 'auto', default 'auto'
        The number of jobs to run in parallel. If `-1`, then the number of jobs is 
        set to the number of cores. If 'auto', `n_jobs` is set using the function
        skforecast.utils.select_n_jobs_backtesting.
    verbose : bool, default False
        Print number of folds used for cv or backtesting.
    show_progress : bool, default True
        Whether to show a progress bar.
    output_file : str, default None
        Specifies the filename or full path where the results should be saved. 
        The results will be saved in a tab-separated values (TSV) format. If 
        `None`, the results will not be saved to a file.
    kwargs_create_study : dict, default {}
        Additional keyword arguments (key, value mappings) to pass to optuna.create_study().
        If default, the direction is set to 'minimize' and a TPESampler(seed=123) 
        sampler is used during optimization.
    kwargs_study_optimize : dict, default {}
        Additional keyword arguments (key, value mappings) to pass to study.optimize().

    Returns
    -------
    results : pandas DataFrame
        Results for each combination of parameters.

        - column lags: lags configuration for each iteration.
        - column params: parameters configuration for each iteration.
        - column metric: metric value estimated for each iteration.
        - additional n columns with param = value.
    best_trial : optuna object
        The best optimization result returned as a FrozenTrial optuna object.

    """

    if return_best and exog is not None and (len(exog) != len(y)):
        raise ValueError(
            f"`exog` must have same number of samples as `y`. "
            f"length `exog`: ({len(exog)}), length `y`: ({len(y)})"
        )

    results, best_trial = _bayesian_search_optuna(
                              forecaster            = forecaster,
                              y                     = y,
                              cv                    = cv,
                              exog                  = exog,
                              search_space          = search_space,
                              metric                = metric,
                              n_trials              = n_trials,
                              random_state          = random_state,
                              return_best           = return_best,
                              n_jobs                = n_jobs,
                              verbose               = verbose,
                              show_progress         = show_progress,
                              output_file           = output_file,
                              kwargs_create_study   = kwargs_create_study,
                              kwargs_study_optimize = kwargs_study_optimize
                          )

    return results, best_trial

skforecast.model_selection._validation.backtesting_forecaster_multiseries

backtesting_forecaster_multiseries(
    forecaster,
    series,
    cv,
    metric,
    levels=None,
    add_aggregated_metric=True,
    exog=None,
    interval=None,
    interval_method="conformal",
    n_boot=250,
    use_in_sample_residuals=True,
    use_binned_residuals=True,
    random_state=123,
    return_predictors=False,
    n_jobs="auto",
    verbose=False,
    show_progress=True,
    suppress_warnings=False,
)

Backtesting of forecaster model following the folds generated by the TimeSeriesFold class and using the metric(s) provided.

If forecaster is already trained and initial_train_size is set to None in the TimeSeriesFold class, no initial train will be done and all data will be used to evaluate the model. However, the first len(forecaster.last_window) observations are needed to create the initial predictors, so no predictions are calculated for them.

A copy of the original forecaster is created so that it is not modified during the process.

Parameters:

Name Type Description Default
forecaster (ForecasterRecursiveMultiSeries, ForecasterDirectMultiVariate, ForecasterRnn)

Forecaster model.

required
series pandas DataFrame, dict

Training time series.

required
cv TimeSeriesFold

TimeSeriesFold object with the information needed to split the data into folds.

required
metric (str, Callable, list)

Metric used to quantify the goodness of fit of the model.

  • If string: {'mean_squared_error', 'mean_absolute_error', 'mean_absolute_percentage_error', 'mean_squared_log_error', 'mean_absolute_scaled_error', 'root_mean_squared_scaled_error'}
  • If Callable: Function with arguments y_true, y_pred and y_train (Optional) that returns a float.
  • If list: List containing multiple strings and/or Callables.
required
levels (str, list)

Time series to be predicted. If None all levels will be predicted.

None
add_aggregated_metric bool

If True, and multiple series (levels) are predicted, the aggregated metrics (average, weighted average and pooled) are also returned.

  • 'average': the average (arithmetic mean) of all levels.
  • 'weighted_average': the average of the metrics weighted by the number of predicted values of each level.
  • 'pooling': the values of all levels are pooled and then the metric is calculated.
True
exog pandas Series, pandas DataFrame, dict

Exogenous variables.

None
interval (float, list, tuple, str, object)

Specifies whether probabilistic predictions should be estimated and the method to use. The following options are supported:

  • If float, represents the nominal (expected) coverage (between 0 and 1). For instance, interval=0.95 corresponds to [2.5, 97.5] percentiles.
  • If list or tuple: Sequence of percentiles to compute, each value must be between 0 and 100 inclusive. For example, a 95% confidence interval can be specified as interval = [2.5, 97.5] or multiple percentiles (e.g. 10, 50 and 90) as interval = [10, 50, 90].
  • If 'bootstrapping' (str): n_boot bootstrapping predictions will be generated.
  • If scipy.stats distribution object, the distribution parameters will be estimated for each prediction.
  • If None, no probabilistic predictions are estimated.
None
interval_method str

Technique used to estimate prediction intervals. Available options:

  • 'bootstrapping': Bootstrapping is used to generate prediction intervals [1]_.
  • 'conformal': Employs the conformal prediction split method for interval estimation [2]_.
'conformal'
n_boot int

Number of bootstrapping iterations to perform when estimating prediction intervals.

250
use_in_sample_residuals bool

If True, residuals from the training data are used as proxy of prediction error to create predictions. If False, out of sample residuals (calibration) are used. Out-of-sample residuals must be precomputed using Forecaster's set_out_sample_residuals() method.

True
use_binned_residuals bool

If True, residuals are selected based on the predicted values (binned selection). If False, residuals are selected randomly.

True
random_state int

Seed for the random number generator to ensure reproducibility.

123
return_predictors bool

If True, the predictors used to make the predictions are also returned.

False
n_jobs (int, 'auto')

The number of jobs to run in parallel. If -1, then the number of jobs is set to the number of cores. If 'auto', n_jobs is set using the function skforecast.utils.select_n_jobs_backtesting.

'auto'
verbose bool

Print number of folds and index of training and validation sets used for backtesting.

False
show_progress bool

Whether to show a progress bar.

True
suppress_warnings bool

If True, skforecast warnings will be suppressed during the backtesting process. See skforecast.exceptions.warn_skforecast_categories for more information.

False

Returns:

Name Type Description
metrics_levels pandas DataFrame

Value(s) of the metric(s). Index are the levels and columns the metrics.

backtest_predictions pandas DataFrame

Long-format DataFrame containing the predicted values for each series. The DataFrame includes the following columns:

  • level: Identifier for the time series or level being predicted.
  • fold: Indicates the fold number where the prediction was made.
  • pred: Predicted values for the corresponding series and time steps.

If interval is not None, additional columns are included depending on the method:

  • For float: Columns lower_bound and upper_bound.
  • For list or tuple of 2 elements: Columns lower_bound and upper_bound.
  • For list or tuple with multiple percentiles: One column per percentile (e.g., p_10, p_50, p_90).
  • For 'bootstrapping': One column per bootstrapping iteration (e.g., pred_boot_0, pred_boot_1, ..., pred_boot_n).
  • For scipy.stats distribution objects: One column for each estimated parameter of the distribution (e.g., loc, scale).

If return_predictors is True, one column per predictor is created.

Depending on the relation between steps and fold_stride, the output may include repeated indexes (if fold_stride < steps) or gaps (if fold_stride > steps). See Notes below for more details.

Notes

Note on fold_stride vs. steps:

  • If fold_stride == steps, test sets are placed back-to-back without overlap. Each observation appears only once in the output DataFrame, so the index is unique.
  • If fold_stride < steps, test sets overlap. Multiple forecasts are generated for the same observations and, therefore, the output DataFrame contains repeated indexes.
  • If fold_stride > steps, there are gaps between consecutive test sets. Some observations in the series will not have associated predictions, so the output DataFrame has non-contiguous indexes.
References

.. [1] Forecasting: Principles and Practice (3rd ed) Rob J Hyndman and George Athanasopoulos. https://otexts.com/fpp3/prediction-intervals.html

.. [2] MAPIE - Model Agnostic Prediction Interval Estimator. https://mapie.readthedocs.io/en/stable/theoretical_description_regression.html#the-split-method

Source code in skforecast\model_selection\_validation.py
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
def backtesting_forecaster_multiseries(
    forecaster: object,
    series: pd.DataFrame | dict[str, pd.Series | pd.DataFrame],
    cv: TimeSeriesFold,
    metric: str | Callable | list[str | Callable],
    levels: str | list[str] | None = None,
    add_aggregated_metric: bool = True,
    exog: pd.Series | pd.DataFrame | dict[str, pd.Series | pd.DataFrame] | None = None,
    interval: float | list[float] | tuple[float] | str | object | None = None,
    interval_method: str = 'conformal',
    n_boot: int = 250,
    use_in_sample_residuals: bool = True,
    use_binned_residuals: bool = True,
    random_state: int = 123,
    return_predictors: bool = False,
    n_jobs: int | str = 'auto',
    verbose: bool = False,
    show_progress: bool = True,
    suppress_warnings: bool = False
) -> tuple[pd.DataFrame, pd.DataFrame]:
    """
    Backtesting of forecaster model following the folds generated by the TimeSeriesFold
    class and using the metric(s) provided.

    If `forecaster` is already trained and `initial_train_size` is set to `None` in the
    TimeSeriesFold class, no initial train will be done and all data will be used
    to evaluate the model. However, the first `len(forecaster.last_window)` observations
    are needed to create the initial predictors, so no predictions are calculated for
    them.

    A copy of the original forecaster is created so that it is not modified during 
    the process.

    Parameters
    ----------
    forecaster : ForecasterRecursiveMultiSeries, ForecasterDirectMultiVariate, ForecasterRnn
        Forecaster model.
    series : pandas DataFrame, dict
        Training time series.
    cv : TimeSeriesFold
        TimeSeriesFold object with the information needed to split the data into folds.
    metric : str, Callable, list
        Metric used to quantify the goodness of fit of the model.

        - If `string`: {'mean_squared_error', 'mean_absolute_error',
        'mean_absolute_percentage_error', 'mean_squared_log_error',
        'mean_absolute_scaled_error', 'root_mean_squared_scaled_error'}
        - If `Callable`: Function with arguments `y_true`, `y_pred` and `y_train`
        (Optional) that returns a float.
        - If `list`: List containing multiple strings and/or Callables.
    levels : str, list, default None
        Time series to be predicted. If `None` all levels will be predicted.
    add_aggregated_metric : bool, default True
        If `True`, and multiple series (`levels`) are predicted, the aggregated
        metrics (average, weighted average and pooled) are also returned.

        - 'average': the average (arithmetic mean) of all levels.
        - 'weighted_average': the average of the metrics weighted by the number of
        predicted values of each level.
        - 'pooling': the values of all levels are pooled and then the metric is
        calculated.
    exog : pandas Series, pandas DataFrame, dict, default None
        Exogenous variables.
    interval : float, list, tuple, str, object, default None
        Specifies whether probabilistic predictions should be estimated and the 
        method to use. The following options are supported:

        - If `float`, represents the nominal (expected) coverage (between 0 and 1). 
        For instance, `interval=0.95` corresponds to `[2.5, 97.5]` percentiles.
        - If `list` or `tuple`: Sequence of percentiles to compute, each value must 
        be between 0 and 100 inclusive. For example, a 95% confidence interval can 
        be specified as `interval = [2.5, 97.5]` or multiple percentiles (e.g. 10, 
        50 and 90) as `interval = [10, 50, 90]`.
        - If 'bootstrapping' (str): `n_boot` bootstrapping predictions will be generated.
        - If scipy.stats distribution object, the distribution parameters will
        be estimated for each prediction.
        - If None, no probabilistic predictions are estimated.
    interval_method : str, default 'conformal'
        Technique used to estimate prediction intervals. Available options:

        - 'bootstrapping': Bootstrapping is used to generate prediction 
        intervals [1]_.
        - 'conformal': Employs the conformal prediction split method for 
        interval estimation [2]_.
    n_boot : int, default 250
        Number of bootstrapping iterations to perform when estimating prediction 
        intervals.
    use_in_sample_residuals : bool, default True
        If `True`, residuals from the training data are used as proxy of
        prediction error to create predictions. 
        If `False`, out of sample residuals (calibration) are used. 
        Out-of-sample residuals must be precomputed using Forecaster's
        `set_out_sample_residuals()` method.
    use_binned_residuals : bool, default True
        If `True`, residuals are selected based on the predicted values 
        (binned selection).
        If `False`, residuals are selected randomly.
    random_state : int, default 123
        Seed for the random number generator to ensure reproducibility.
    return_predictors : bool, default False
        If `True`, the predictors used to make the predictions are also returned.
    n_jobs : int, 'auto', default 'auto'
        The number of jobs to run in parallel. If `-1`, then the number of jobs is 
        set to the number of cores. If 'auto', `n_jobs` is set using the function
        skforecast.utils.select_n_jobs_backtesting.
    verbose : bool, default False
        Print number of folds and index of training and validation sets used 
        for backtesting.
    show_progress : bool, default True
        Whether to show a progress bar.
    suppress_warnings: bool, default False
        If `True`, skforecast warnings will be suppressed during the backtesting 
        process. See skforecast.exceptions.warn_skforecast_categories for more
        information.

    Returns
    -------
    metrics_levels : pandas DataFrame
        Value(s) of the metric(s). Index are the levels and columns the metrics.
    backtest_predictions : pandas DataFrame
        Long-format DataFrame containing the predicted values for each series. The 
        DataFrame includes the following columns:

        - `level`: Identifier for the time series or level being predicted.
        - fold: Indicates the fold number where the prediction was made.
        - `pred`: Predicted values for the corresponding series and time steps.

        If `interval` is not `None`, additional columns are included depending on the method:

        - For `float`: Columns `lower_bound` and `upper_bound`.
        - For `list` or `tuple` of 2 elements: Columns `lower_bound` and `upper_bound`.
        - For `list` or `tuple` with multiple percentiles: One column per percentile 
        (e.g., `p_10`, `p_50`, `p_90`).
        - For `'bootstrapping'`: One column per bootstrapping iteration 
        (e.g., `pred_boot_0`, `pred_boot_1`, ..., `pred_boot_n`).
        - For `scipy.stats` distribution objects: One column for each estimated 
        parameter of the distribution (e.g., `loc`, `scale`).

        If `return_predictors` is `True`, one column per predictor is created.

        Depending on the relation between `steps` and `fold_stride`, the output
        may include repeated indexes (if `fold_stride < steps`) or gaps
        (if `fold_stride > steps`). See Notes below for more details.

    Notes
    -----
    Note on `fold_stride` vs. `steps`:

    - If `fold_stride == steps`, test sets are placed back-to-back without overlap. 
    Each observation appears only once in the output DataFrame, so the index is unique.
    - If `fold_stride < steps`, test sets overlap. Multiple forecasts are generated 
    for the same observations and, therefore, the output DataFrame contains repeated 
    indexes.
    - If `fold_stride > steps`, there are gaps between consecutive test sets. 
    Some observations in the series will not have associated predictions, so 
    the output DataFrame has non-contiguous indexes.

    References
    ----------
    .. [1] Forecasting: Principles and Practice (3rd ed) Rob J Hyndman and George Athanasopoulos.
           https://otexts.com/fpp3/prediction-intervals.html

    .. [2] MAPIE - Model Agnostic Prediction Interval Estimator.
           https://mapie.readthedocs.io/en/stable/theoretical_description_regression.html#the-split-method

    """

    multi_series_forecasters = [
        'ForecasterRecursiveMultiSeries', 
        'ForecasterDirectMultiVariate',
        'ForecasterRnn'
    ]

    forecaster_name = type(forecaster).__name__

    if forecaster_name not in multi_series_forecasters:
        raise TypeError(
            f"`forecaster` must be of type {multi_series_forecasters}, "
            f"for all other types of forecasters use the functions available in "
            f"the `model_selection` module. Got {forecaster_name}"
        )

    set_skforecast_warnings(suppress_warnings, action='ignore')

    if forecaster_name == 'ForecasterRecursiveMultiSeries':
        series, series_indexes = check_preprocess_series(series)
        if exog is not None:
            series_names_in_ = list(series.keys())
            exog_dict = {serie: None for serie in series_names_in_}
            exog, _ = check_preprocess_exog_multiseries(
                          series_names_in_  = series_names_in_,
                          series_index_type = type(series_indexes[series_names_in_[0]]),
                          exog              = exog,
                          exog_dict         = exog_dict
                      )

    set_skforecast_warnings(suppress_warnings, action='default')

    check_backtesting_input(
        forecaster              = forecaster,
        cv                      = cv,
        metric                  = metric,
        add_aggregated_metric   = add_aggregated_metric,
        series                  = series,
        exog                    = exog,
        interval                = interval,
        interval_method         = interval_method,
        n_boot                  = n_boot,
        use_in_sample_residuals = use_in_sample_residuals,
        use_binned_residuals    = use_binned_residuals,
        random_state            = random_state,
        return_predictors       = return_predictors,
        n_jobs                  = n_jobs,
        show_progress           = show_progress,
        suppress_warnings       = suppress_warnings
    )

    metrics_levels, backtest_predictions = _backtesting_forecaster_multiseries(
        forecaster              = forecaster,
        series                  = series,
        cv                      = cv,
        levels                  = levels,
        metric                  = metric,
        add_aggregated_metric   = add_aggregated_metric,
        exog                    = exog,
        interval                = interval,
        interval_method         = interval_method,
        n_boot                  = n_boot,
        use_in_sample_residuals = use_in_sample_residuals,
        use_binned_residuals    = use_binned_residuals,
        random_state            = random_state,
        return_predictors       = return_predictors,
        n_jobs                  = n_jobs,
        verbose                 = verbose,
        show_progress           = show_progress,
        suppress_warnings       = suppress_warnings
    )

    return metrics_levels, backtest_predictions

skforecast.model_selection._search.grid_search_forecaster_multiseries

grid_search_forecaster_multiseries(
    forecaster,
    series,
    cv,
    param_grid,
    metric,
    aggregate_metric=[
        "weighted_average",
        "average",
        "pooling",
    ],
    levels=None,
    exog=None,
    lags_grid=None,
    return_best=True,
    n_jobs="auto",
    verbose=False,
    show_progress=True,
    suppress_warnings=False,
    output_file=None,
)

Exhaustive search over specified parameter values for a Forecaster object. Validation is done using multi-series backtesting.

