ForecasterAutoreg
¶
ForecasterAutoreg(regressor, lags, transformer_y=None, transformer_exog=None, weight_func=None, fit_kwargs=None, forecaster_id=None)
¶
Bases: ForecasterBase
This class turns any regressor compatible with the scikit-learn API into a recursive autoregressive (multi-step) forecaster.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
regressor |
regressor or pipeline compatible with the scikit-learn API
|
An instance of a regressor or pipeline compatible with the scikit-learn API |
required |
lags |
int, list, numpy ndarray, range
|
Lags used as predictors. Index starts at 1, so lag 1 is equal to t-1.
|
required |
transformer_y |
object transformer (preprocessor)
|
An instance of a transformer (preprocessor) compatible with the scikit-learn
preprocessing API with methods: fit, transform, fit_transform and inverse_transform.
ColumnTransformers are not allowed since they do not have inverse_transform method.
The transformation is applied to |
`None`
|
transformer_exog |
object transformer (preprocessor)
|
An instance of a transformer (preprocessor) compatible with the scikit-learn
preprocessing API. The transformation is applied to |
`None`
|
weight_func |
Callable
|
Function that defines the individual weights for each sample based on the
index. For example, a function that assigns a lower weight to certain dates.
Ignored if |
`None`
|
fit_kwargs |
dict
|
Additional arguments to be passed to the |
`None`
|
forecaster_id |
str, int
|
Name used as an identifier of the forecaster. New in version 0.7.0 |
`None`
|
Attributes:
Name | Type | Description |
---|---|---|
regressor |
regressor or pipeline compatible with the scikit-learn API
|
An instance of a regressor or pipeline compatible with the scikit-learn API. |
lags |
numpy ndarray
|
Lags used as predictors. |
transformer_y |
object transformer (preprocessor)
|
An instance of a transformer (preprocessor) compatible with the scikit-learn
preprocessing API with methods: fit, transform, fit_transform and inverse_transform.
ColumnTransformers are not allowed since they do not have inverse_transform method.
The transformation is applied to |
transformer_exog |
object transformer (preprocessor)
|
An instance of a transformer (preprocessor) compatible with the scikit-learn
preprocessing API. The transformation is applied to |
weight_func |
Callable
|
Function that defines the individual weights for each sample based on the
index. For example, a function that assigns a lower weight to certain dates.
Ignored if |
source_code_weight_func |
str
|
Source code of the custom function used to create weights. |
max_lag |
int
|
Maximum value of lag included in |
window_size |
int
|
Size of the window needed to create the predictors. It is equal to |
last_window |
pandas Series
|
Last window the forecaster has seen during training. It stores the
values needed to predict the next |
index_type |
type
|
Type of index of the input used in training. |
index_freq |
str
|
Frequency of Index of the input used in training. |
training_range |
pandas Index
|
First and last values of index of the data used during training. |
included_exog |
bool
|
If the forecaster has been trained using exogenous variable/s. |
exog_type |
type
|
Type of exogenous data (pandas Series or DataFrame) used in training. |
exog_dtypes |
dict
|
Type of each exogenous variable/s used in training. If |
exog_col_names |
list
|
Names of columns of |
X_train_col_names |
list
|
Names of columns of the matrix created internally for training. |
fit_kwargs |
dict
|
Additional arguments to be passed to the |
in_sample_residuals |
numpy ndarray
|
Residuals of the model when predicting training data. Only stored up to
1000 values. If |
out_sample_residuals |
numpy ndarray
|
Residuals of the model when predicting non training data. Only stored
up to 1000 values. If |
fitted |
bool
|
Tag to identify if the regressor has been fitted (trained). |
creation_date |
str
|
Date of creation. |
fit_date |
str
|
Date of last fit. |
skforcast_version |
str
|
Version of skforecast library used to create the forecaster. |
python_version |
str
|
Version of python used to create the forecaster. |
forecaster_id |
str, int
|
Name used as an identifier of the forecaster. |
Source code in skforecast\ForecasterAutoreg\ForecasterAutoreg.py
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
|
_create_lags(y)
¶
Transforms a 1d array into a 2d array (X) and a 1d array (y). Each row in X is associated with a value of y and it represents the lags that precede it.
