model_selection_sarimax
¶
backtesting_sarimax(forecaster, y, steps, metric, initial_train_size, fixed_train_size=True, gap=0, allow_incomplete_fold=True, exog=None, refit=False, alpha=None, interval=None, n_jobs='auto', verbose=False, show_progress=True)
¶
Backtesting of ForecasterSarimax.
- If
refit
isFalse
, the model will be trained only once using theinitial_train_size
first observations. - If
refit
isTrue
, the model is trained on each iteration, increasing the training set. - If
refit
is aninteger
, the model will be trained every that number of iterations.
A copy of the original forecaster is created so that it is not modified during the process.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
forecaster |
ForecasterSarimax
|
Forecaster model. |
required |
y |
pandas Series
|
Training time series. |
required |
steps |
int
|
Number of steps to predict. |
required |
metric |
str, Callable, list
|
Metric used to quantify the goodness of fit of the model.
|
required |
initial_train_size |
int
|
Number of samples in the initial train split. The backtest forecaster is
trained using the first |
required |
fixed_train_size |
bool
|
If True, train size doesn't increase but moves by |
`True`
|
gap |
int
|
Number of samples to be excluded after the end of each training set and before the test set. |
`0`
|
allow_incomplete_fold |
bool
|
Last fold is allowed to have a smaller number of samples than the
|
`True`
|
exog |
pandas Series, pandas DataFrame
|
Exogenous variable/s included as predictor/s. Must have the same
number of observations as |
`None`
|
refit |
bool, int
|
Whether to re-fit the forecaster in each iteration. If |
`False`
|
alpha |
float
|
The confidence intervals for the forecasts are (1 - alpha) %.
If both, |
`0.05`
|
interval |
list
|
Confidence of the prediction interval estimated. The values must be
symmetric. Sequence of percentiles to compute, which must be between
0 and 100 inclusive. For example, interval of 95% should be as
|
`None`
|
n_jobs |
int, auto
|
The number of jobs to run in parallel. If |
`'auto'`
|
verbose |
bool
|
Print number of folds and index of training and validation sets used for backtesting. |
`False`
|
show_progress |
bool
|
Whether to show a progress bar. |
True
|
Returns:
Name | Type | Description |
---|---|---|
metrics_value |
float, list
|
Value(s) of the metric(s). |
backtest_predictions |
pandas DataFrame
|
Value of predictions and their estimated interval if
|
Source code in skforecast\model_selection_sarimax\model_selection_sarimax.py
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
|
grid_search_sarimax(forecaster, y, param_grid, steps, metric, initial_train_size, fixed_train_size=True, gap=0, allow_incomplete_fold=True, exog=None, refit=False, return_best=True, n_jobs='auto', verbose=True, show_progress=True)
¶
Exhaustive search over specified parameter values for a ForecasterSarimax object. Validation is done using time series backtesting.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
forecaster |
ForecasterSarimax
|
Forecaster model. |
required |
y |
pandas Series
|
Training time series. |
required |
param_grid |
dict
|
Dictionary with parameters names ( |
required |
steps |
int
|
Number of steps to predict. |
required |
metric |
str, Callable, list
|
Metric used to quantify the goodness of fit of the model.
|
required |
initial_train_size |
int
|
Number of samples in the initial train split. The backtest forecaster is
trained using the first |
required |
fixed_train_size |
bool
|
If True, train size doesn't increase but moves by |
`True`
|
gap |
int
|
Number of samples to be excluded after the end of each training set and before the test set. |
`0`
|
allow_incomplete_fold |
bool
|
Last fold is allowed to have a smaller number of samples than the
|
`True`
|
exog |
pandas Series, pandas DataFrame
|
Exogenous variable/s included as predictor/s. Must have the same
number of observations as |
`None`
|
refit |
bool, int
|
Whether to re-fit the forecaster in each iteration. If |
`False`
|
return_best |
bool
|
Refit the |
`True`
|
n_jobs |
int, auto
|
The number of jobs to run in parallel. If |
`'auto'`
|
verbose |
bool
|
Print number of folds used for cv or backtesting. |
`True`
|
show_progress |
bool
|
Whether to show a progress bar. |
True
|
Returns:
Name | Type | Description |
---|---|---|
results |
pandas DataFrame
|
Results for each combination of parameters.
|
Source code in skforecast\model_selection_sarimax\model_selection_sarimax.py
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 |
|
random_search_sarimax(forecaster, y, param_distributions, steps, metric, initial_train_size, fixed_train_size=True, gap=0, allow_incomplete_fold=True, exog=None, refit=False, n_iter=10, random_state=123, return_best=True, n_jobs='auto', verbose=True, show_progress=True)
¶
Random search over specified parameter values or distributions for a Forecaster object. Validation is done using time series backtesting.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
forecaster |
ForecasterSarimax
|
Forecaster model. |
required |
y |
pandas Series
|
Training time series. |
required |
param_distributions |
dict
|
Dictionary with parameters names ( |
required |
steps |
int
|
Number of steps to predict. |
required |
metric |
str, Callable, list
|
Metric used to quantify the goodness of fit of the model.
|
required |
initial_train_size |
int
|
Number of samples in the initial train split. The backtest forecaster is
trained using the first |
required |
fixed_train_size |
bool
|
If True, train size doesn't increase but moves by |
`True`
|
gap |
int
|
Number of samples to be excluded after the end of each training set and before the test set. |
`0`
|
allow_incomplete_fold |
bool
|
Last fold is allowed to have a smaller number of samples than the
|
`True`
|
exog |
pandas Series, pandas DataFrame
|
Exogenous variable/s included as predictor/s. Must have the same
number of observations as |
`None`
|
refit |
bool, int
|
Whether to re-fit the forecaster in each iteration. If |
`False`
|
n_iter |
int
|
Number of parameter settings that are sampled. n_iter trades off runtime vs quality of the solution. |
`10`
|
random_state |
int
|
Sets a seed to the random sampling for reproducible output. |
`123`
|
return_best |
bool
|
Refit the |
`True`
|
n_jobs |
int, auto
|
The number of jobs to run in parallel. If |
`'auto'`
|
verbose |
bool
|
Print number of folds used for cv or backtesting. |
`True`
|
show_progress |
bool
|
Whether to show a progress bar. |
True
|
Returns:
Name | Type | Description |
---|---|---|
results |
pandas DataFrame
|
Results for each combination of parameters.
|
Source code in skforecast\model_selection_sarimax\model_selection_sarimax.py
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 |
|