Parameters:

Name Type Description Default
forecaster (ForecasterRecursiveMultiSeries, ForecasterDirectMultiVariate)

Forecaster model.

required
series pandas DataFrame, dict

Training time series.

required
cv (TimeSeriesFold, OneStepAheadFold)

TimeSeriesFold or OneStepAheadFold object with the information needed to split the data into folds. New in version 0.14.0

required
param_grid dict

Dictionary with parameters names (str) as keys and lists of parameter settings to try as values.

required
metric (str, Callable, list)

Metric used to quantify the goodness of fit of the model.

  • If string: {'mean_squared_error', 'mean_absolute_error', 'mean_absolute_percentage_error', 'mean_squared_log_error', 'mean_absolute_scaled_error', 'root_mean_squared_scaled_error'}
  • If Callable: Function with arguments y_true, y_pred and y_train (Optional) that returns a float.
  • If list: List containing multiple strings and/or Callables.
required
aggregate_metric (str, list)

Aggregation method/s used to combine the metric/s of all levels (series) when multiple levels are predicted. If list, the first aggregation method is used to select the best parameters.

  • 'average': the average (arithmetic mean) of all levels.
  • 'weighted_average': the average of the metrics weighted by the number of predicted values of each level.
  • 'pooling': the values of all levels are pooled and then the metric is calculated.
`['weighted_average', 'average', 'pooling']`
levels (str, list)

level (str) or levels (list) at which the forecaster is optimized. If None, all levels are taken into account.

None
exog pandas Series, pandas DataFrame, dict

Exogenous variables.

None
lags_grid (list, dict)

Lists of lags to try, containing int, lists, numpy ndarray, or range objects. If dict, the keys are used as labels in the results DataFrame, and the values are used as the lists of lags to try.

None
return_best bool

Refit the forecaster using the best found parameters on the whole data.

True
n_jobs (int, 'auto')

The number of jobs to run in parallel. If -1, then the number of jobs is set to the number of cores. If 'auto', n_jobs is set using the function skforecast.utils.select_n_jobs_backtesting.

'auto'
verbose bool

Print number of folds used for cv or backtesting.

False
show_progress bool

Whether to show a progress bar.

True
suppress_warnings bool

If True, skforecast warnings will be suppressed during the hyperparameter search. See skforecast.exceptions.warn_skforecast_categories for more information.

False
output_file str

Specifies the filename or full path where the results should be saved. The results will be saved in a tab-separated values (TSV) format. If None, the results will not be saved to a file.

None

Returns:

Name Type Description
results pandas DataFrame

Results for each combination of parameters.

  • column levels: levels configuration for each iteration.
  • column lags: lags configuration for each iteration.
  • column lags_label: descriptive label or alias for the lags.
  • column params: parameters configuration for each iteration.
  • column metric: metric value estimated for each iteration. The resulting metric will be the average of the optimization of all levels.
  • additional n columns with param = value.
Source code in skforecast\model_selection\_search.py
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
def grid_search_forecaster_multiseries(
    forecaster: object,
    series: pd.DataFrame | dict[str, pd.Series | pd.DataFrame],
    cv: TimeSeriesFold | OneStepAheadFold,
    param_grid: dict,
    metric: str | Callable | list[str | Callable],
    aggregate_metric: str | list[str] = ['weighted_average', 'average', 'pooling'],
    levels: str | list[str] | None = None,
    exog: pd.Series | pd.DataFrame | dict[str, pd.Series | pd.DataFrame] | None = None,
    lags_grid: (
        list[int | list[int] | np.ndarray[int] | range[int]]
        | dict[str, list[int | list[int] | np.ndarray[int] | range[int]]]
        | None
    ) = None,
    return_best: bool = True,
    n_jobs: int | str = 'auto',
    verbose: bool = False,
    show_progress: bool = True,
    suppress_warnings: bool = False,
    output_file: str | None = None
) -> pd.DataFrame:
    """
    Exhaustive search over specified parameter values for a Forecaster object.
    Validation is done using multi-series backtesting.

    Parameters
    ----------
    forecaster : ForecasterRecursiveMultiSeries, ForecasterDirectMultiVariate
        Forecaster model.
    series : pandas DataFrame, dict
        Training time series.
    cv : TimeSeriesFold, OneStepAheadFold
        TimeSeriesFold or OneStepAheadFold object with the information needed to split
        the data into folds.
        **New in version 0.14.0**
    param_grid : dict
        Dictionary with parameters names (`str`) as keys and lists of parameter
        settings to try as values.
    metric : str, Callable, list
        Metric used to quantify the goodness of fit of the model.

        - If `string`: {'mean_squared_error', 'mean_absolute_error',
        'mean_absolute_percentage_error', 'mean_squared_log_error',
        'mean_absolute_scaled_error', 'root_mean_squared_scaled_error'}
        - If `Callable`: Function with arguments `y_true`, `y_pred` and `y_train`
        (Optional) that returns a float.
        - If `list`: List containing multiple strings and/or Callables.
    aggregate_metric : str, list, default `['weighted_average', 'average', 'pooling']`
        Aggregation method/s used to combine the metric/s of all levels (series)
        when multiple levels are predicted. If list, the first aggregation method
        is used to select the best parameters.

        - 'average': the average (arithmetic mean) of all levels.
        - 'weighted_average': the average of the metrics weighted by the number of
        predicted values of each level.
        - 'pooling': the values of all levels are pooled and then the metric is
        calculated.
    levels : str, list, default None
        level (`str`) or levels (`list`) at which the forecaster is optimized. 
        If `None`, all levels are taken into account.
    exog : pandas Series, pandas DataFrame, dict, default None
        Exogenous variables.
    lags_grid : list, dict, default None
        Lists of lags to try, containing int, lists, numpy ndarray, or range 
        objects. If `dict`, the keys are used as labels in the `results` 
        DataFrame, and the values are used as the lists of lags to try.
    return_best : bool, default True
        Refit the `forecaster` using the best found parameters on the whole data.
    n_jobs : int, 'auto', default 'auto'
        The number of jobs to run in parallel. If `-1`, then the number of jobs is 
        set to the number of cores. If 'auto', `n_jobs` is set using the function
        skforecast.utils.select_n_jobs_backtesting.
    verbose : bool, default False
        Print number of folds used for cv or backtesting.
    show_progress : bool, default True
        Whether to show a progress bar.
    suppress_warnings: bool, default False
        If `True`, skforecast warnings will be suppressed during the hyperparameter 
        search. See skforecast.exceptions.warn_skforecast_categories for more
        information.
    output_file : str, default None
        Specifies the filename or full path where the results should be saved. 
        The results will be saved in a tab-separated values (TSV) format. If 
        `None`, the results will not be saved to a file.

    Returns
    -------
    results : pandas DataFrame
        Results for each combination of parameters.

        - column levels: levels configuration for each iteration.
        - column lags: lags configuration for each iteration.
        - column lags_label: descriptive label or alias for the lags.
        - column params: parameters configuration for each iteration.
        - column metric: metric value estimated for each iteration. The resulting 
        metric will be the average of the optimization of all levels.
        - additional n columns with param = value.

    """

    param_grid = list(ParameterGrid(param_grid))

    results = _evaluate_grid_hyperparameters_multiseries(
                  forecaster        = forecaster,
                  series            = series,
                  cv                = cv,
                  param_grid        = param_grid,
                  metric            = metric,
                  aggregate_metric  = aggregate_metric,
                  levels            = levels,
                  exog              = exog,
                  lags_grid         = lags_grid,
                  n_jobs            = n_jobs,
                  return_best       = return_best,
                  verbose           = verbose,
                  show_progress     = show_progress,
                  suppress_warnings = suppress_warnings,
                  output_file       = output_file
              )

    return results

skforecast.model_selection._search.random_search_forecaster_multiseries

random_search_forecaster_multiseries(
    forecaster,
    series,
    cv,
    param_distributions,
    metric,
    aggregate_metric=[
        "weighted_average",
        "average",
        "pooling",
    ],
    levels=None,
    exog=None,
    lags_grid=None,
    n_iter=10,
    random_state=123,
    return_best=True,
    n_jobs="auto",
    verbose=False,
    show_progress=True,
    suppress_warnings=False,
    output_file=None,
)

Random search over specified parameter values or distributions for a Forecaster object. Validation is done using multi-series backtesting.

Parameters:

Name Type Description Default
forecaster (ForecasterRecursiveMultiSeries, ForecasterDirectMultiVariate)

Forecaster model.

required
series pandas DataFrame, dict

Training time series.

required
cv (TimeSeriesFold, OneStepAheadFold)

TimeSeriesFold or OneStepAheadFold object with the information needed to split the data into folds.

required
param_distributions dict

Dictionary with parameters names (str) as keys and distributions or lists of parameters to try.

required
metric (str, Callable, list)

Metric used to quantify the goodness of fit of the model.

  • If string: {'mean_squared_error', 'mean_absolute_error', 'mean_absolute_percentage_error', 'mean_squared_log_error', 'mean_absolute_scaled_error', 'root_mean_squared_scaled_error'}
  • If Callable: Function with arguments y_true, y_pred and y_train (Optional) that returns a float.
  • If list: List containing multiple strings and/or Callables.
required
aggregate_metric (str, list)

Aggregation method/s used to combine the metric/s of all levels (series) when multiple levels are predicted. If list, the first aggregation method is used to select the best parameters.

  • 'average': the average (arithmetic mean) of all levels.
  • 'weighted_average': the average of the metrics weighted by the number of predicted values of each level.
  • 'pooling': the values of all levels are pooled and then the metric is calculated.
`['weighted_average', 'average', 'pooling']`
levels (str, list)

level (str) or levels (list) at which the forecaster is optimized. If None, all levels are taken into account.

None
exog pandas Series, pandas DataFrame, dict

Exogenous variables.

None
lags_grid (list, dict)

Lists of lags to try, containing int, lists, numpy ndarray, or range objects. If dict, the keys are used as labels in the results DataFrame, and the values are used as the lists of lags to try.

None
n_iter int

Number of parameter settings that are sampled per lags configuration. n_iter trades off runtime vs quality of the solution.

10
random_state int

Sets a seed to the random sampling for reproducible output.

123
return_best bool

Refit the forecaster using the best found parameters on the whole data.

True
n_jobs (int, 'auto')

The number of jobs to run in parallel. If -1, then the number of jobs is set to the number of cores. If 'auto', n_jobs is set using the function skforecast.utils.select_n_jobs_backtesting.

'auto'
verbose bool

Print number of folds used for cv or backtesting.

False
show_progress bool

Whether to show a progress bar.

True
suppress_warnings bool

If True, skforecast warnings will be suppressed during the hyperparameter search. See skforecast.exceptions.warn_skforecast_categories for more information.

False
output_file str

Specifies the filename or full path where the results should be saved. The results will be saved in a tab-separated values (TSV) format. If None, the results will not be saved to a file.

None

Returns:

Name Type Description
results pandas DataFrame

Results for each combination of parameters.

  • column levels: levels configuration for each iteration.
  • column lags: lags configuration for each iteration.
  • column lags_label: descriptive label or alias for the lags.
  • column params: parameters configuration for each iteration.
  • column metric: metric value estimated for each iteration. The resulting metric will be the average of the optimization of all levels.
  • additional n columns with param = value.
Source code in skforecast\model_selection\_search.py
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
def random_search_forecaster_multiseries(
    forecaster: object,
    series: pd.DataFrame | dict[str, pd.Series | pd.DataFrame],
    cv: TimeSeriesFold | OneStepAheadFold,
    param_distributions: dict,
    metric: str | Callable | list[str | Callable],
    aggregate_metric: str | list[str] = ['weighted_average', 'average', 'pooling'],
    levels: str | list[str] | None = None,
    exog: pd.Series | pd.DataFrame | dict[str, pd.Series | pd.DataFrame] | None = None,
    lags_grid: (
        list[int | list[int] | np.ndarray[int] | range[int]]
        | dict[str, list[int | list[int] | np.ndarray[int] | range[int]]]
        | None
    ) = None,
    n_iter: int = 10,
    random_state: int = 123,
    return_best: bool = True,
    n_jobs: int | str = 'auto',
    verbose: bool = False,
    show_progress: bool = True,
    suppress_warnings: bool = False,
    output_file: str | None = None
) -> pd.DataFrame:
    """
    Random search over specified parameter values or distributions for a Forecaster 
    object. Validation is done using multi-series backtesting.

    Parameters
    ----------
    forecaster : ForecasterRecursiveMultiSeries, ForecasterDirectMultiVariate
        Forecaster model.
    series : pandas DataFrame, dict
        Training time series.
    cv : TimeSeriesFold, OneStepAheadFold
        TimeSeriesFold or OneStepAheadFold object with the information needed to split
        the data into folds.
    param_distributions : dict
        Dictionary with parameters names (`str`) as keys and distributions or 
        lists of parameters to try.
    metric : str, Callable, list
        Metric used to quantify the goodness of fit of the model.

        - If `string`: {'mean_squared_error', 'mean_absolute_error',
        'mean_absolute_percentage_error', 'mean_squared_log_error',
        'mean_absolute_scaled_error', 'root_mean_squared_scaled_error'}
        - If `Callable`: Function with arguments `y_true`, `y_pred` and `y_train`
        (Optional) that returns a float.
        - If `list`: List containing multiple strings and/or Callables.
    aggregate_metric : str, list, default `['weighted_average', 'average', 'pooling']`
        Aggregation method/s used to combine the metric/s of all levels (series)
        when multiple levels are predicted. If list, the first aggregation method
        is used to select the best parameters.

        - 'average': the average (arithmetic mean) of all levels.
        - 'weighted_average': the average of the metrics weighted by the number of
        predicted values of each level.
        - 'pooling': the values of all levels are pooled and then the metric is
        calculated.
    levels : str, list, default None
        level (`str`) or levels (`list`) at which the forecaster is optimized. 
        If `None`, all levels are taken into account.
    exog : pandas Series, pandas DataFrame, dict, default None
        Exogenous variables.
    lags_grid : list, dict, default None
        Lists of lags to try, containing int, lists, numpy ndarray, or range 
        objects. If `dict`, the keys are used as labels in the `results` 
        DataFrame, and the values are used as the lists of lags to try.
    n_iter : int, default 10
        Number of parameter settings that are sampled per lags configuration. 
        n_iter trades off runtime vs quality of the solution.
    random_state : int, default 123
        Sets a seed to the random sampling for reproducible output.
    return_best : bool, default True
        Refit the `forecaster` using the best found parameters on the whole data.
    n_jobs : int, 'auto', default 'auto'
        The number of jobs to run in parallel. If `-1`, then the number of jobs is 
        set to the number of cores. If 'auto', `n_jobs` is set using the function
        skforecast.utils.select_n_jobs_backtesting.
    verbose : bool, default False
        Print number of folds used for cv or backtesting.
    show_progress : bool, default True
        Whether to show a progress bar.
    suppress_warnings: bool, default False
        If `True`, skforecast warnings will be suppressed during the hyperparameter 
        search. See skforecast.exceptions.warn_skforecast_categories for more
        information.
    output_file : str, default None
        Specifies the filename or full path where the results should be saved. 
        The results will be saved in a tab-separated values (TSV) format. If 
        `None`, the results will not be saved to a file.

    Returns
    -------
    results : pandas DataFrame
        Results for each combination of parameters.

        - column levels: levels configuration for each iteration.
        - column lags: lags configuration for each iteration.
        - column lags_label: descriptive label or alias for the lags.
        - column params: parameters configuration for each iteration.
        - column metric: metric value estimated for each iteration. The resulting 
        metric will be the average of the optimization of all levels.
        - additional n columns with param = value.

    """

    param_grid = list(
        ParameterSampler(param_distributions, n_iter=n_iter, random_state=random_state)
    )

    results = _evaluate_grid_hyperparameters_multiseries(
                  forecaster        = forecaster,
                  series            = series,
                  cv                = cv,
                  param_grid        = param_grid,
                  metric            = metric,
                  aggregate_metric  = aggregate_metric,
                  levels            = levels,
                  exog              = exog,
                  lags_grid         = lags_grid,
                  return_best       = return_best,
                  n_jobs            = n_jobs,
                  verbose           = verbose,
                  show_progress     = show_progress,
                  suppress_warnings = suppress_warnings,
                  output_file       = output_file
              )

    return results

skforecast.model_selection._search.bayesian_search_forecaster_multiseries

bayesian_search_forecaster_multiseries(
    forecaster,
    series,
    cv,
    search_space,
    metric,
    aggregate_metric=[
        "weighted_average",
        "average",
        "pooling",
    ],
    levels=None,
    exog=None,
    n_trials=10,
    random_state=123,
    return_best=True,
    n_jobs="auto",
    verbose=False,
    show_progress=True,
    suppress_warnings=False,
    output_file=None,
    kwargs_create_study={},
    kwargs_study_optimize={},
)

Bayesian search for hyperparameters of a Forecaster object using optuna library.

Parameters:

Name Type Description Default
forecaster (ForecasterRecursiveMultiSeries, ForecasterDirectMultiVariate)

Forecaster model.

required
series pandas DataFrame, dict

Training time series.

required
search_space Callable

Function with argument trial which returns a dictionary with parameters names (str) as keys and Trial object from optuna (trial.suggest_float, trial.suggest_int, trial.suggest_categorical) as values.

required
metric (str, Callable, list)

Metric used to quantify the goodness of fit of the model.

  • If string: {'mean_squared_error', 'mean_absolute_error', 'mean_absolute_percentage_error', 'mean_squared_log_error', 'mean_absolute_scaled_error', 'root_mean_squared_scaled_error'}
  • If Callable: Function with arguments y_true, y_pred and y_train (Optional) that returns a float.
  • If list: List containing multiple strings and/or Callables.
required
aggregate_metric (str, list)

Aggregation method/s used to combine the metric/s of all levels (series) when multiple levels are predicted. If list, the first aggregation method is used to select the best parameters.