Notice that, the returned matrix X_data, contains the lag 1 in the first column, the lag 2 in the second column and so on.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y |
numpy ndarray
|
1d numpy ndarray Training time series. |
required |
Returns:
Name | Type | Description |
---|---|---|
X_data |
numpy ndarray
|
2d numpy ndarray with the lagged values (predictors). Shape: (samples - max(self.lags), len(self.lags)) |
y_data |
numpy ndarray
|
1d numpy ndarray with the values of the time series related to each
row of |
Source code in skforecast\ForecasterAutoreg\ForecasterAutoreg.py
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
|
create_train_X_y(y, exog=None)
¶
Create training matrices from univariate time series and exogenous variables.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y |
pandas Series
|
Training time series. |
required |
exog |
pandas Series, pandas DataFrame
|
Exogenous variable/s included as predictor/s. Must have the same
number of observations as |
`None`
|
Returns:
Name | Type | Description |
---|---|---|
X_train |
pandas DataFrame
|
Training values (predictors). Shape: (len(y) - self.max_lag, len(self.lags)) |
y_train |
pandas Series
|
Values (target) of the time series related to each row of |
Source code in skforecast\ForecasterAutoreg\ForecasterAutoreg.py
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
|
create_sample_weights(X_train)
¶
Crate weights for each observation according to the forecaster's attribute
weight_func
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X_train |
pandas DataFrame
|
Dataframe created with the |
required |
Returns:
Name | Type | Description |
---|---|---|
sample_weight |
numpy ndarray
|
Weights to use in |
Source code in skforecast\ForecasterAutoreg\ForecasterAutoreg.py
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 |
|
fit(y, exog=None, store_in_sample_residuals=True)
¶
Training Forecaster.
Additional arguments to be passed to the fit
method of the regressor
can be added with the fit_kwargs
argument when initializing the forecaster.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y |
pandas Series
|
Training time series. |
required |
exog |
pandas Series, pandas DataFrame
|
Exogenous variable/s included as predictor/s. Must have the same
number of observations as |
`None`
|
store_in_sample_residuals |
bool
|
If |
`True`
|
Returns:
Type | Description |
---|---|
None
|
Source code in skforecast\ForecasterAutoreg\ForecasterAutoreg.py
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 |
|
_recursive_predict(steps, last_window, exog=None)
¶
Predict n steps ahead. It is an iterative process in which, each prediction, is used as a predictor for the next step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
steps |
int
|
Number of future steps predicted. |
required |
last_window |
numpy ndarray
|
Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1). |
required |
exog |
numpy ndarray
|
Exogenous variable/s included as predictor/s. |
`None`
|
Returns:
Name | Type | Description |
---|---|---|
predictions |
numpy ndarray
|
Predicted values. |
Source code in skforecast\ForecasterAutoreg\ForecasterAutoreg.py
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 |
|
predict(steps, last_window=None, exog=None)
¶
Predict n steps ahead. It is an recursive process in which, each prediction, is used as a predictor for the next step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
steps |
int
|
Number of future steps predicted. |
required |
last_window |
pandas Series
|
Series values used to create the predictors (lags) needed in the
first iteration of the prediction (t + 1).
If |
`None`
|
exog |
pandas Series, pandas DataFrame
|
Exogenous variable/s included as predictor/s. |
`None`
|
Returns:
Name | Type | Description |
---|---|---|
predictions |
pandas Series
|
Predicted values. |
Source code in skforecast\ForecasterAutoreg\ForecasterAutoreg.py
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 |
|
predict_bootstrapping(steps, last_window=None, exog=None, n_boot=500, random_state=123, in_sample_residuals=True)
¶
Generate multiple forecasting predictions using a bootstrapping process. By sampling from a collection of past observed errors (the residuals), each iteration of bootstrapping generates a different set of predictions. See the Notes section for more information.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
steps |
int
|
Number of future steps predicted. |
required |
last_window |
pandas Series
|
Series values used to create the predictors (lags) needed in the
first iteration of the prediction (t + 1).
If |
`None`
|
exog |
pandas Series, pandas DataFrame
|
Exogenous variable/s included as predictor/s. |
`None`
|
n_boot |
int
|
Number of bootstrapping iterations used to estimate prediction intervals. |
`500`
|
random_state |
int
|
Sets a seed to the random generator, so that boot intervals are always deterministic. |
`123`
|
in_sample_residuals |
bool
|
If |
`True`
|
Returns:
Name | Type | Description |
---|---|---|
boot_predictions |
pandas DataFrame
|
Predictions generated by bootstrapping. Shape: (steps, n_boot) |
Notes¶
More information about prediction intervals in forecasting: https://otexts.com/fpp3/prediction-intervals.html#prediction-intervals-from-bootstrapped-residuals Forecasting: Principles and Practice (3nd ed) Rob J Hyndman and George Athanasopoulos.
Source code in skforecast\ForecasterAutoreg\ForecasterAutoreg.py
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 |
|
predict_interval(steps, last_window=None, exog=None, interval=[5, 95], n_boot=500, random_state=123, in_sample_residuals=True)
¶
Iterative process in which each prediction is used as a predictor for the next step, and bootstrapping is used to estimate prediction intervals. Both predictions and intervals are returned.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
steps |
int
|
Number of future steps predicted. |
required |
last_window |
pandas Series
|
Series values used to create the predictors (lags) needed in the
first iteration of the prediction (t + 1).