  • 'average': the average (arithmetic mean) of all levels.
  • 'weighted_average': the average of the metrics weighted by the number of predicted values of each level.
  • 'pooling': the values of all levels are pooled and then the metric is calculated.
`['weighted_average', 'average', 'pooling']`
levels (str, list)

level (str) or levels (list) at which the forecaster is optimized. If None, all levels are taken into account.

None
exog pandas Series, pandas DataFrame, dict

Exogenous variables.

None
n_trials int

Number of parameter settings that are sampled in each lag configuration.

10
random_state int

Sets a seed to the sampling for reproducible output.

123
return_best bool

Refit the forecaster using the best found parameters on the whole data.

True
n_jobs (int, 'auto')

The number of jobs to run in parallel. If -1, then the number of jobs is set to the number of cores. If 'auto', n_jobs is set using the function skforecast.utils.select_n_jobs_backtesting.

'auto'
verbose bool

Print number of folds used for cv or backtesting.

False
show_progress bool

Whether to show a progress bar.

True
suppress_warnings bool

If True, skforecast warnings will be suppressed during the hyperparameter search. See skforecast.exceptions.warn_skforecast_categories for more information.

False
output_file str

Specifies the filename or full path where the results should be saved. The results will be saved in a tab-separated values (TSV) format. If None, the results will not be saved to a file.

None
kwargs_create_study dict

Additional keyword arguments (key, value mappings) to pass to optuna.create_study(). If default, the direction is set to 'minimize' and a TPESampler(seed=123) sampler is used during optimization.

{}
kwargs_study_optimize dict

Additional keyword arguments (key, value mappings) to pass to study.optimize().

{}

Returns:

Name Type Description
results pandas DataFrame

Results for each combination of parameters.

  • column levels: levels configuration for each iteration.
  • column lags: lags configuration for each iteration.
  • column params: parameters configuration for each iteration.
  • column metric: metric value estimated for each iteration. The resulting metric will be the average of the optimization of all levels.
  • additional n columns with param = value.
best_trial optuna object

The best optimization result returned as a FrozenTrial optuna object.

Source code in skforecast\model_selection\_search.py
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
def bayesian_search_forecaster_multiseries(
    forecaster: object,
    series: pd.DataFrame | dict[str, pd.Series | pd.DataFrame],
    cv: TimeSeriesFold | OneStepAheadFold,
    search_space: Callable,
    metric: str | Callable | list[str | Callable],
    aggregate_metric: str | list[str] = ['weighted_average', 'average', 'pooling'],
    levels: str | list[str] | None = None,
    exog: pd.Series | pd.DataFrame | dict[str, pd.Series | pd.DataFrame] | None = None,
    n_trials: int = 10,
    random_state: int = 123,
    return_best: bool = True,
    n_jobs: int | str = 'auto',
    verbose: bool = False,
    show_progress: bool = True,
    suppress_warnings: bool = False,
    output_file: str | None = None,
    kwargs_create_study: dict = {},
    kwargs_study_optimize: dict = {}
) -> tuple[pd.DataFrame, object]:
    """
    Bayesian search for hyperparameters of a Forecaster object using optuna library.

    Parameters
    ----------
    forecaster : ForecasterRecursiveMultiSeries, ForecasterDirectMultiVariate
        Forecaster model.
    series : pandas DataFrame, dict
        Training time series.
    search_space : Callable
        Function with argument `trial` which returns a dictionary with parameters names 
        (`str`) as keys and Trial object from optuna (trial.suggest_float, 
        trial.suggest_int, trial.suggest_categorical) as values.
    metric : str, Callable, list
        Metric used to quantify the goodness of fit of the model.

        - If `string`: {'mean_squared_error', 'mean_absolute_error',
        'mean_absolute_percentage_error', 'mean_squared_log_error',
        'mean_absolute_scaled_error', 'root_mean_squared_scaled_error'}
        - If `Callable`: Function with arguments `y_true`, `y_pred` and `y_train`
        (Optional) that returns a float.
        - If `list`: List containing multiple strings and/or Callables.
    aggregate_metric : str, list, default `['weighted_average', 'average', 'pooling']`
        Aggregation method/s used to combine the metric/s of all levels (series)
        when multiple levels are predicted. If list, the first aggregation method
        is used to select the best parameters.

        - 'average': the average (arithmetic mean) of all levels.
        - 'weighted_average': the average of the metrics weighted by the number of
        predicted values of each level.
        - 'pooling': the values of all levels are pooled and then the metric is
        calculated.
    levels : str, list, default None
        level (`str`) or levels (`list`) at which the forecaster is optimized. 
        If `None`, all levels are taken into account.
    exog : pandas Series, pandas DataFrame, dict, default None
        Exogenous variables.
    n_trials : int, default 10
        Number of parameter settings that are sampled in each lag configuration.
    random_state : int, default 123
        Sets a seed to the sampling for reproducible output.
    return_best : bool, default True
        Refit the `forecaster` using the best found parameters on the whole data.
    n_jobs : int, 'auto', default 'auto'
        The number of jobs to run in parallel. If `-1`, then the number of jobs is 
        set to the number of cores. If 'auto', `n_jobs` is set using the function
        skforecast.utils.select_n_jobs_backtesting.
    verbose : bool, default False
        Print number of folds used for cv or backtesting.
    show_progress : bool, default True
        Whether to show a progress bar.
    suppress_warnings: bool, default False
        If `True`, skforecast warnings will be suppressed during the hyperparameter
        search. See skforecast.exceptions.warn_skforecast_categories for more
        information.
    output_file : str, default None
        Specifies the filename or full path where the results should be saved. 
        The results will be saved in a tab-separated values (TSV) format. If 
        `None`, the results will not be saved to a file.
    kwargs_create_study : dict, default {}
        Additional keyword arguments (key, value mappings) to pass to optuna.create_study().
        If default, the direction is set to 'minimize' and a TPESampler(seed=123) 
        sampler is used during optimization.
    kwargs_study_optimize : dict, default {}
        Additional keyword arguments (key, value mappings) to pass to study.optimize().

    Returns
    -------
    results : pandas DataFrame
        Results for each combination of parameters.

        - column levels: levels configuration for each iteration.
        - column lags: lags configuration for each iteration.
        - column params: parameters configuration for each iteration.
        - column metric: metric value estimated for each iteration. The resulting 
        metric will be the average of the optimization of all levels.
        - additional n columns with param = value.
    best_trial : optuna object
        The best optimization result returned as a FrozenTrial optuna object.

    """

    results, best_trial = _bayesian_search_optuna_multiseries(
                              forecaster            = forecaster,
                              series                = series,
                              cv                    = cv,
                              exog                  = exog,
                              levels                = levels, 
                              search_space          = search_space,
                              metric                = metric,
                              aggregate_metric      = aggregate_metric,
                              n_trials              = n_trials,
                              random_state          = random_state,
                              return_best           = return_best,
                              n_jobs                = n_jobs,
                              verbose               = verbose,
                              show_progress         = show_progress,
                              suppress_warnings     = suppress_warnings,
                              output_file           = output_file,
                              kwargs_create_study   = kwargs_create_study,
                              kwargs_study_optimize = kwargs_study_optimize
                          )

    return results, best_trial

skforecast.model_selection._validation.backtesting_stats

backtesting_stats(
    forecaster,
    y,
    cv,
    metric,
    exog=None,
    alpha=None,
    interval=None,
    n_jobs="auto",
    verbose=False,
    suppress_warnings_fit=False,
    show_progress=True,
)

Backtesting of ForecasterStats.

A copy of the original forecaster is created so that it is not modified during the process.

Parameters:

Name Type Description Default
forecaster ForecasterStats

Forecaster model.

required
y pandas Series

Training time series.

required
cv TimeSeriesFold

TimeSeriesFold object with the information needed to split the data into folds.

required
metric (str, Callable, list)

Metric used to quantify the goodness of fit of the model.

  • If string: {'mean_squared_error', 'mean_absolute_error', 'mean_absolute_percentage_error', 'mean_squared_log_error', 'mean_absolute_scaled_error', 'root_mean_squared_scaled_error'}
  • If Callable: Function with arguments y_true, y_pred and y_train (Optional) that returns a float.
  • If list: List containing multiple strings and/or Callables.
required
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s. Must have the same number of observations as y and should be aligned so that y[i] is regressed on exog[i].

None
alpha float

The confidence intervals for the forecasts are (1 - alpha) %. If both, alpha and interval are provided, alpha will be used.

0.05
interval (list, tuple)

Confidence of the prediction interval estimated. The values must be symmetric. Sequence of percentiles to compute, which must be between 0 and 100 inclusive. For example, interval of 95% should be as interval = [2.5, 97.5]. If both, alpha and interval are provided, alpha will be used.

None
n_jobs (int, 'auto')

The number of jobs to run in parallel. If -1, then the number of jobs is set to the number of cores. If 'auto', n_jobs is set using the function skforecast.utils.select_n_jobs_backtesting.

'auto'
verbose bool

Print number of folds and index of training and validation sets used for backtesting.

False
suppress_warnings_fit bool

If True, warnings generated during fitting will be ignored.

False
show_progress bool

Whether to show a progress bar.

True

Returns:

Name Type Description
metric_values pandas DataFrame

Value(s) of the metric(s).

backtest_predictions pandas DataFrame

Value of predictions. The DataFrame includes the following columns:

  • fold: Indicates the fold number where the prediction was made.
  • pred: Predicted values for the corresponding series and time steps.

If interval is not None, additional columns are included:

  • lower_bound: lower bound of the interval.
  • upper_bound: upper bound of the interval.

Depending on the relation between steps and fold_stride, the output may include repeated indexes (if fold_stride < steps) or gaps (if fold_stride > steps). See Notes below for more details.

Notes

Note on fold_stride vs. steps:

  • If fold_stride == steps, test sets are placed back-to-back without overlap. Each observation appears only once in the output DataFrame, so the index is unique.
  • If fold_stride < steps, test sets overlap. Multiple forecasts are generated for the same observations and, therefore, the output DataFrame contains repeated indexes.
  • If fold_stride > steps, there are gaps between consecutive test sets. Some observations in the series will not have associated predictions, so the output DataFrame has non-contiguous indexes.
Source code in skforecast\model_selection\_validation.py
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
def backtesting_stats(
    forecaster: object,
    y: pd.Series,
    cv: TimeSeriesFold,
    metric: str | Callable | list[str | Callable],
    exog: pd.Series | pd.DataFrame | None = None,
    alpha: float | None = None,
    interval: list[float] | tuple[float] | None = None,
    n_jobs: int | str = 'auto',
    verbose: bool = False,
    suppress_warnings_fit: bool = False,
    show_progress: bool = True
) -> tuple[pd.DataFrame, pd.DataFrame]:
    """
    Backtesting of ForecasterStats.

    A copy of the original forecaster is created so that it is not modified during 
    the process.

    Parameters
    ----------
    forecaster : ForecasterStats
        Forecaster model.
    y : pandas Series
        Training time series.
    cv : TimeSeriesFold
        TimeSeriesFold object with the information needed to split the data into folds.
    metric : str, Callable, list
        Metric used to quantify the goodness of fit of the model.

        - If `string`: {'mean_squared_error', 'mean_absolute_error',
        'mean_absolute_percentage_error', 'mean_squared_log_error',
        'mean_absolute_scaled_error', 'root_mean_squared_scaled_error'}
        - If `Callable`: Function with arguments `y_true`, `y_pred` and `y_train`
        (Optional) that returns a float.
        - If `list`: List containing multiple strings and/or Callables.
    exog : pandas Series, pandas DataFrame, default None
        Exogenous variable/s included as predictor/s. Must have the same
        number of observations as `y` and should be aligned so that y[i] is
        regressed on exog[i].
    alpha : float, default 0.05
        The confidence intervals for the forecasts are (1 - alpha) %.
        If both, `alpha` and `interval` are provided, `alpha` will be used.
    interval : list, tuple, default None
        Confidence of the prediction interval estimated. The values must be
        symmetric. Sequence of percentiles to compute, which must be between 
        0 and 100 inclusive. For example, interval of 95% should be as 
        `interval = [2.5, 97.5]`. If both, `alpha` and `interval` are 
        provided, `alpha` will be used.
    n_jobs : int, 'auto', default 'auto'
        The number of jobs to run in parallel. If `-1`, then the number of jobs is 
        set to the number of cores. If 'auto', `n_jobs` is set using the function
        skforecast.utils.select_n_jobs_backtesting. 
    verbose : bool, default False
        Print number of folds and index of training and validation sets used 
        for backtesting.
    suppress_warnings_fit : bool, default False
        If `True`, warnings generated during fitting will be ignored.
    show_progress : bool, default True
        Whether to show a progress bar.

    Returns
    -------
    metric_values : pandas DataFrame
        Value(s) of the metric(s).
    backtest_predictions : pandas DataFrame
        Value of predictions. The  DataFrame includes the following columns:

        - fold: Indicates the fold number where the prediction was made.
        - pred: Predicted values for the corresponding series and time steps.

        If `interval` is not `None`, additional columns are included:

        - lower_bound: lower bound of the interval.
        - upper_bound: upper bound of the interval.

        Depending on the relation between `steps` and `fold_stride`, the output
        may include repeated indexes (if `fold_stride < steps`) or gaps
        (if `fold_stride > steps`). See Notes below for more details.

    Notes
    -----
    Note on `fold_stride` vs. `steps`:

    - If `fold_stride == steps`, test sets are placed back-to-back without overlap. 
    Each observation appears only once in the output DataFrame, so the index is unique.
    - If `fold_stride < steps`, test sets overlap. Multiple forecasts are generated 
    for the same observations and, therefore, the output DataFrame contains repeated 
    indexes.
    - If `fold_stride > steps`, there are gaps between consecutive test sets. 
    Some observations in the series will not have associated predictions, so 
    the output DataFrame has non-contiguous indexes.

    """

    if type(forecaster).__name__ not in ['ForecasterStats']:
        raise TypeError(
            "`forecaster` must be of type `ForecasterStats`, for all other "
            "types of forecasters use the functions available in the other "
            "`model_selection` modules."
        )

    check_backtesting_input(
        forecaster            = forecaster,
        cv                    = cv,
        y                     = y,
        metric                = metric,
        interval              = interval,
        alpha                 = alpha,
        n_jobs                = n_jobs,
        show_progress         = show_progress,
        suppress_warnings_fit = suppress_warnings_fit
    )

    metric_values, backtest_predictions = _backtesting_stats(
        forecaster            = forecaster,
        y                     = y,
        cv                    = cv,
        metric                = metric,
        exog                  = exog,
        alpha                 = alpha,
        interval              = interval,
        n_jobs                = n_jobs,
        verbose               = verbose,
        suppress_warnings_fit = suppress_warnings_fit,
        show_progress         = show_progress
    )

    return metric_values, backtest_predictions

skforecast.model_selection._search.grid_search_stats

grid_search_stats(
    forecaster,
    y,
    cv,
    param_grid,
    metric,
    exog=None,
    return_best=True,
    n_jobs="auto",
    verbose=False,
    suppress_warnings_fit=False,
    show_progress=True,
    output_file=None,
)

Exhaustive search over specified parameter values for a ForecasterStats object. Validation is done using time series backtesting.

Parameters:

Name Type Description Default
forecaster ForecasterStats

Forecaster model.

required
y pandas Series

Training time series.

required
cv TimeSeriesFold

TimeSeriesFold object with the information needed to split the data into folds. New in version 0.14.0

required
param_grid dict

Dictionary with parameters names (str) as keys and lists of parameter settings to try as values.

required
metric (str, Callable, list)

Metric used to quantify the goodness of fit of the model.

  • If string: {'mean_squared_error', 'mean_absolute_error', 'mean_absolute_percentage_error', 'mean_squared_log_error', 'mean_absolute_scaled_error', 'root_mean_squared_scaled_error'}
  • If Callable: Function with arguments y_true, y_pred and y_train (Optional) that returns a float.
  • If list: List containing multiple strings and/or Callables.
required
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s. Must have the same number of observations as y and should be aligned so that y[i] is regressed on exog[i].

None
return_best bool

Refit the forecaster using the best found parameters on the whole data.

True
n_jobs (int, 'auto')

The number of jobs to run in parallel. If -1, then the number of jobs is set to the number of cores. If 'auto', n_jobs is set using the function skforecast.utils.select_n_jobs_backtesting.

'auto'
verbose bool

Print number of folds used for cv or backtesting.

False
suppress_warnings_fit bool

If True, warnings generated during fitting will be ignored.

False
show_progress bool

Whether to show a progress bar.

True
output_file str

Specifies the filename or full path where the results should be saved. The results will be saved in a tab-separated values (TSV) format. If None, the results will not be saved to a file.

None

Returns:

Name Type Description
results pandas DataFrame

Results for each combination of parameters.

  • column params: parameters configuration for each iteration.
  • column metric: metric value estimated for each iteration.
  • additional n columns with param = value.
Source code in skforecast\model_selection\_search.py
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
def grid_search_stats(
    forecaster: object,
    y: pd.Series,
    cv: TimeSeriesFold,
    param_grid: dict,
    metric: str | Callable | list[str | Callable],
    exog: pd.Series | pd.DataFrame | None = None,
    return_best: bool = True,
    n_jobs: int | str = 'auto',
    verbose: bool = False,
    suppress_warnings_fit: bool = False,
    show_progress: bool = True,
    output_file: str | None = None
) -> pd.DataFrame:
    """
    Exhaustive search over specified parameter values for a ForecasterStats object.
    Validation is done using time series backtesting.

    Parameters
    ----------
    forecaster : ForecasterStats
        Forecaster model.
    y : pandas Series
        Training time series. 
    cv : TimeSeriesFold
        TimeSeriesFold object with the information needed to split the data into folds.
        **New in version 0.14.0**
    param_grid : dict
        Dictionary with parameters names (`str`) as keys and lists of parameter
        settings to try as values.
    metric : str, Callable, list
        Metric used to quantify the goodness of fit of the model.

        - If `string`: {'mean_squared_error', 'mean_absolute_error',
        'mean_absolute_percentage_error', 'mean_squared_log_error',
        'mean_absolute_scaled_error', 'root_mean_squared_scaled_error'}
        - If `Callable`: Function with arguments `y_true`, `y_pred` and `y_train`
        (Optional) that returns a float.
        - If `list`: List containing multiple strings and/or Callables.
    exog : pandas Series, pandas DataFrame, default None
        Exogenous variable/s included as predictor/s. Must have the same
        number of observations as `y` and should be aligned so that y[i] is
        regressed on exog[i].
    return_best : bool, default True
        Refit the `forecaster` using the best found parameters on the whole data.
    n_jobs : int, 'auto', default 'auto'
        The number of jobs to run in parallel. If `-1`, then the number of jobs is 
        set to the number of cores. If 'auto', `n_jobs` is set using the function
        skforecast.utils.select_n_jobs_backtesting.
    verbose : bool, default False
        Print number of folds used for cv or backtesting.
    suppress_warnings_fit : bool, default False
        If `True`, warnings generated during fitting will be ignored.
    show_progress : bool, default True
        Whether to show a progress bar.
    output_file : str, default None
        Specifies the filename or full path where the results should be saved. 
        The results will be saved in a tab-separated values (TSV) format. If 
        `None`, the results will not be saved to a file.

    Returns
    -------
    results : pandas DataFrame
        Results for each combination of parameters.

        - column params: parameters configuration for each iteration.
        - column metric: metric value estimated for each iteration.
        - additional n columns with param = value.

    """

    param_grid = list(ParameterGrid(param_grid))

    results = _evaluate_grid_hyperparameters_stats(
        forecaster            = forecaster,
        y                     = y,
        cv                    = cv,
        param_grid            = param_grid,
        metric                = metric,
        exog                  = exog,
        return_best           = return_best,
        n_jobs                = n_jobs,
        verbose               = verbose,
        suppress_warnings_fit = suppress_warnings_fit,
        show_progress         = show_progress,
        output_file           = output_file
    )

    return results

skforecast.model_selection._search.random_search_stats

random_search_stats(
    forecaster,
    y,
    cv,
    param_distributions,
    metric,
    exog=None,
    n_iter=10,
    random_state=123,
    return_best=True,
    n_jobs="auto",
    verbose=False,
    suppress_warnings_fit=False,
    show_progress=True,
    output_file=None,
)

Random search over specified parameter values or distributions for a ForecasterStats object. Validation is done using time series backtesting.

Parameters:

Name Type Description Default
forecaster ForecasterStats

Forecaster model.

required
y pandas Series

Training time series.

required
cv TimeSeriesFold

TimeSeriesFold object with the information needed to split the data into folds. New in version 0.14.0

required
param_distributions dict

Dictionary with parameters names (str) as keys and distributions or lists of parameters to try.

required
metric (str, Callable, list)

Metric used to quantify the goodness of fit of the model.

  • If string: {'mean_squared_error', 'mean_absolute_error', 'mean_absolute_percentage_error', 'mean_squared_log_error', 'mean_absolute_scaled_error', 'root_mean_squared_scaled_error'}
  • If Callable: Function with arguments y_true, y_pred and y_train (Optional) that returns a float.
  • If list: List containing multiple strings and/or Callables.
required
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s. Must have the same number of observations as y and should be aligned so that y[i] is regressed on exog[i].

None
n_iter int

Number of parameter settings that are sampled. n_iter trades off runtime vs quality of the solution.

10
random_state int

Sets a seed to the random sampling for reproducible output.

123
return_best bool

Refit the forecaster using the best found parameters on the whole data.

True
n_jobs (int, 'auto')

The number of jobs to run in parallel. If -1, then the number of jobs is set to the number of cores. If 'auto', n_jobs is set using the function skforecast.utils.select_n_jobs_backtesting.

'auto'
verbose bool

Print number of folds used for cv or backtesting.

False
suppress_warnings_fit bool

If True, warnings generated during fitting will be ignored.

False
show_progress bool

Whether to show a progress bar.

True
output_file str

Specifies the filename or full path where the results should be saved. The results will be saved in a tab-separated values (TSV) format. If None, the results will not be saved to a file.

None

Returns:

Name Type Description
results pandas DataFrame

Results for each combination of parameters.

  • column params: parameters configuration for each iteration.
  • column metric: metric value estimated for each iteration.
  • additional n columns with param = value.
Source code in skforecast\model_selection\_search.py
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
def random_search_stats(
    forecaster: object,
    y: pd.Series,
    cv: TimeSeriesFold,
    param_distributions: dict,
    metric: str | Callable | list[str | Callable],
    exog: pd.Series | pd.DataFrame | None = None,
    n_iter: int = 10,
    random_state: int = 123,
    return_best: bool = True,
    n_jobs: int | str = 'auto',
    verbose: bool = False,
    suppress_warnings_fit: bool = False,
    show_progress: bool = True,
    output_file: str | None = None
) -> pd.DataFrame:
    """
    Random search over specified parameter values or distributions for a ForecasterStats 
    object. Validation is done using time series backtesting.

    Parameters
    ----------
    forecaster : ForecasterStats
        Forecaster model.
    y : pandas Series
        Training time series. 
    cv : TimeSeriesFold
        TimeSeriesFold object with the information needed to split the data into folds.
        **New in version 0.14.0**
    param_distributions : dict
        Dictionary with parameters names (`str`) as keys and 
        distributions or lists of parameters to try.
    metric : str, Callable, list
        Metric used to quantify the goodness of fit of the model.

        - If `string`: {'mean_squared_error', 'mean_absolute_error',
        'mean_absolute_percentage_error', 'mean_squared_log_error',
        'mean_absolute_scaled_error', 'root_mean_squared_scaled_error'}
        - If `Callable`: Function with arguments `y_true`, `y_pred` and `y_train`
        (Optional) that returns a float.
        - If `list`: List containing multiple strings and/or Callables.
    exog : pandas Series, pandas DataFrame, default None
        Exogenous variable/s included as predictor/s. Must have the same
        number of observations as `y` and should be aligned so that y[i] is
        regressed on exog[i].
    n_iter : int, default 10
        Number of parameter settings that are sampled. 
        n_iter trades off runtime vs quality of the solution.
    random_state : int, default 123
        Sets a seed to the random sampling for reproducible output.
    return_best : bool, default True
        Refit the `forecaster` using the best found parameters on the whole data.
    n_jobs : int, 'auto', default 'auto'
        The number of jobs to run in parallel. If `-1`, then the number of jobs is 
        set to the number of cores. If 'auto', `n_jobs` is set using the function
        skforecast.utils.select_n_jobs_backtesting.
    verbose : bool, default False
        Print number of folds used for cv or backtesting.
    suppress_warnings_fit : bool, default False
        If `True`, warnings generated during fitting will be ignored.
    show_progress : bool, default True
        Whether to show a progress bar.
    output_file : str, default None
        Specifies the filename or full path where the results should be saved. 
        The results will be saved in a tab-separated values (TSV) format. If 
        `None`, the results will not be saved to a file.

    Returns
    -------
    results : pandas DataFrame
        Results for each combination of parameters.

        - column params: parameters configuration for each iteration.
        - column metric: metric value estimated for each iteration.
        - additional n columns with param = value.

    """

    param_grid = list(ParameterSampler(param_distributions, n_iter=n_iter, random_state=random_state))

    results = _evaluate_grid_hyperparameters_stats(
        forecaster            = forecaster,
        y                     = y,
        cv                    = cv,
        param_grid            = param_grid,
        metric                = metric,
        exog                  = exog,
        return_best           = return_best,
        n_jobs                = n_jobs,
        verbose               = verbose,
        suppress_warnings_fit = suppress_warnings_fit,
        show_progress         = show_progress,
        output_file           = output_file
    )

    return results

skforecast.model_selection._validation.backtesting_sarimax

backtesting_sarimax(
    forecaster,
    y,
    cv,
    metric,
    exog=None,
    alpha=None,
    interval=None,
    n_jobs="auto",
    verbose=False,
    suppress_warnings_fit=False,
    show_progress=True,
)

Deprecated

This function is deprecated since skforecast 0.19. Please use backtesting_stats instead.

Source code in skforecast\model_selection\_validation.py
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
@runtime_deprecated(replacement="backtesting_stats", version="0.19.0", removal="0.20.0")
@deprecated("`backtesting_sarimax` is deprecated since version 0.19.0; use `backtesting_stats` instead. It will be removed in version 0.20.0.")
def backtesting_sarimax(
    forecaster: object,
    y: pd.Series,
    cv: TimeSeriesFold,
    metric: str | Callable | list[str | Callable],
    exog: pd.Series | pd.DataFrame | None = None,
    alpha: float | None = None,
    interval: list[float] | tuple[float] | None = None,
    n_jobs: int | str = 'auto',
    verbose: bool = False,
    suppress_warnings_fit: bool = False,
    show_progress: bool = True
) -> tuple[pd.DataFrame, pd.DataFrame]:
    """
    !!! warning "Deprecated"
        This function is deprecated since skforecast 0.19. Please use `backtesting_stats` instead.

    """

    return backtesting_stats(
        forecaster             = forecaster,
        y                      = y,
        cv                     = cv,
        metric                 = metric,
        exog                   = exog,
        alpha                  = alpha,
        interval               = interval,
        n_jobs                 = n_jobs,
        verbose                = verbose,
        suppress_warnings_fit  = suppress_warnings_fit,
        show_progress          = show_progress
    )

skforecast.model_selection._search.grid_search_sarimax

grid_search_sarimax(
    forecaster,
    y,
    cv,
    param_grid,
    metric,
    exog=None,
    return_best=True,
    n_jobs="auto",
    verbose=False,
    suppress_warnings_fit=False,
    show_progress=True,
    output_file=None,
)

Deprecated

This function is deprecated since skforecast 0.19. Please use grid_search_stats instead.

Source code in skforecast\model_selection\_search.py
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
@runtime_deprecated(replacement="grid_search_stats", version="0.19.0", removal="0.20.0")
@deprecated("`grid_search_sarimax` is deprecated since version 0.19.0; use `grid_search_stats` instead. It will be removed in version 0.20.0.")
def grid_search_sarimax(
    forecaster: object,
    y: pd.Series,
    cv: TimeSeriesFold,
    param_grid: dict,
    metric: str | Callable | list[str | Callable],
    exog: pd.Series | pd.DataFrame | None = None,
    return_best: bool = True,
    n_jobs: int | str = 'auto',
    verbose: bool = False,
    suppress_warnings_fit: bool = False,
    show_progress: bool = True,
    output_file: str | None = None
) -> pd.DataFrame:
    """
    !!! warning "Deprecated"
        This function is deprecated since skforecast 0.19. Please use `grid_search_stats` instead.

    """

    return grid_search_stats(
        forecaster            = forecaster,
        y                     = y,
        cv                    = cv,
        param_grid            = param_grid,
        metric                = metric,
        exog                  = exog,
        return_best           = return_best,
        n_jobs                = n_jobs,
        verbose               = verbose,
        suppress_warnings_fit = suppress_warnings_fit,
        show_progress         = show_progress,
        output_file           = output_file
    )

skforecast.model_selection._search.random_search_sarimax

random_search_sarimax(
    forecaster,
    y,
    cv,
    param_distributions,
    metric,
    exog=None,
    n_iter=10,
    random_state=123,
    return_best=True,
    n_jobs="auto",
    verbose=False,
    suppress_warnings_fit=False,
    show_progress=True,
    output_file=None,
)

Deprecated

This function is deprecated since skforecast 0.19. Please use random_search_stats instead.

Source code in skforecast\model_selection\_search.py
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
@runtime_deprecated(replacement="random_search_stats", version="0.19.0", removal="0.20.0")
@deprecated("`random_search_sarimax` is deprecated since version 0.19.0; use `random_search_stats` instead. It will be removed in version 0.20.0.")
def random_search_sarimax(
    forecaster: object,
    y: pd.Series,
    cv: TimeSeriesFold,
    param_distributions: dict,
    metric: str | Callable | list[str | Callable],
    exog: pd.Series | pd.DataFrame | None = None,
    n_iter: int = 10,
    random_state: int = 123,
    return_best: bool = True,
    n_jobs: int | str = 'auto',
    verbose: bool = False,
    suppress_warnings_fit: bool = False,
    show_progress: bool = True,
    output_file: str | None = None
) -> pd.DataFrame:
    """
    !!! warning "Deprecated"
        This function is deprecated since skforecast 0.19. Please use `random_search_stats` instead.
    """

    return random_search_stats(
        forecaster            = forecaster,
        y                     = y,
        cv                    = cv,
        param_distributions   = param_distributions,
        metric                = metric,
        exog                  = exog,
        n_iter                = n_iter,
        random_state          = random_state,
        return_best           = return_best,
        n_jobs                = n_jobs,
        verbose               = verbose,
        suppress_warnings_fit = suppress_warnings_fit,
        show_progress         = show_progress,
        output_file           = output_file
    )

skforecast.model_selection._split.BaseFold

BaseFold(
    steps=None,
    initial_train_size=None,
    fold_stride=None,
    window_size=None,
    differentiation=None,
    refit=False,
    fixed_train_size=True,
    gap=0,
    skip_folds=None,
    allow_incomplete_fold=True,
    return_all_indexes=False,
    verbose=True,
)

Base class for all Fold classes in skforecast. All fold classes should specify all the parameters that can be set at the class level in their __init__.

Parameters:

Name Type Description Default
steps int

Number of observations used to be predicted in each fold. This is also commonly referred to as the forecast horizon or test size.

None
initial_train_size int, str, pandas Timestamp

Number of observations used for initial training.

  • If an integer, the number of observations used for initial training.
  • If a date string or pandas Timestamp, it is the last date included in the initial training set.
None
fold_stride int

Number of observations that the start of the test set advances between consecutive folds.

  • If None, it defaults to the same value as steps, meaning that folds are placed back-to-back without overlap.
  • If fold_stride < steps, test sets overlap and multiple forecasts will be generated for the same observations.
  • If fold_stride > steps, gaps are left between consecutive test sets.
None
window_size int

Number of observations needed to generate the autoregressive predictors.

None
differentiation int

Number of observations to use for differentiation. This is used to extend the last_window as many observations as the differentiation order.

None
refit (bool, int)

Whether to refit the forecaster in each fold.

  • If True, the forecaster is refitted in each fold.
  • If False, the forecaster is trained only in the first fold.
  • If an integer, the forecaster is trained in the first fold and then refitted every refit folds.
False
fixed_train_size bool

Whether the training size is fixed or increases in each fold.

True
gap int

Number of observations between the end of the training set and the start of the test set.

0
skip_folds (int, list)

Number of folds to skip.

  • If an integer, every 'skip_folds'-th is returned.
  • If a list, the indexes of the folds to skip.

For example, if skip_folds=3 and there are 10 folds, the returned folds are 0, 3, 6, and 9. If skip_folds=[1, 2, 3], the returned folds are 0, 4, 5, 6, 7, 8, and 9.

None
allow_incomplete_fold bool

Whether to allow the last fold to include fewer observations than steps. If False, the last fold is excluded if it is incomplete.

True
return_all_indexes bool

Whether to return all indexes or only the start and end indexes of each fold.

False
verbose bool

Whether to print information about generated folds.

True

Attributes:

Name Type Description
initial_train_size int

Number of observations used for initial training.

window_size int

Number of observations needed to generate the autoregressive predictors.

differentiation int

Number of observations to use for differentiation. This is used to extend the last_window as many observations as the differentiation order.

return_all_indexes bool

Whether to return all indexes or only the start and end indexes of each fold.

verbose bool

Whether to print information about generated folds.

Methods:

Name Description
set_params

Set the parameters of the Fold object. Before overwriting the current

Source code in skforecast\model_selection\_split.py
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
def __init__(
    self,
    steps: int | None = None,
    initial_train_size: int | str | pd.Timestamp | None = None,
    fold_stride: int | None = None,
    window_size: int | None = None,
    differentiation: int | None = None,
    refit: bool | int = False,
    fixed_train_size: bool = True,
    gap: int = 0,
    skip_folds: int | list[int] | None = None,
    allow_incomplete_fold: bool = True,
    return_all_indexes: bool = False,
    verbose: bool = True
) -> None:

    self._validate_params(
        cv_name               = type(self).__name__,
        steps                 = steps,
        initial_train_size    = initial_train_size,
        fold_stride           = fold_stride,
        window_size           = window_size,
        differentiation       = differentiation,
        refit                 = refit,
        fixed_train_size      = fixed_train_size,
        gap                   = gap,
        skip_folds            = skip_folds,
        allow_incomplete_fold = allow_incomplete_fold,
        return_all_indexes    = return_all_indexes,
        verbose               = verbose
    )

    self.initial_train_size = initial_train_size
    self.window_size        = window_size
    self.differentiation    = differentiation
    self.return_all_indexes = return_all_indexes
    self.verbose            = verbose

initial_train_size instance-attribute

initial_train_size = initial_train_size

window_size instance-attribute

window_size = window_size

differentiation instance-attribute

differentiation = differentiation

return_all_indexes instance-attribute

return_all_indexes = return_all_indexes

verbose instance-attribute

verbose = verbose

_validate_params

_validate_params(
    cv_name,
    steps=None,
    initial_train_size=None,
    fold_stride=None,
    window_size=None,
    differentiation=None,
    refit=False,
    fixed_train_size=True,
    gap=0,
    skip_folds=None,
    allow_incomplete_fold=True,
    return_all_indexes=False,
    verbose=True,
    **kwargs
)

Validate all input parameters to ensure correctness.