If |
`None`
|
exog |
pandas Series, pandas DataFrame
|
Exogenous variable/s included as predictor/s. |
`None`
|
interval |
list
|
Confidence of the prediction interval estimated. Sequence of
percentiles to compute, which must be between 0 and 100 inclusive.
For example, interval of 95% should be as |
`[5, 95]`
|
n_boot |
int
|
Number of bootstrapping iterations used to estimate prediction intervals. |
`500`
|
random_state |
int
|
Sets a seed to the random generator, so that boot intervals are always deterministic. |
`123`
|
in_sample_residuals |
bool
|
If |
`True`
|
Returns:
Name | Type | Description |
---|---|---|
predictions |
pandas DataFrame
|
Values predicted by the forecaster and their estimated interval.
|
Notes¶
More information about prediction intervals in forecasting: https://otexts.com/fpp2/prediction-intervals.html Forecasting: Principles and Practice (2nd ed) Rob J Hyndman and George Athanasopoulos.
Source code in skforecast\ForecasterAutoreg\ForecasterAutoreg.py
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 |
|
predict_dist(steps, distribution, last_window=None, exog=None, n_boot=500, random_state=123, in_sample_residuals=True)
¶
Fit a given probability distribution for each step. After generating multiple forecasting predictions through a bootstrapping process, each step is fitted to the given distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
steps |
int
|
Number of future steps predicted. |
required |
distribution |
Object
|
A distribution object from scipy.stats. |
required |
last_window |
pandas Series
|
Series values used to create the predictors (lags) needed in the
first iteration of the prediction (t + 1). |
`None`
|
exog |
pandas Series, pandas DataFrame
|
Exogenous variable/s included as predictor/s. |
`None`
|
n_boot |
int
|
Number of bootstrapping iterations used to estimate prediction intervals. |
`500`
|
random_state |
int
|
Sets a seed to the random generator, so that boot intervals are always deterministic. |
`123`
|
in_sample_residuals |
bool
|
If |
`True`
|
Returns:
Name | Type | Description |
---|---|---|
predictions |
pandas DataFrame
|
Distribution parameters estimated for each step. |
Source code in skforecast\ForecasterAutoreg\ForecasterAutoreg.py
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 |
|
set_params(params)
¶
Set new values to the parameters of the scikit learn model stored in the forecaster.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
params |
dict
|
Parameters values. |
required |
Returns:
Type | Description |
---|---|
None
|
Source code in skforecast\ForecasterAutoreg\ForecasterAutoreg.py
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 |
|
set_fit_kwargs(fit_kwargs)
¶
Set new values for the additional keyword arguments passed to the fit
method of the regressor.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
fit_kwargs |
dict
|
Dict of the form {"argument": new_value}. |
required |
Returns:
Type | Description |
---|---|
None
|
Source code in skforecast\ForecasterAutoreg\ForecasterAutoreg.py
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 |
|
set_lags(lags)
¶
Set new value to the attribute lags
.
Attributes max_lag
and window_size
are also updated.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
lags |
int, list, numpy ndarray, range
|
Lags used as predictors. Index starts at 1, so lag 1 is equal to t-1.
|
required |
Returns:
Type | Description |
---|---|
None
|
Source code in skforecast\ForecasterAutoreg\ForecasterAutoreg.py
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 |
|
set_out_sample_residuals(residuals, append=True, transform=True, random_state=123)
¶
Set new values to the attribute out_sample_residuals
. Out of sample
residuals are meant to be calculated using observations that did not
participate in the training process.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
residuals |
numpy ndarray
|
Values of residuals. If len(residuals) > 1000, only a random sample of 1000 values are stored. |
required |
append |
bool
|
If |
`True`
|
transform |
bool
|
If |
`True`
|
random_state |
int
|
Sets a seed to the random sampling for reproducible output. |
`123`
|
Returns:
Type | Description |
---|---|
None
|
Source code in skforecast\ForecasterAutoreg\ForecasterAutoreg.py
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 |
|
get_feature_importances()
¶
Return feature importances of the regressor stored in the forecaster.
Only valid when regressor stores internally the feature importances in the
attribute feature_importances_
or coef_
. Otherwise, returns None
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
self |
required |
Returns:
Name | Type | Description |
---|---|---|
feature_importances |
pandas DataFrame
|
Feature importances associated with each predictor. |
Source code in skforecast\ForecasterAutoreg\ForecasterAutoreg.py
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 |
|