Source code in skforecast\model_selection\_split.py
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
def _validate_params(
    self,
    cv_name: str,
    steps: int | None = None,
    initial_train_size: int | str | pd.Timestamp | None = None,
    fold_stride: int | None = None,
    window_size: int | None = None,
    differentiation: int | None = None,
    refit: bool | int = False,
    fixed_train_size: bool = True,
    gap: int = 0,
    skip_folds: int | list[int] | None = None,
    allow_incomplete_fold: bool = True,
    return_all_indexes: bool = False,
    verbose: bool = True,
    **kwargs
) -> None: 
    """
    Validate all input parameters to ensure correctness.
    """

    if cv_name == "TimeSeriesFold":
        if not isinstance(steps, (int, np.integer)) or steps < 1:
            raise ValueError(
                f"`steps` must be an integer greater than 0. Got {steps}."
            )
        if not isinstance(initial_train_size, (int, np.integer, str, pd.Timestamp, type(None))):
            raise ValueError(
                f"`initial_train_size` must be an integer greater than 0, a date "
                f"string, a pandas Timestamp, or None. Got {initial_train_size}."
            )
        if isinstance(initial_train_size, (int, np.integer)) and initial_train_size < 1:
            raise ValueError(
                f"`initial_train_size` must be an integer greater than 0, "
                f"a date string, a pandas Timestamp, or None. Got {initial_train_size}."
            )
        if fold_stride is not None:
            if not isinstance(fold_stride, (int, np.integer)) or fold_stride < 1:
                raise ValueError(
                    f"`fold_stride` must be an integer greater than 0. Got {fold_stride}."
                )
        if not isinstance(refit, (bool, int, np.integer)):
            raise TypeError(
                f"`refit` must be a boolean or an integer equal or greater than 0. "
                f"Got {refit}."
            )
        if isinstance(refit, (int, np.integer)) and not isinstance(refit, bool) and refit < 0:
            raise TypeError(
                f"`refit` must be a boolean or an integer equal or greater than 0. "
                f"Got {refit}."
            )
        if not isinstance(fixed_train_size, bool):
            raise TypeError(
                f"`fixed_train_size` must be a boolean: `True`, `False`. "
                f"Got {fixed_train_size}."
            )
        if not isinstance(gap, (int, np.integer)) or gap < 0:
            raise ValueError(
                f"`gap` must be an integer greater than or equal to 0. Got {gap}."
            )
        if skip_folds is not None:
            if not isinstance(skip_folds, (int, np.integer, list, type(None))):
                raise TypeError(
                    f"`skip_folds` must be an integer greater than 0, a list of "
                    f"integers or `None`. Got {skip_folds}."
                )
            if isinstance(skip_folds, (int, np.integer)) and skip_folds < 1:
                raise ValueError(
                    f"`skip_folds` must be an integer greater than 0, a list of "
                    f"integers or `None`. Got {skip_folds}."
                )
            if isinstance(skip_folds, list) and any([x < 1 for x in skip_folds]):
                raise ValueError(
                    f"`skip_folds` list must contain integers greater than or "
                    f"equal to 1. The first fold is always needed to train the "
                    f"forecaster. Got {skip_folds}."
                ) 
        if not isinstance(allow_incomplete_fold, bool):
            raise TypeError(
                f"`allow_incomplete_fold` must be a boolean: `True`, `False`. "
                f"Got {allow_incomplete_fold}."
            )

    if cv_name == "OneStepAheadFold":
        if not isinstance(initial_train_size, (int, np.integer, str, pd.Timestamp)):
            raise ValueError(
                f"`initial_train_size` must be an integer greater than 0, a date "
                f"string, or a pandas Timestamp. Got {initial_train_size}."
            )
        if isinstance(initial_train_size, (int, np.integer)) and initial_train_size < 1:
            raise ValueError(
                f"`initial_train_size` must be an integer greater than 0, "
                f"a date string, or a pandas Timestamp. Got {initial_train_size}."
            )

    if (
        not isinstance(window_size, (int, np.integer, pd.DateOffset, type(None)))
        or isinstance(window_size, (int, np.integer))
        and window_size < 1
    ):
        raise ValueError(
            f"`window_size` must be an integer greater than 0. Got {window_size}."
        )

    if differentiation is not None:
        if not isinstance(differentiation, (int, np.integer)) or differentiation < 0:
            raise ValueError(
                f"`differentiation` must be None or an integer greater than or "
                f"equal to 0. Got {differentiation}."
            )

    if not isinstance(return_all_indexes, bool):
        raise TypeError(
            f"`return_all_indexes` must be a boolean: `True`, `False`. "
            f"Got {return_all_indexes}."
        )

    if not isinstance(verbose, bool):
        raise TypeError(
            f"`verbose` must be a boolean: `True`, `False`. "
            f"Got {verbose}."
        )

_extract_index

_extract_index(X)

Extracts and returns the index from the input data X.

Parameters:

Name Type Description Default
X pandas Series, pandas DataFrame, pandas Index, dict

Time series data or index to split.

required

Returns:

Name Type Description
idx pandas Index

Index extracted from the input data.

Source code in skforecast\model_selection\_split.py
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
def _extract_index(
    self,
    X: pd.Series | pd.DataFrame | pd.Index | dict[str, pd.Series | pd.DataFrame]
) -> pd.Index:
    """
    Extracts and returns the index from the input data X.

    Parameters
    ----------
    X : pandas Series, pandas DataFrame, pandas Index, dict
        Time series data or index to split.

    Returns
    -------
    idx : pandas Index
        Index extracted from the input data.

    """

    if isinstance(X, (pd.Series, pd.DataFrame)):
        idx = X.index
    elif isinstance(X, dict):
        indexes_freq = set()
        not_valid_index = []
        min_index = []
        max_index = []
        for k, v in X.items():
            if v is None:
                continue

            idx = v.index
            if isinstance(idx, pd.DatetimeIndex):
                indexes_freq.add(idx.freq)
            elif isinstance(idx, pd.RangeIndex):
                indexes_freq.add(idx.step)
            else:
                not_valid_index.append(k)

            min_index.append(idx[0])
            max_index.append(idx[-1])

        if not_valid_index:
            raise TypeError(
                f"If `X` is a dictionary, all series must have a Pandas "
                f"RangeIndex or DatetimeIndex with the same step/frequency. "
                f"Review series: {not_valid_index}"
            )

        if None in indexes_freq:
            raise ValueError(
                "If `X` is a dictionary, all series must have a Pandas "
                "RangeIndex or DatetimeIndex with the same step/frequency. "
                "Found series with no frequency or step."
            )
        if not len(indexes_freq) == 1:
            raise ValueError(
                f"If `X` is a dictionary, all series must have a Pandas "
                f"RangeIndex or DatetimeIndex with the same step/frequency. "
                f"Found frequencies: {sorted(indexes_freq)}"
            )

        if isinstance(idx, pd.DatetimeIndex):
            idx = pd.date_range(
                start=min(min_index), end=max(max_index), freq=indexes_freq.pop()
            )
        else:
            idx = pd.RangeIndex(
                start=min(min_index), stop=max(max_index) + 1, step=indexes_freq.pop()
            )
    else:
        idx = X

    return idx

set_params

set_params(params)

Set the parameters of the Fold object. Before overwriting the current parameters, the input parameters are validated to ensure correctness.

Parameters:

Name Type Description Default
params dict

Dictionary with the parameters to set.

required

Returns:

Type Description
None
Source code in skforecast\model_selection\_split.py
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
def set_params(
    self, 
    params: dict
) -> None:
    """
    Set the parameters of the Fold object. Before overwriting the current 
    parameters, the input parameters are validated to ensure correctness.

    Parameters
    ----------
    params : dict
        Dictionary with the parameters to set.

    Returns
    -------
    None

    """

    if not isinstance(params, dict):
        raise TypeError(
            f"`params` must be a dictionary. Got {type(params)}."
        )

    current_params = deepcopy(vars(self))
    unknown_params = set(params.keys()) - set(current_params.keys())
    if unknown_params:
        warnings.warn(
            f"Unknown parameters: {unknown_params}. They have been ignored.",
            IgnoredArgumentWarning
        )

    filtered_params = {k: v for k, v in params.items() if k in current_params}
    updated_params = {'cv_name': type(self).__name__, **current_params, **filtered_params}

    self._validate_params(**updated_params)
    for key, value in updated_params.items():
        setattr(self, key, value)

skforecast.model_selection._split.TimeSeriesFold

TimeSeriesFold(
    steps,
    initial_train_size=None,
    fold_stride=None,
    window_size=None,
    differentiation=None,
    refit=False,
    fixed_train_size=True,
    gap=0,
    skip_folds=None,
    allow_incomplete_fold=True,
    return_all_indexes=False,
    verbose=True,
)

Bases: BaseFold

Class to split time series data into train and test folds. When used within a backtesting or hyperparameter search, the arguments 'initial_train_size', 'window_size' and 'differentiation' are not required as they are automatically set by the backtesting or hyperparameter search functions.

Parameters:

Name Type Description Default
steps int

Number of observations used to be predicted in each fold. This is also commonly referred to as the forecast horizon or test size.

required
initial_train_size int, str, pandas Timestamp

Number of observations used for initial training.

  • If None or 0, the initial forecaster is not trained in the first fold.
  • If an integer, the number of observations used for initial training.
  • If a date string or pandas Timestamp, it is the last date included in the initial training set.
None
fold_stride int

Number of observations that the start of the test set advances between consecutive folds.

  • If None, it defaults to the same value as steps, meaning that folds are placed back-to-back without overlap.
  • If fold_stride < steps, test sets overlap and multiple forecasts will be generated for the same observations.
  • If fold_stride > steps, gaps are left between consecutive test sets. New in version 0.18.0
None
window_size int

Number of observations needed to generate the autoregressive predictors.

None
differentiation int

Number of observations to use for differentiation. This is used to extend the last_window as many observations as the differentiation order.

None
refit (bool, int)

Whether to refit the forecaster in each fold.

  • If True, the forecaster is refitted in each fold.
  • If False, the forecaster is trained only in the first fold.
  • If an integer, the forecaster is trained in the first fold and then refitted every refit folds.
False
fixed_train_size bool

Whether the training size is fixed or increases in each fold.

True
gap int

Number of observations between the end of the training set and the start of the test set.

0
skip_folds (int, list)

Number of folds to skip.

  • If an integer, every 'skip_folds'-th is returned.
  • If a list, the indexes of the folds to skip.

For example, if skip_folds=3 and there are 10 folds, the returned folds are 0, 3, 6, and 9. If skip_folds=[1, 2, 3], the returned folds are 0, 4, 5, 6, 7, 8, and 9.

None
allow_incomplete_fold bool

Whether to allow the last fold to include fewer observations than steps. If False, the last fold is excluded if it is incomplete.

True
return_all_indexes bool

Whether to return all indexes or only the start and end indexes of each fold.

False
verbose bool

Whether to print information about generated folds.

True

Attributes:

Name Type Description
steps int

Number of observations used to be predicted in each fold. This is also commonly referred to as the forecast horizon or test size.

initial_train_size int

Number of observations used for initial training. If None or 0, the initial forecaster is not trained in the first fold.

fold_stride int

Number of observations that the start of the test set advances between consecutive folds.

overlapping_folds bool

Whether the folds overlap.

window_size int

Number of observations needed to generate the autoregressive predictors.

differentiation int

Number of observations to use for differentiation. This is used to extend the last_window as many observations as the differentiation order.

refit (bool, int)

Whether to refit the forecaster in each fold.

fixed_train_size bool

Whether the training size is fixed or increases in each fold.

gap int

Number of observations between the end of the training set and the start of the test set.

skip_folds (int, list)

Number of folds to skip.

allow_incomplete_fold bool

Whether to allow the last fold to include fewer observations than steps.

return_all_indexes bool

Whether to return all indexes or only the start and end indexes of each fold.

verbose bool

Whether to print information about generated folds.

Notes

Returned values are the positions of the observations and not the actual values of the index, so they can be used to slice the data directly using iloc. For example, if the input series is X = [10, 11, 12, 13, 14, 15, 16, 17, 18, 19], the initial_train_size = 3, window_size = 2, steps = 4, and gap = 1, the output of the first fold will: [0, [0, 3], [1, 3], [3, 8], [4, 8], True].

The first element is the fold number, the first list [0, 3] indicates that the training set goes from the first to the third observation. The second list [1, 3] indicates that the last window seen by the forecaster during training goes from the second to the third observation. The third list [3, 8] indicates that the test set goes from the fourth to the eighth observation. The fourth list [4, 8] indicates that the test set including the gap goes from the fifth to the eighth observation. The boolean False indicates that the forecaster should not be trained in this fold.

Following the python convention, the start index is inclusive and the end index is exclusive. This means that the last index is not included in the slice.

As an example, with initial_train_size=50, steps=30, and fold_stride=7, the first test fold will cover observations [50, 80), the second fold [57, 87), and the third fold [64, 94). This configuration produces multiple forecasts for the same observations, which is often desirable in rolling-origin evaluation.

Methods:

Name Description
split

Split the time series data into train and test folds.

Source code in skforecast\model_selection\_split.py
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
def __init__(
    self,
    steps: int,
    initial_train_size: int | str | pd.Timestamp | None = None,
    fold_stride: int | None = None,
    window_size: int | None = None,
    differentiation: int | None = None,
    refit: bool | int = False,
    fixed_train_size: bool = True,
    gap: int = 0,
    skip_folds: int | list[int] | None = None,
    allow_incomplete_fold: bool = True,
    return_all_indexes: bool = False,
    verbose: bool = True
) -> None:

    super().__init__(
        steps                 = steps,
        initial_train_size    = initial_train_size,
        fold_stride           = fold_stride,
        window_size           = window_size,
        differentiation       = differentiation,
        refit                 = refit,
        fixed_train_size      = fixed_train_size,
        gap                   = gap,
        skip_folds            = skip_folds,
        allow_incomplete_fold = allow_incomplete_fold,
        return_all_indexes    = return_all_indexes,
        verbose               = verbose
    )

    self.steps                 = steps
    self.fold_stride           = fold_stride if fold_stride is not None else steps
    self.overlapping_folds     = self.fold_stride < self.steps
    self.refit                 = refit
    self.fixed_train_size      = fixed_train_size
    self.gap                   = gap
    self.skip_folds            = skip_folds
    self.allow_incomplete_fold = allow_incomplete_fold

steps instance-attribute

steps = steps

fold_stride instance-attribute

fold_stride = (
    fold_stride if fold_stride is not None else steps
)

overlapping_folds instance-attribute

overlapping_folds = fold_stride < steps

refit instance-attribute

refit = refit

fixed_train_size instance-attribute

fixed_train_size = fixed_train_size

gap instance-attribute

gap = gap

skip_folds instance-attribute

skip_folds = skip_folds

allow_incomplete_fold instance-attribute

allow_incomplete_fold = allow_incomplete_fold

_repr_html_

_repr_html_()

HTML representation of the object. The "General Information" section is expanded by default.

Source code in skforecast\model_selection\_split.py
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
def _repr_html_(self) -> str:
    """
    HTML representation of the object.
    The "General Information" section is expanded by default.
    """

    style, unique_id = get_style_repr_html()
    content = f"""
    <div class="container-{unique_id}">
        <p style="font-size: 1.5em; font-weight: bold; margin-block-start: 0.83em; margin-block-end: 0.83em;">{type(self).__name__}</p>
        <details open>
            <summary>General Information</summary>
            <ul>
                <li><strong>Initial train size:</strong> {self.initial_train_size}</li>
                <li><strong>Steps:</strong> {self.steps}</li>
                <li><strong>Fold stride:</strong> {self.fold_stride}</li>
                <li><strong>Overlapping folds:</strong> {self.overlapping_folds}</li>
                <li><strong>Window size:</strong> {self.window_size}</li>
                <li><strong>Differentiation:</strong> {self.differentiation}</li>
                <li><strong>Refit:</strong> {self.refit}</li>
                <li><strong>Fixed train size:</strong> {self.fixed_train_size}</li>
                <li><strong>Gap:</strong> {self.gap}</li>
                <li><strong>Skip folds:</strong> {self.skip_folds}</li>
                <li><strong>Allow incomplete fold:</strong> {self.allow_incomplete_fold}</li>
                <li><strong>Return all indexes:</strong> {self.return_all_indexes}</li>
            </ul>
        </details>
        <p>
            <a href="https://skforecast.org/{__version__}/api/model_selection.html#skforecast.model_selection._split.TimeSeriesFold">&#128712 <strong>API Reference</strong></a>
            &nbsp;&nbsp;
            <a href="https://skforecast.org/{__version__}/user_guides/backtesting.html#timeseriesfold">&#128462 <strong>User Guide</strong></a>
        </p>
    </div>
    """

    return style + content

split

split(X, as_pandas=False)

Split the time series data into train and test folds.

Parameters:

Name Type Description Default
X pandas Series, pandas DataFrame, pandas Index, dict

Time series data or index to split.

required
as_pandas bool

If True, the folds are returned as a DataFrame. This is useful to visualize the folds in a more interpretable way.

False

Returns:

Name Type Description
folds list, pandas DataFrame

A list of lists containing the indices (position) for each fold. Each list contains 4 lists and a boolean with the following information:

  • fold: fold number.
  • [train_start, train_end]: list with the start and end positions of the training set.
  • [last_window_start, last_window_end]: list with the start and end positions of the last window seen by the forecaster during training. The last window is used to generate the lags use as predictors. If differentiation is included, the interval is extended as many observations as the differentiation order. If the argument window_size is None, this list is empty.
  • [test_start, test_end]: list with the start and end positions of the test set. These are the observations used to evaluate the forecaster.
  • [test_start_with_gap, test_end_with_gap]: list with the start and end positions of the test set including the gap. The gap is the number of observations between the end of the training set and the start of the test set.
  • fit_forecaster: boolean indicating whether the forecaster should be fitted in this fold.

It is important to note that the returned values are the positions of the observations and not the actual values of the index, so they can be used to slice the data directly using iloc.

If as_pandas is True, the folds are returned as a DataFrame with the following columns: 'fold', 'train_start', 'train_end', 'last_window_start', 'last_window_end', 'test_start', 'test_end', 'test_start_with_gap', 'test_end_with_gap', 'fit_forecaster'.

Following the python convention, the start index is inclusive and the end index is exclusive. This means that the last index is not included in the slice.

Source code in skforecast\model_selection\_split.py
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
def split(
    self,
    X: pd.Series | pd.DataFrame | pd.Index | dict[str, pd.Series | pd.DataFrame],
    as_pandas: bool = False
) -> list | pd.DataFrame:
    """
    Split the time series data into train and test folds.

    Parameters
    ----------
    X : pandas Series, pandas DataFrame, pandas Index, dict
        Time series data or index to split.
    as_pandas : bool, default False
        If True, the folds are returned as a DataFrame. This is useful to visualize
        the folds in a more interpretable way.

    Returns
    -------
    folds : list, pandas DataFrame
        A list of lists containing the indices (position) for each fold. Each list
        contains 4 lists and a boolean with the following information:

        - fold: fold number.
        - [train_start, train_end]: list with the start and end positions of the
        training set.
        - [last_window_start, last_window_end]: list with the start and end positions
        of the last window seen by the forecaster during training. The last window
        is used to generate the lags use as predictors. If `differentiation` is
        included, the interval is extended as many observations as the
        differentiation order. If the argument `window_size` is `None`, this list is
        empty.
        - [test_start, test_end]: list with the start and end positions of the test
        set. These are the observations used to evaluate the forecaster.
        - [test_start_with_gap, test_end_with_gap]: list with the start and end
        positions of the test set including the gap. The gap is the number of
        observations between the end of the training set and the start of the test
        set.
        - fit_forecaster: boolean indicating whether the forecaster should be fitted
        in this fold.

        It is important to note that the returned values are the positions of the
        observations and not the actual values of the index, so they can be used to
        slice the data directly using iloc.

        If `as_pandas` is `True`, the folds are returned as a DataFrame with the
        following columns: 'fold', 'train_start', 'train_end', 'last_window_start',
        'last_window_end', 'test_start', 'test_end', 'test_start_with_gap',
        'test_end_with_gap', 'fit_forecaster'.

        Following the python convention, the start index is inclusive and the end
        index is exclusive. This means that the last index is not included in the
        slice.

    """

    if not isinstance(X, (pd.Series, pd.DataFrame, pd.Index, dict)):
        raise TypeError(
            f"X must be a pandas Series, DataFrame, Index or a dictionary. "
            f"Got {type(X)}."
        )

    window_size_as_date_offset = isinstance(self.window_size, pd.tseries.offsets.DateOffset)
    if window_size_as_date_offset:
        # Calculate the window_size in steps. This is not a exact calculation
        # because the offset follows the calendar rules and the distance between
        # two dates may not be constant.
        first_valid_index = X.index[-1] - self.window_size
        try:
            window_size_idx_start = X.index.get_loc(first_valid_index)
            window_size_idx_end = X.index.get_loc(X.index[-1])
            self.window_size = window_size_idx_end - window_size_idx_start
        except KeyError:
            raise ValueError(
                f"The length of `y` ({len(X)}), must be greater than or equal "
                f"to the window size ({self.window_size}). This is because  "
                f"the offset (forecaster.offset) is larger than the available "
                f"data. Try to decrease the size of the offset (forecaster.offset), "
                f"the number of `n_offsets` (forecaster.n_offsets) or increase the "
                f"size of `y`."
            )

    if self.initial_train_size is None:
        if self.window_size is None:
            raise ValueError(
                "To use split method when `initial_train_size` is None, "
                "`window_size` must be an integer greater than 0. "
                "Although no initial training is done and all data is used to "
                "evaluate the model, the first `window_size` observations are "
                "needed to create the initial predictors. Got `window_size` = None."
            )
        if self.refit:
            raise ValueError(
                "`refit` is only allowed when `initial_train_size` is not `None`. "
                "Set `refit` to `False` if you want to use `initial_train_size = None`."
            )
        externally_fitted = True
        self.initial_train_size = self.window_size  # Reset to None later
    else:
        if self.window_size is None:
            warnings.warn(
                "Last window cannot be calculated because `window_size` is None.",
                IgnoredArgumentWarning
            )
        externally_fitted = False

    index = self._extract_index(X)
    idx = range(len(index))
    folds = []
    i = 0

    self.initial_train_size = date_to_index_position(
                                  index        = index, 
                                  date_input   = self.initial_train_size, 
                                  method       = 'validation',
                                  date_literal = 'initial_train_size'
                              )

    if window_size_as_date_offset:
        if self.initial_train_size is not None:
            if self.initial_train_size < self.window_size:
                raise ValueError(
                    f"If `initial_train_size` is an integer, it must be greater than "
                    f"the `window_size` of the forecaster ({self.window_size}) "
                    f"and smaller than the length of the series ({len(X)}). If "
                    f"it is a date, it must be within this range of the index."
                )

    if self.allow_incomplete_fold:
        # At least one observation after the gap to allow incomplete fold
        if len(index) <= self.initial_train_size + self.gap:
            raise ValueError(
                f"The time series must have more than `initial_train_size + gap` "
                f"observations to create at least one fold.\n"
                f"    Time series length: {len(index)}\n"
                f"    Required > {self.initial_train_size + self.gap}\n"
                f"    initial_train_size: {self.initial_train_size}\n"
                f"    gap: {self.gap}\n"
            )
    else:
        # At least one complete fold
        if len(index) < self.initial_train_size + self.gap + self.steps:
            raise ValueError(
                f"The time series must have at least `initial_train_size + gap + steps` "
                f"observations to create a minimum of one complete fold "
                f"(allow_incomplete_fold=False).\n"
                f"    Time series length: {len(index)}\n"
                f"    Required >= {self.initial_train_size + self.gap + self.steps}\n"
                f"    initial_train_size: {self.initial_train_size}\n"
                f"    gap: {self.gap}\n"
                f"    steps: {self.steps}\n"
            )

    while self.initial_train_size + (i * self.fold_stride) + self.gap < len(index):

        if self.refit:
            # NOTE: If `fixed_train_size` the train size doesn't increase but 
            # moves by `fold_stride` positions in each iteration. If `False`, 
            # the train size increases by `fold_stride` in each iteration.
            train_iloc_start = i * (self.fold_stride) if self.fixed_train_size else 0
            train_iloc_end = self.initial_train_size + i * (self.fold_stride)
            test_iloc_start = train_iloc_end
        else:
            # NOTE: The train size doesn't increase and doesn't move.
            train_iloc_start = 0
            train_iloc_end = self.initial_train_size
            test_iloc_start = self.initial_train_size + i * (self.fold_stride)

        if self.window_size is not None:
            last_window_iloc_start = test_iloc_start - self.window_size

        test_iloc_end = test_iloc_start + self.gap + self.steps

        partitions = [
            idx[train_iloc_start : train_iloc_end],
            idx[last_window_iloc_start : test_iloc_start] if self.window_size is not None else [],
            idx[test_iloc_start : test_iloc_end],
            idx[test_iloc_start + self.gap : test_iloc_end]
        ]
        folds.append(partitions)
        i += 1

    # NOTE: Delete all incomplete folds at the end if not allowed
    n_removed_folds = 0
    if not self.allow_incomplete_fold:
        # NOTE: While folds and the last "test_index_with_gap" is incomplete,
        # calculating len of range objects
        while folds and len(folds[-1][3]) < self.steps:
            folds.pop()
            n_removed_folds += 1

    # Replace partitions inside folds with length 0 with `None`
    folds = [
        [partition if len(partition) > 0 else None for partition in fold] 
        for fold in folds
    ]

    # Create a flag to know whether to train the forecaster
    if self.refit == 0:
        self.refit = False

    if isinstance(self.refit, bool):
        fit_forecaster = [self.refit] * len(folds)
        fit_forecaster[0] = True
    else:
        fit_forecaster = [False] * len(folds)
        for i in range(0, len(fit_forecaster), self.refit): 
            fit_forecaster[i] = True

    for i in range(len(folds)): 
        folds[i].insert(0, i)
        folds[i].append(fit_forecaster[i])
        if fit_forecaster[i] is False:
            folds[i][1] = folds[i - 1][1]

    index_to_skip = []
    if self.skip_folds is not None:
        if isinstance(self.skip_folds, (int, np.integer)) and self.skip_folds > 0:
            index_to_keep = np.arange(0, len(folds), self.skip_folds)
            index_to_skip = np.setdiff1d(np.arange(0, len(folds)), index_to_keep, assume_unique=True)
            index_to_skip = [int(x) for x in index_to_skip]  # Required since numpy 2.0
        if isinstance(self.skip_folds, list):
            index_to_skip = [i for i in self.skip_folds if i < len(folds)]

    if self.verbose:
        self._print_info(
            index              = index,
            folds              = folds,
            externally_fitted  = externally_fitted,
            n_removed_folds    = n_removed_folds,
            index_to_skip      = index_to_skip
        )

    folds = [fold for i, fold in enumerate(folds) if i not in index_to_skip]
    if not self.return_all_indexes:
        # NOTE: +1 to prevent iloc pandas from deleting the last observation
        folds = [
            [
                fold[0],
                [fold[1][0], fold[1][-1] + 1],
                (
                    [fold[2][0], fold[2][-1] + 1]
                    if self.window_size is not None
                    else []
                ),
                [fold[3][0], fold[3][-1] + 1],
                [fold[4][0], fold[4][-1] + 1],
                fold[5],
            ]
            for fold in folds
        ]

    if externally_fitted:
        self.initial_train_size = None
        folds[0][5] = False

    if as_pandas:
        if self.window_size is None:
            for fold in folds:
                fold[2] = [None, None]

        if not self.return_all_indexes:
            folds = pd.DataFrame(
                data = [[fold[0]] + list(itertools.chain(*fold[1:-1])) + [fold[-1]] for fold in folds],
                columns = [
                    'fold',
                    'train_start',
                    'train_end',
                    'last_window_start',
                    'last_window_end',
                    'test_start',
                    'test_end',
                    'test_start_with_gap',
                    'test_end_with_gap',
                    'fit_forecaster'
                ],
            )
        else:
            folds = pd.DataFrame(
                data = folds,
                columns = [
                    'fold',
                    'train_index',
                    'last_window_index',
                    'test_index',
                    'test_index_with_gap',
                    'fit_forecaster'
                ],
            )

    return folds

_print_info

_print_info(
    index,
    folds,
    externally_fitted,
    n_removed_folds,
    index_to_skip,
)

Print information about folds.

Parameters:

Name Type Description Default
index pandas Index

Index of the time series data.

required
folds list

A list of lists containing the indices (position) for each fold.

required
externally_fitted bool

Whether an already trained forecaster is to be used.

required
n_removed_folds int

Number of folds removed.

required
index_to_skip list

Number of folds skipped.

required

Returns:

Type Description
None
Source code in skforecast\model_selection\_split.py
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
def _print_info(
    self,
    index: pd.Index,
    folds: list[list[int]],
    externally_fitted: bool,
    n_removed_folds: int,
    index_to_skip: list[int]
) -> None:
    """
    Print information about folds.

    Parameters
    ----------
    index : pandas Index
        Index of the time series data.
    folds : list
        A list of lists containing the indices (position) for each fold.
    externally_fitted : bool
        Whether an already trained forecaster is to be used.
    n_removed_folds : int
        Number of folds removed.
    index_to_skip : list
        Number of folds skipped.

    Returns
    -------
    None

    """

    print("Information of folds")
    print("--------------------")
    if externally_fitted:
        print(
            f"An already trained forecaster is to be used. Window size: "
            f"{self.window_size}"
        )
    else:
        if self.differentiation is None:
            print(
                f"Number of observations used for initial training: "
                f"{self.initial_train_size}"
            )
        else:
            print(
                f"Number of observations used for initial training: "
                f"{self.initial_train_size - self.differentiation}"
            )
            print(
                f"    First {self.differentiation} observation/s in training sets "
                f"are used for differentiation"
            )
    print(
        f"Number of observations used for backtesting: "
        f"{len(index) - self.initial_train_size}"
    )
    print(f"    Number of folds: {len(folds)}")
    print(
        f"    Number skipped folds: "
        f"{len(index_to_skip)} {index_to_skip if index_to_skip else ''}"
    )
    print(f"    Number of steps per fold: {self.steps}")
    if self.steps != self.fold_stride:
        print(f"    Number of steps to the next fold (fold stride): {self.fold_stride}")
    print(
        f"    Number of steps to exclude between last observed data "
        f"(last window) and predictions (gap): {self.gap}"
    )
    if n_removed_folds > 0:
        print(
            f"    The last {n_removed_folds} fold(s) have been excluded "
            f"because they were incomplete."
        )

    if len(folds[-1][4]) < self.steps:
        print(f"    Last fold only includes {len(folds[-1][4])} observations.")

    print("")

    if self.differentiation is None:
        differentiation = 0
    else:
        differentiation = self.differentiation

    for i, fold in enumerate(folds):
        is_fold_skipped   = i in index_to_skip
        has_training      = fold[-1] if i != 0 else True
        training_start    = (
            index[fold[1][0] + differentiation] if fold[1] is not None else None
        )
        training_end      = index[fold[1][-1]] if fold[1] is not None else None
        training_length   = (
            len(fold[1]) - differentiation if fold[1] is not None else 0
        )
        validation_start  = index[fold[4][0]]
        validation_end    = index[fold[4][-1]]
        validation_length = len(fold[4])

        print(f"Fold: {i}")
        if is_fold_skipped:
            print("    Fold skipped")
        elif not externally_fitted and has_training:
            print(
                f"    Training:   {training_start} -- {training_end}  "
                f"(n={training_length})"
            )
            print(
                f"    Validation: {validation_start} -- {validation_end}  "
                f"(n={validation_length})"
            )
        else:
            print("    Training:   No training in this fold")
            print(
                f"    Validation: {validation_start} -- {validation_end}  "
                f"(n={validation_length})"
            )

    print("")

skforecast.model_selection._split.OneStepAheadFold

OneStepAheadFold(
    initial_train_size,
    window_size=None,
    differentiation=None,
    return_all_indexes=False,
    verbose=True,
)

Bases: BaseFold

Class to split time series data into train and test folds for one-step-ahead forecasting.

Parameters:

Name Type Description Default
initial_train_size int, str, pandas Timestamp

Number of observations used for initial training.

  • If an integer, the number of observations used for initial training.
  • If a date string or pandas Timestamp, it is the last date included in the initial training set.
required
window_size int

Number of observations needed to generate the autoregressive predictors.

None
differentiation int

Number of observations to use for differentiation. This is used to extend the last_window as many observations as the differentiation order.

None
return_all_indexes bool

Whether to return all indexes or only the start and end indexes of each fold.

False
verbose bool

Whether to print information about generated folds.

True

Attributes:

Name Type Description
initial_train_size int

Number of observations used for initial training.

window_size int

Number of observations needed to generate the autoregressive predictors.

differentiation int

Number of observations to use for differentiation. This is used to extend the last_window as many observations as the differentiation order.

return_all_indexes bool

Whether to return all indexes or only the start and end indexes of each fold.

verbose bool

Whether to print information about generated folds.

Methods:

Name Description
split

Split the time series data into train and test folds.

Source code in skforecast\model_selection\_split.py
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
def __init__(
    self,
    initial_train_size: int | str | pd.Timestamp,
    window_size: int | None = None,
    differentiation: int | None = None,
    return_all_indexes: bool = False,
    verbose: bool = True
) -> None:

    super().__init__(
        initial_train_size = initial_train_size,
        window_size        = window_size,
        differentiation    = differentiation,
        return_all_indexes = return_all_indexes,
        verbose            = verbose
    )

_repr_html_

_repr_html_()

HTML representation of the object. The "General Information" section is expanded by default.

Source code in skforecast\model_selection\_split.py
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
def _repr_html_(self) -> str:
    """
    HTML representation of the object.
    The "General Information" section is expanded by default.
    """

    style, unique_id = get_style_repr_html()
    content = f"""
    <div class="container-{unique_id}">
        <p style="font-size: 1.5em; font-weight: bold; margin-block-start: 0.83em; margin-block-end: 0.83em;">{type(self).__name__}</p>
        <details open>
            <summary>General Information</summary>
            <ul>
                <li><strong>Initial train size:</strong> {self.initial_train_size}</li>
                <li><strong>Window size:</strong> {self.window_size}</li>
                <li><strong>Differentiation:</strong> {self.differentiation}</li>
                <li><strong>Return all indexes:</strong> {self.return_all_indexes}</li>
            </ul>
        </details>
        <p>
            <a href="https://skforecast.org/{__version__}/api/model_selection.html#skforecast.model_selection._split.OneStepAheadFold">&#128712 <strong>API Reference</strong></a>
            &nbsp;&nbsp;
            <a href="https://skforecast.org/{__version__}/faq/parameters-search-backtesting-vs-one-step-ahead.html">&#128462 <strong>User Guide</strong></a>
        </p>
    </div>
    """

    return style + content

split

split(X, as_pandas=False, externally_fitted=None)

Split the time series data into train and test folds.

Parameters:

Name Type Description Default
X pandas Series, DataFrame, Index, or dictionary

Time series data or index to split.

required
as_pandas bool

If True, the folds are returned as a DataFrame. This is useful to visualize the folds in a more interpretable way.

False
externally_fitted Any

This argument is not used in this class. It is included for API consistency.

None

Returns:

Name Type Description
fold list, pandas DataFrame

A list of lists containing the indices (position) of the fold. The list contains 2 lists with the following information:

  • fold: fold number.
  • [train_start, train_end]: list with the start and end positions of the training set.
  • [test_start, test_end]: list with the start and end positions of the test set. These are the observations used to evaluate the forecaster.
  • fit_forecaster: boolean indicating whether the forecaster should be fitted in this fold.

It is important to note that the returned values are the positions of the observations and not the actual values of the index, so they can be used to slice the data directly using iloc.

If as_pandas is True, the folds are returned as a DataFrame with the following columns: 'fold', 'train_start', 'train_end', 'test_start', 'test_end', 'fit_forecaster'.

Following the python convention, the start index is inclusive and the end index is exclusive. This means that the last index is not included in the slice.

Source code in skforecast\model_selection\_split.py
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
def split(
    self,
    X: pd.Series | pd.DataFrame | pd.Index | dict[str, pd.Series | pd.DataFrame],
    as_pandas: bool = False,
    externally_fitted: Any = None
) -> list | pd.DataFrame:
    """
    Split the time series data into train and test folds.

    Parameters
    ----------
    X : pandas Series, DataFrame, Index, or dictionary
        Time series data or index to split.
    as_pandas : bool, default False
        If True, the folds are returned as a DataFrame. This is useful to visualize
        the folds in a more interpretable way.
    externally_fitted : Any
        This argument is not used in this class. It is included for API consistency.

    Returns
    -------
    fold : list, pandas DataFrame
        A list of lists containing the indices (position) of the fold. The list
        contains 2 lists with the following information:

        - fold: fold number.
        - [train_start, train_end]: list with the start and end positions of the
        training set.
        - [test_start, test_end]: list with the start and end positions of the test
        set. These are the observations used to evaluate the forecaster.
        - fit_forecaster: boolean indicating whether the forecaster should be fitted
        in this fold.

        It is important to note that the returned values are the positions of the
        observations and not the actual values of the index, so they can be used to
        slice the data directly using iloc.

        If `as_pandas` is `True`, the folds are returned as a DataFrame with the
        following columns: 'fold', 'train_start', 'train_end', 'test_start', 
        'test_end', 'fit_forecaster'.

        Following the python convention, the start index is inclusive and the end
        index is exclusive. This means that the last index is not included in the
        slice.

    """

    if not isinstance(X, (pd.Series, pd.DataFrame, pd.Index, dict)):
        raise TypeError(
            f"X must be a pandas Series, DataFrame, Index or a dictionary. "
            f"Got {type(X)}."
        )

    index = self._extract_index(X)

    self.initial_train_size = date_to_index_position(
                                  index        = index, 
                                  date_input   = self.initial_train_size, 
                                  method       = 'validation',
                                  date_literal = 'initial_train_size'
                              )

    fold = [
        0,
        [0, self.initial_train_size - 1],
        [self.initial_train_size, len(X)],
        True
    ]

    if self.verbose:
        self._print_info(index=index, fold=fold)

    # NOTE: +1 to prevent iloc pandas from deleting the last observation
    if self.return_all_indexes:
        fold = [
            fold[0], 
            [range(fold[1][0], fold[1][1] + 1)],
            [range(fold[2][0], fold[2][1])],
            fold[3]
        ]
    else:
        fold = [
            fold[0], 
            [fold[1][0], fold[1][1] + 1],
            [fold[2][0], fold[2][1]],
            fold[3]
        ]

    if as_pandas:
        if not self.return_all_indexes:
            fold = pd.DataFrame(
                data = [[fold[0]] + list(itertools.chain(*fold[1:-1])) + [fold[-1]]],
                columns = [
                    'fold',
                    'train_start',
                    'train_end',
                    'test_start',
                    'test_end',
                    'fit_forecaster'
                ],
            )
        else:
            fold = pd.DataFrame(
                data = [fold],
                columns = [
                    'fold',
                    'train_index',
                    'test_index',
                    'fit_forecaster'
                ],
            )

    return fold

_print_info

_print_info(index, fold)

Print information about folds.

Parameters:

Name Type Description Default
index pandas Index

Index of the time series data.

required
fold list

A list of lists containing the indices (position) of the fold.

required

Returns:

Type Description
None
Source code in skforecast\model_selection\_split.py
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
def _print_info(
    self,
    index: pd.Index,
    fold: list[list[int]]
) -> None:
    """
    Print information about folds.

    Parameters
    ----------
    index : pandas Index
        Index of the time series data.
    fold : list
        A list of lists containing the indices (position) of the fold.

    Returns
    -------
    None

    """

    if self.differentiation is None:
        differentiation = 0
    else:
        differentiation = self.differentiation

    initial_train_size = self.initial_train_size - differentiation
    test_length = len(index) - (initial_train_size + differentiation)

    print("Information of folds")
    print("--------------------")
    print(
        f"Number of observations in train: {initial_train_size}"
    )
    if self.differentiation is not None:
        print(
            f"    First {differentiation} observation/s in training set "
            f"are used for differentiation"
        )
    print(
        f"Number of observations in test: {test_length}"
    )

    training_start = index[fold[1][0] + differentiation]
    training_end = index[fold[1][-1]]
    test_start  = index[fold[2][0]]
    test_end    = index[fold[2][-1] - 1]

    print(
        f"Training : {training_start} -- {training_end} (n={initial_train_size})"
    )
    print(
        f"Test     : {test_start} -- {test_end} (n={test_length})"
    )
    print("")

skforecast.model_selection._utils.initialize_lags_grid

initialize_lags_grid(forecaster, lags_grid=None)

Initialize lags grid and lags label for model selection.

Parameters:

Name Type Description Default
forecaster Forecaster

Forecaster model. ForecasterRecursive, ForecasterDirect, ForecasterRecursiveMultiSeries, ForecasterDirectMultiVariate.

required
lags_grid (list, dict)

Lists of lags to try, containing int, lists, numpy ndarray, or range objects. If dict, the keys are used as labels in the results DataFrame, and the values are used as the lists of lags to try.

None

Returns:

Name Type Description
lags_grid dict

Dictionary with lags configuration for each iteration.

lags_label str

Label for lags representation in the results object.

Source code in skforecast\model_selection\_utils.py
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
def initialize_lags_grid(
    forecaster: object, 
    lags_grid: (
        list[int | list[int] | np.ndarray[int] | range[int]]
        | dict[str, list[int | list[int] | np.ndarray[int] | range[int]]]
        | None
    ) = None,
) -> tuple[dict[str, int], str]:
    """
    Initialize lags grid and lags label for model selection. 

    Parameters
    ----------
    forecaster : Forecaster
        Forecaster model. ForecasterRecursive, ForecasterDirect, 
        ForecasterRecursiveMultiSeries, ForecasterDirectMultiVariate.
    lags_grid : list, dict, default None
        Lists of lags to try, containing int, lists, numpy ndarray, or range 
        objects. If `dict`, the keys are used as labels in the `results` 
        DataFrame, and the values are used as the lists of lags to try.

    Returns
    -------
    lags_grid : dict
        Dictionary with lags configuration for each iteration.
    lags_label : str
        Label for lags representation in the results object.

    """

    if not isinstance(lags_grid, (list, dict, type(None))):
        raise TypeError(
            f"`lags_grid` argument must be a list, dict or None. "
            f"Got {type(lags_grid)}."
        )

    lags_label = 'values'
    if isinstance(lags_grid, list):
        lags_grid = {f'{lags}': lags for lags in lags_grid}
    elif lags_grid is None:
        lags = [int(lag) for lag in forecaster.lags]  # Required since numpy 2.0
        lags_grid = {f'{lags}': lags}
    else:
        lags_label = 'keys'

    return lags_grid, lags_label

skforecast.model_selection._utils.check_backtesting_input

check_backtesting_input(
    forecaster,
    cv,
    metric,
    add_aggregated_metric=True,
    y=None,
    series=None,
    exog=None,
    interval=None,
    interval_method="bootstrapping",
    alpha=None,
    n_boot=250,
    use_in_sample_residuals=True,
    use_binned_residuals=True,
    random_state=123,
    return_predictors=False,
    n_jobs="auto",
    show_progress=True,
    suppress_warnings=False,
    suppress_warnings_fit=False,
)

This is a helper function to check most inputs of backtesting functions in modules model_selection.

Parameters:

Name Type Description Default
forecaster Forecaster

Forecaster model.

required
cv TimeSeriesFold

TimeSeriesFold object with the information needed to split the data into folds.

required
metric (str, Callable, list)

Metric used to quantify the goodness of fit of the model.

required
add_aggregated_metric bool

If True, the aggregated metrics (average, weighted average and pooling) over all levels are also returned (only multiseries).

True
y pandas Series

Training time series for uni-series forecasters.

None
series pandas DataFrame, dict

Training time series for multi-series forecasters.

None
exog pandas Series, pandas DataFrame, dict

Exogenous variables.

None
interval (float, list, tuple, str, object)

Specifies whether probabilistic predictions should be estimated and the method to use. The following options are supported:

  • If float, represents the nominal (expected) coverage (between 0 and 1). For instance, interval=0.95 corresponds to [2.5, 97.5] percentiles.
  • If list or tuple: Sequence of percentiles to compute, each value must be between 0 and 100 inclusive. For example, a 95% confidence interval can be specified as interval = [2.5, 97.5] or multiple percentiles (e.g. 10, 50 and 90) as interval = [10, 50, 90].
  • If 'bootstrapping' (str): n_boot bootstrapping predictions will be generated.
  • If scipy.stats distribution object, the distribution parameters will be estimated for each prediction.
  • If None, no probabilistic predictions are estimated.
None
interval_method str

Technique used to estimate prediction intervals. Available options:

  • 'bootstrapping': Bootstrapping is used to generate prediction intervals.
  • 'conformal': Employs the conformal prediction split method for interval estimation.
'bootstrapping'
alpha float

The confidence intervals used in ForecasterStats are (1 - alpha) %.

None
n_boot int

Number of bootstrapping iterations to perform when estimating prediction intervals.

`250`
use_in_sample_residuals bool

If True, residuals from the training data are used as proxy of prediction error to create prediction intervals. If False, out_sample_residuals are used if they are already stored inside the forecaster.

True
use_binned_residuals bool

If True, residuals are selected based on the predicted values (binned selection). If False, residuals are selected randomly.

True
random_state int

Seed for the random number generator to ensure reproducibility.

`123`
return_predictors bool

If True, the predictors used to make the predictions are also returned.

False
n_jobs (int, 'auto')

The number of jobs to run in parallel. If -1, then the number of jobs is set to the number of cores. If 'auto', n_jobs is set using the function skforecast.utils.select_n_jobs_fit_forecaster.

`'auto'`
show_progress bool

Whether to show a progress bar.

True
suppress_warnings bool

If True, skforecast warnings will be suppressed during the backtesting process. See skforecast.exceptions.warn_skforecast_categories for more information.

False
suppress_warnings_fit bool

If True, warnings generated during fitting will be ignored. Only ForecasterStats.

False

Returns:

Type Description
None
Source code in skforecast\model_selection\_utils.py
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
def check_backtesting_input(
    forecaster: object,
    cv: object,
    metric: str | Callable | list[str | Callable],
    add_aggregated_metric: bool = True,
    y: pd.Series | None = None,
    series: pd.DataFrame | dict[str, pd.Series | pd.DataFrame] = None,
    exog: pd.Series | pd.DataFrame | dict[str, pd.Series | pd.DataFrame] | None = None,
    interval: float | list[float] | tuple[float] | str | object | None = None,
    interval_method: str = 'bootstrapping',    
    alpha: float | None = None,
    n_boot: int = 250,
    use_in_sample_residuals: bool = True,
    use_binned_residuals: bool = True,
    random_state: int = 123,
    return_predictors: bool = False,
    n_jobs: int | str = 'auto',
    show_progress: bool = True,
    suppress_warnings: bool = False,
    suppress_warnings_fit: bool = False
) -> None:
    """
    This is a helper function to check most inputs of backtesting functions in 
    modules `model_selection`.

    Parameters
    ----------
    forecaster : Forecaster
        Forecaster model.
    cv : TimeSeriesFold
        TimeSeriesFold object with the information needed to split the data into folds.
    metric : str, Callable, list
        Metric used to quantify the goodness of fit of the model.
    add_aggregated_metric : bool, default True
        If `True`, the aggregated metrics (average, weighted average and pooling)
        over all levels are also returned (only multiseries).
    y : pandas Series, default None
        Training time series for uni-series forecasters.
    series : pandas DataFrame, dict, default None
        Training time series for multi-series forecasters.
    exog : pandas Series, pandas DataFrame, dict, default None
        Exogenous variables.
    interval : float, list, tuple, str, object, default None
        Specifies whether probabilistic predictions should be estimated and the 
        method to use. The following options are supported:

        - If `float`, represents the nominal (expected) coverage (between 0 and 1). 
        For instance, `interval=0.95` corresponds to `[2.5, 97.5]` percentiles.
        - If `list` or `tuple`: Sequence of percentiles to compute, each value must 
        be between 0 and 100 inclusive. For example, a 95% confidence interval can 
        be specified as `interval = [2.5, 97.5]` or multiple percentiles (e.g. 10, 
        50 and 90) as `interval = [10, 50, 90]`.
        - If 'bootstrapping' (str): `n_boot` bootstrapping predictions will be generated.
        - If scipy.stats distribution object, the distribution parameters will
        be estimated for each prediction.
        - If None, no probabilistic predictions are estimated.
    interval_method : str, default 'bootstrapping'
        Technique used to estimate prediction intervals. Available options:

        + 'bootstrapping': Bootstrapping is used to generate prediction 
        intervals.
        + 'conformal': Employs the conformal prediction split method for 
        interval estimation.
    alpha : float, default None
        The confidence intervals used in ForecasterStats are (1 - alpha) %. 
    n_boot : int, default `250`
        Number of bootstrapping iterations to perform when estimating prediction
            intervals.
    use_in_sample_residuals : bool, default True
        If `True`, residuals from the training data are used as proxy of prediction 
        error to create prediction intervals.  If `False`, out_sample_residuals 
        are used if they are already stored inside the forecaster.
    use_binned_residuals : bool, default True
        If `True`, residuals are selected based on the predicted values 
        (binned selection).
        If `False`, residuals are selected randomly.
    random_state : int, default `123`
        Seed for the random number generator to ensure reproducibility.
    return_predictors : bool, default False
        If `True`, the predictors used to make the predictions are also returned.
    n_jobs : int, 'auto', default `'auto'`
        The number of jobs to run in parallel. If `-1`, then the number of jobs is 
        set to the number of cores. If 'auto', `n_jobs` is set using the function
        skforecast.utils.select_n_jobs_fit_forecaster.
    show_progress : bool, default True
        Whether to show a progress bar.
    suppress_warnings: bool, default False
        If `True`, skforecast warnings will be suppressed during the backtesting 
        process. See skforecast.exceptions.warn_skforecast_categories for more
        information.
    suppress_warnings_fit : bool, default False
        If `True`, warnings generated during fitting will be ignored. Only 
        `ForecasterStats`.

    Returns
    -------
    None

    """

    forecaster_name = type(forecaster).__name__
    cv_name = type(cv).__name__

    if cv_name != "TimeSeriesFold":
        raise TypeError(f"`cv` must be a 'TimeSeriesFold' object. Got '{cv_name}'.")

    steps = cv.steps
    initial_train_size = cv.initial_train_size
    gap = cv.gap
    allow_incomplete_fold = cv.allow_incomplete_fold
    refit = cv.refit

    forecasters_uni = [
        "ForecasterRecursive",
        "ForecasterDirect",
        "ForecasterStats",
        "ForecasterEquivalentDate",
        "ForecasterRecursiveClassifier"
    ]
    forecasters_direct = [
        "ForecasterDirect",
        "ForecasterDirectMultiVariate",
        "ForecasterRnn"
    ]
    forecasters_multi_no_dict = [
        "ForecasterDirectMultiVariate",
        "ForecasterRnn",
    ]
    forecasters_multi_dict = [
        "ForecasterRecursiveMultiSeries"
    ]
    # NOTE: ForecasterStats has interval but not with bootstrapping or conformal
    forecasters_boot_conformal = [
        "ForecasterRecursive",
        "ForecasterDirect",
        "ForecasterRecursiveMultiSeries",
        "ForecasterDirectMultiVariate",
        "ForecasterEquivalentDate",
    ]
    forecasters_return_predictors = [
        "ForecasterRecursive",
        "ForecasterDirect",
        "ForecasterRecursiveMultiSeries",
        "ForecasterDirectMultiVariate",
        "ForecasterRecursiveClassifier"
    ]

    if forecaster_name in forecasters_uni:
        if not isinstance(y, pd.Series):
            raise TypeError("`y` must be a pandas Series.")
        data_name = 'y'
        data_length = len(y)

    elif forecaster_name in forecasters_multi_no_dict:
        if not isinstance(series, pd.DataFrame):
            raise TypeError("`series` must be a pandas DataFrame.")
        data_name = 'series'
        data_length = len(series)

    elif forecaster_name in forecasters_multi_dict:

        # NOTE: Checks are not need as they are done in the function 
        # `check_preprocess_series` that is used before `check_backtesting_input`
        # in the backtesting function.

        data_name = 'series'
        data_length = max([len(series[serie]) for serie in series])

    if exog is not None:
        if forecaster_name in forecasters_multi_dict:
            # NOTE: Checks are not need as they are done in the function 
            # `check_preprocess_exog_multiseries` that is used before 
            # `check_backtesting_input` in the backtesting function.
            pass
        else:
            if not isinstance(exog, (pd.Series, pd.DataFrame)):
                raise TypeError(
                    f"`exog` must be a pandas Series, DataFrame or None. Got {type(exog)}."
                )

    if hasattr(forecaster, 'differentiation'):
        if forecaster.differentiation_max != cv.differentiation:
            if forecaster_name == "ForecasterRecursiveMultiSeries" and isinstance(
                forecaster.differentiation, dict
            ):
                raise ValueError(
                    f"When using a dict as `differentiation` in ForecasterRecursiveMultiSeries, "
                    f"the `differentiation` included in the cv ({cv.differentiation}) must be "
                    f"the same as the maximum `differentiation` included in the forecaster "
                    f"({forecaster.differentiation_max}). Set the same value "
                    f"for both using the `differentiation` argument."
                )
            else:
                raise ValueError(
                    f"The differentiation included in the forecaster "
                    f"({forecaster.differentiation_max}) differs from the differentiation "
                    f"included in the cv ({cv.differentiation}). Set the same value "
                    f"for both using the `differentiation` argument."
                )

    if not isinstance(metric, (str, Callable, list)):
        raise TypeError(
            f"`metric` must be a string, a callable function, or a list containing "
            f"multiple strings and/or callables. Got {type(metric)}."
        )

    if forecaster_name == "ForecasterEquivalentDate" and isinstance(
        forecaster.offset, pd.tseries.offsets.DateOffset
    ):
        # NOTE: Checks when initial_train_size is not None cannot be done here
        # because the forecaster is not fitted yet and we don't know the
        # window_size since pd.DateOffset is not a fixed window size.
        if initial_train_size is None:
            raise ValueError(
                f"`initial_train_size` must be an integer greater than "
                f"the `window_size` of the forecaster ({forecaster.window_size}) "
                f"and smaller than the length of `{data_name}` ({data_length}) or "
                f"a date within this range of the index."
            )
    elif initial_train_size is not None:
        if forecaster_name in forecasters_uni:
            index = cv._extract_index(y)
        else:
            index = cv._extract_index(series)

        initial_train_size = date_to_index_position(
                                 index        = index, 
                                 date_input   = initial_train_size, 
                                 method       = 'validation',
                                 date_literal = 'initial_train_size'
                             )
        if initial_train_size < forecaster.window_size or initial_train_size >= data_length:
            raise ValueError(
                f"If `initial_train_size` is an integer, it must be greater than "
                f"the `window_size` of the forecaster ({forecaster.window_size}) "
                f"and smaller than the length of `{data_name}` ({data_length}). If "
                f"it is a date, it must be within this range of the index."
            )
        if allow_incomplete_fold:
            # At least one observation after the gap to allow incomplete fold
            if data_length <= initial_train_size + gap:
                raise ValueError(
                    f"`{data_name}` must have more than `initial_train_size + gap` "
                    f"observations to create at least one fold.\n"
                    f"    Time series length: {data_length}\n"
                    f"    Required > {initial_train_size + gap}\n"
                    f"    initial_train_size: {initial_train_size}\n"
                    f"    gap: {gap}\n"
                )
        else:
            # At least one complete fold
            if data_length < initial_train_size + gap + steps:
                raise ValueError(
                    f"`{data_name}` must have at least `initial_train_size + gap + steps` "
                    f"observations to create a minimum of one complete fold "
                    f"(allow_incomplete_fold=False).\n"
                    f"    Time series length: {data_length}\n"
                    f"    Required >= {initial_train_size + gap + steps}\n"
                    f"    initial_train_size: {initial_train_size}\n"
                    f"    gap: {gap}\n"
                    f"    steps: {steps}\n"
                )
    else:
        if forecaster_name in ['ForecasterStats', 'ForecasterEquivalentDate']:
            raise ValueError(
                f"`initial_train_size` must be an integer smaller than the "
                f"length of `{data_name}` ({data_length})."
            )
        else:
            if not forecaster.is_fitted:
                raise NotFittedError(
                    "`forecaster` must be already trained if no `initial_train_size` "
                    "is provided."
                )
            if refit:
                raise ValueError(
                    "`refit` is only allowed when `initial_train_size` is not `None`."
                )

    if forecaster_name == 'ForecasterStats' and cv.skip_folds is not None:
        raise ValueError(
            "`skip_folds` is not allowed for ForecasterStats. Set it to `None`."
        )

    if not isinstance(add_aggregated_metric, bool):
        raise TypeError("`add_aggregated_metric` must be a boolean: `True`, `False`.")
    if not isinstance(n_boot, (int, np.integer)) or n_boot < 0:
        raise TypeError(f"`n_boot` must be an integer greater than 0. Got {n_boot}.")
    if not isinstance(use_in_sample_residuals, bool):
        raise TypeError("`use_in_sample_residuals` must be a boolean: `True`, `False`.")
    if not isinstance(use_binned_residuals, bool):
        raise TypeError("`use_binned_residuals` must be a boolean: `True`, `False`.")
    if not isinstance(random_state, (int, np.integer)) or random_state < 0:
        raise TypeError(f"`random_state` must be an integer greater than 0. Got {random_state}.")
    if not isinstance(return_predictors, bool):
        raise TypeError("`return_predictors` must be a boolean: `True`, `False`.")
    if not isinstance(n_jobs, int) and n_jobs != 'auto':
        raise TypeError(f"`n_jobs` must be an integer or `'auto'`. Got {n_jobs}.")
    if not isinstance(show_progress, bool):
        raise TypeError("`show_progress` must be a boolean: `True`, `False`.")
    if not isinstance(suppress_warnings, bool):
        raise TypeError("`suppress_warnings` must be a boolean: `True`, `False`.")
    if not isinstance(suppress_warnings_fit, bool):
        raise TypeError("`suppress_warnings_fit` must be a boolean: `True`, `False`.")

    if interval is not None or alpha is not None:

        if forecaster_name in forecasters_boot_conformal:

            if interval_method == 'conformal':
                if not isinstance(interval, (float, list, tuple)):
                    raise TypeError(
                        f"When `interval_method` is 'conformal', `interval` must "
                        f"be a float or a list/tuple defining a symmetric interval. "
                        f"Got {type(interval)}."
                    )
            elif interval_method == 'bootstrapping':
                if (
                    not isinstance(interval, (float, list, tuple, str))
                    and (not hasattr(interval, "_pdf") or not callable(getattr(interval, "fit", None)))
                ):                
                    raise TypeError(
                        f"When `interval_method` is 'bootstrapping', `interval` "
                        f"must be a float, a list or tuple of floats, a "
                        f"scipy.stats distribution object (with methods `_pdf` and "
                        f"`fit`) or the string 'bootstrapping'. Got {type(interval)}."
                    )
                if isinstance(interval, (list, tuple)):
                    for i in interval:
                        if not isinstance(i, (int, float)):
                            raise TypeError(
                                f"`interval` must be a list or tuple of floats. "
                                f"Got {type(i)} in {interval}."
                            )
                    if len(interval) == 2:
                        check_interval(interval=interval)
                    else:
                        for q in interval:
                            if (q < 0.) or (q > 100.):
                                raise ValueError(
                                    "When `interval` is a list or tuple, all values must be "
                                    "between 0 and 100 inclusive."
                                )
                elif isinstance(interval, str):
                    if interval != 'bootstrapping':
                        raise ValueError(
                            f"When `interval` is a string, it must be 'bootstrapping'."
                            f"Got {interval}."
                        )
            else:
                raise ValueError(
                    f"`interval_method` must be 'bootstrapping' or 'conformal'. "
                    f"Got {interval_method}."
                )
        else:
            if forecaster_name == 'ForecasterRecursiveClassifier':
                raise ValueError(
                    f"`interval` is not supported for {forecaster_name}. Class "
                    f"probabilities are returned by default during backtesting, "
                    f"set `interval=None`."
                )
            check_interval(interval=interval, alpha=alpha)

    if return_predictors and forecaster_name not in forecasters_return_predictors:
        raise ValueError(
            f"`return_predictors` is only allowed for forecasters of type "
            f"{forecasters_return_predictors}. Got {forecaster_name}."
        )

    if forecaster_name in forecasters_direct and forecaster.max_step < steps + gap:
        raise ValueError(
            f"When using a {forecaster_name}, the combination of steps "
            f"+ gap ({steps + gap}) cannot be greater than the `steps` parameter "
            f"declared when the forecaster is initialized ({forecaster.max_step})."
        )

skforecast.model_selection._utils.check_one_step_ahead_input

check_one_step_ahead_input(
    forecaster,
    cv,
    metric,
    y=None,
    series=None,
    exog=None,
    show_progress=True,
    suppress_warnings=False,
)

This is a helper function to check most inputs of hyperparameter tuning functions in modules model_selection when using a OneStepAheadFold.

Parameters:

Name Type Description Default
forecaster Forecaster

Forecaster model.

required
cv OneStepAheadFold

OneStepAheadFold object with the information needed to split the data into folds.

required
metric (str, Callable, list)

Metric used to quantify the goodness of fit of the model.

required
y pandas Series

Training time series for uni-series forecasters.

None
series pandas DataFrame, dict

Training time series for multi-series forecasters.

None
exog pandas Series, pandas DataFrame, dict

Exogenous variables.

None
show_progress bool

Whether to show a progress bar.

True
suppress_warnings bool

If True, skforecast warnings will be suppressed during the hyperparameter search. See skforecast.exceptions.warn_skforecast_categories for more information.

False

Returns:

Type Description
None
Source code in skforecast\model_selection\_utils.py
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
def check_one_step_ahead_input(
    forecaster: object,
    cv: object,
    metric: str | Callable | list[str | Callable],
    y: pd.Series | None = None,
    series: pd.DataFrame | dict[str, pd.Series | pd.DataFrame] = None,
    exog: pd.Series | pd.DataFrame | dict[str, pd.Series | pd.DataFrame] | None = None,
    show_progress: bool = True,
    suppress_warnings: bool = False
) -> None:
    """
    This is a helper function to check most inputs of hyperparameter tuning
    functions in modules `model_selection` when using a `OneStepAheadFold`.

    Parameters
    ----------
    forecaster : Forecaster
        Forecaster model.
    cv : OneStepAheadFold
        OneStepAheadFold object with the information needed to split the data into folds.
    metric : str, Callable, list
        Metric used to quantify the goodness of fit of the model.
    y : pandas Series, default None
        Training time series for uni-series forecasters.
    series : pandas DataFrame, dict, default None
        Training time series for multi-series forecasters.
    exog : pandas Series, pandas DataFrame, dict, default None
        Exogenous variables.
    show_progress : bool, default True
        Whether to show a progress bar.
    suppress_warnings: bool, default False
        If `True`, skforecast warnings will be suppressed during the hyperparameter 
        search. See skforecast.exceptions.warn_skforecast_categories for more
        information.

    Returns
    -------
    None

    """

    forecaster_name = type(forecaster).__name__
    cv_name = type(cv).__name__

    if cv_name != "OneStepAheadFold":
        raise TypeError(f"`cv` must be a 'OneStepAheadFold' object. Got '{cv_name}'.")

    initial_train_size = cv.initial_train_size

    forecasters_one_step_ahead = [
        "ForecasterRecursive",
        "ForecasterDirect",
        "ForecasterRecursiveClassifier",
        'ForecasterRecursiveMultiSeries',
        'ForecasterDirectMultiVariate'
    ]
    if forecaster_name not in forecasters_one_step_ahead:
        raise TypeError(
            f"Only forecasters of type {forecasters_one_step_ahead} are allowed "
            f"when using `cv` of type `OneStepAheadFold`. Got {forecaster_name}."
        )

    forecasters_uni = [
        "ForecasterRecursive",
        "ForecasterDirect",
        "ForecasterRecursiveClassifier"
    ]
    forecasters_multi_no_dict = [
        "ForecasterDirectMultiVariate",
    ]
    forecasters_multi_dict = [
        "ForecasterRecursiveMultiSeries"
    ]

    if forecaster_name in forecasters_uni:
        if not isinstance(y, pd.Series):
            raise TypeError(f"`y` must be a pandas Series. Got {type(y)}")
        data_name = 'y'
        data_length = len(y)

    elif forecaster_name in forecasters_multi_no_dict:
        if not isinstance(series, pd.DataFrame):
            raise TypeError(f"`series` must be a pandas DataFrame. Got {type(series)}")
        data_name = 'series'
        data_length = len(series)

    elif forecaster_name in forecasters_multi_dict:

        # NOTE: Checks are not need as they are done in the function 
        # `check_preprocess_series` that is used before `check_one_step_ahead_input`
        # in the backtesting function.

        data_name = 'series'
        data_length = max([len(series[serie]) for serie in series])

    if exog is not None:
        if forecaster_name in forecasters_multi_dict:
            # NOTE: Checks are not need as they are done in the function 
            # `check_preprocess_exog_multiseries` that is used before 
            # `check_backtesting_input` in the backtesting function.
            pass
        else:
            if not isinstance(exog, (pd.Series, pd.DataFrame)):
                raise TypeError(
                    f"`exog` must be a pandas Series, DataFrame or None. Got {type(exog)}."
                )

    if hasattr(forecaster, 'differentiation'):
        if forecaster.differentiation_max != cv.differentiation:
            if forecaster_name == "ForecasterRecursiveMultiSeries" and isinstance(
                forecaster.differentiation, dict
            ):
                raise ValueError(
                    f"When using a dict as `differentiation` in ForecasterRecursiveMultiSeries, "
                    f"the `differentiation` included in the cv ({cv.differentiation}) must be "
                    f"the same as the maximum `differentiation` included in the forecaster "
                    f"({forecaster.differentiation_max}). Set the same value "
                    f"for both using the `differentiation` argument."
                )
            else:
                raise ValueError(
                    f"The differentiation included in the forecaster "
                    f"({forecaster.differentiation_max}) differs from the differentiation "
                    f"included in the cv ({cv.differentiation}). Set the same value "
                    f"for both using the `differentiation` argument."
                )

    if not isinstance(metric, (str, Callable, list)):
        raise TypeError(
            f"`metric` must be a string, a callable function, or a list containing "
            f"multiple strings and/or callables. Got {type(metric)}."
        )

    if forecaster_name in forecasters_uni:
        index = cv._extract_index(y)
    else:
        index = cv._extract_index(series)

    initial_train_size = date_to_index_position(
                             index        = index, 
                             date_input   = initial_train_size, 
                             method       = 'validation',
                             date_literal = 'initial_train_size'
                         )
    if initial_train_size < forecaster.window_size or initial_train_size >= data_length:
        raise ValueError(
            f"If `initial_train_size` is an integer, it must be greater than "
            f"the `window_size` of the forecaster ({forecaster.window_size}) "
            f"and smaller than the length of `{data_name}` ({data_length}). If "
            f"it is a date, it must be within this range of the index."
        )

    if not isinstance(show_progress, bool):
        raise TypeError("`show_progress` must be a boolean: `True`, `False`.")
    if not isinstance(suppress_warnings, bool):
        raise TypeError("`suppress_warnings` must be a boolean: `True`, `False`.")

    if not suppress_warnings:
        warnings.warn(
            "One-step-ahead predictions are used for faster model comparison, but they "
            "may not fully represent multi-step prediction performance. It is recommended "
            "to backtest the final model for a more accurate multi-step performance "
            "estimate.", OneStepAheadValidationWarning
        )

skforecast.model_selection._utils.select_n_jobs_backtesting

select_n_jobs_backtesting(forecaster, refit)

Select the optimal number of jobs to use in the backtesting process. This selection is based on heuristics and is not guaranteed to be optimal.

The number of jobs is chosen as follows:

  • If refit is an integer, then n_jobs = 1. This is because parallelization doesn't work with intermittent refit.
  • If forecaster is 'ForecasterRecursive' and estimator is a linear estimator, then n_jobs = 1.
  • If forecaster is 'ForecasterRecursive' and estimator is not a linear estimator then n_jobs = cpu_count() - 1.
  • If forecaster is 'ForecasterDirect' or 'ForecasterDirectMultiVariate' and refit = True, then n_jobs = cpu_count() - 1.
  • If forecaster is 'ForecasterDirect' or 'ForecasterDirectMultiVariate' and refit = False, then n_jobs = 1.
  • If forecaster is 'ForecasterRecursiveMultiSeries', then n_jobs = cpu_count() - 1.
  • If forecaster is 'ForecasterStats' or 'ForecasterEquivalentDate', then n_jobs = 1.
  • If estimator is a LGBMRegressor(n_jobs=1), then n_jobs = cpu_count() - 1.
  • If estimator is a LGBMRegressor with internal n_jobs != 1, then n_jobs = 1. This is because lightgbm is highly optimized for gradient boosting and parallelizes operations at a very fine-grained level, making additional parallelization unnecessary and potentially harmful due to resource contention.

Parameters:

Name Type Description Default
forecaster Forecaster

Forecaster model.

required
refit (bool, int)

If the forecaster is refitted during the backtesting process.

required

Returns:

Name Type Description
n_jobs int

The number of jobs to run in parallel.

Source code in skforecast\model_selection\_utils.py
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
def select_n_jobs_backtesting(
    forecaster: object,
    refit: bool | int
) -> int:
    """
    Select the optimal number of jobs to use in the backtesting process. This
    selection is based on heuristics and is not guaranteed to be optimal.

    The number of jobs is chosen as follows:

    - If `refit` is an integer, then `n_jobs = 1`. This is because parallelization doesn't 
    work with intermittent refit.
    - If forecaster is 'ForecasterRecursive' and estimator is a linear estimator, 
    then `n_jobs = 1`.
    - If forecaster is 'ForecasterRecursive' and estimator is not a linear 
    estimator then `n_jobs = cpu_count() - 1`.
    - If forecaster is 'ForecasterDirect' or 'ForecasterDirectMultiVariate'
    and `refit = True`, then `n_jobs = cpu_count() - 1`.
    - If forecaster is 'ForecasterDirect' or 'ForecasterDirectMultiVariate'
    and `refit = False`, then `n_jobs = 1`.
    - If forecaster is 'ForecasterRecursiveMultiSeries', then `n_jobs = cpu_count() - 1`.
    - If forecaster is 'ForecasterStats' or 'ForecasterEquivalentDate', 
    then `n_jobs = 1`.
    - If estimator is a `LGBMRegressor(n_jobs=1)`, then `n_jobs = cpu_count() - 1`.
    - If estimator is a `LGBMRegressor` with internal n_jobs != 1, then `n_jobs = 1`.
    This is because `lightgbm` is highly optimized for gradient boosting and
    parallelizes operations at a very fine-grained level, making additional
    parallelization unnecessary and potentially harmful due to resource contention.

    Parameters
    ----------
    forecaster : Forecaster
        Forecaster model.
    refit : bool, int
        If the forecaster is refitted during the backtesting process.

    Returns
    -------
    n_jobs : int
        The number of jobs to run in parallel.

    """

    forecaster_name = type(forecaster).__name__

    if isinstance(forecaster.estimator, Pipeline):
        estimator = forecaster.estimator[-1]
        estimator_name = type(estimator).__name__
    else:
        estimator = forecaster.estimator
        estimator_name = type(estimator).__name__

    linear_estimators = [
        estimator_name
        for estimator_name in dir(sklearn.linear_model)
        if not estimator_name.startswith('_')
    ]

    refit = False if refit == 0 else refit
    if not isinstance(refit, bool) and refit != 1:
        n_jobs = 1
    else:
        if forecaster_name in ['ForecasterRecursive']:
            if estimator_name in linear_estimators:
                n_jobs = 1
            elif estimator_name == 'LGBMRegressor':
                n_jobs = cpu_count() - 1 if estimator.n_jobs == 1 else 1
            else:
                n_jobs = cpu_count() - 1
        elif forecaster_name in ['ForecasterDirect', 'ForecasterDirectMultiVariate']:
            # Parallelization is applied during the fitting process.
            n_jobs = 1
        elif forecaster_name in ['ForecasterRecursiveMultiSeries']:
            if estimator_name == 'LGBMRegressor':
                n_jobs = cpu_count() - 1 if estimator.n_jobs == 1 else 1
            else:
                n_jobs = cpu_count() - 1
        elif forecaster_name in ['ForecasterStats', 'ForecasterEquivalentDate']:
            n_jobs = 1
        else:
            n_jobs = 1

    return n_jobs