Skip to content

model_selection_multiseries

backtesting_forecaster_multiseries(forecaster, series, steps, metric, initial_train_size, fixed_train_size=True, gap=0, allow_incomplete_fold=True, levels=None, exog=None, refit=False, interval=None, n_boot=500, random_state=123, in_sample_residuals=True, n_jobs='auto', verbose=False, show_progress=True)

Backtesting for multi-series and multivariate forecasters.

  • If refit is False, the model will be trained only once using the initial_train_size first observations.
  • If refit is True, the model is trained on each iteration, increasing the training set.
  • If refit is an integer, the model will be trained every that number of iterations.
  • If forecaster is already trained and initial_train_size is None, no initial train will be done and all data will be used to evaluate the model. However, the first len(forecaster.last_window) observations are needed to create the initial predictors, so no predictions are calculated for them.

A copy of the original forecaster is created so that it is not modified during the process.

Parameters:

Name Type Description Default
forecaster ForecasterAutoregMultiSeries, ForecasterAutoregMultiSeriesCustom, ForecasterAutoregMultiVariate

Forecaster model.

required
series pandas DataFrame

Training time series.

required
steps int

Number of steps to predict.

required
metric str, Callable, list

Metric used to quantify the goodness of fit of the model.

  • If string: {'mean_squared_error', 'mean_absolute_error', 'mean_absolute_percentage_error', 'mean_squared_log_error'}
  • If Callable: Function with arguments y_true, y_pred that returns a float.
  • If list: List containing multiple strings and/or Callables.
required
initial_train_size int

Number of samples in the initial train split. If None and forecaster is already trained, no initial train is done and all data is used to evaluate the model. However, the first len(forecaster.last_window) observations are needed to create the initial predictors, so no predictions are calculated for them. This useful to backtest the model on the same data used to train it. None is only allowed when refit is False and forecaster is already trained.

`None`
fixed_train_size bool

If True, train size doesn't increase but moves by steps in each iteration.

`True`
gap int

Number of samples to be excluded after the end of each training set and before the test set.

`0`
allow_incomplete_fold bool

Last fold is allowed to have a smaller number of samples than the test_size. If False, the last fold is excluded.

`True`
levels str, list

Time series to be predicted. If None all levels will be predicted.

`None`
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s. Must have the same number of observations as y and should be aligned so that y[i] is regressed on exog[i].

`None`
refit bool, int

Whether to re-fit the forecaster in each iteration. If refit is an integer, the Forecaster will be trained every that number of iterations.

`False`
interval list

Confidence of the prediction interval estimated. Sequence of percentiles to compute, which must be between 0 and 100 inclusive. If None, no intervals are estimated.

`None`
n_boot int

Number of bootstrapping iterations used to estimate prediction intervals.

`500`
random_state int

Sets a seed to the random generator, so that boot intervals are always deterministic.

`123`
in_sample_residuals bool

If True, residuals from the training data are used as proxy of prediction error to create prediction intervals. If False, out_sample_residuals are used if they are already stored inside the forecaster.

`True`
n_jobs int, auto

The number of jobs to run in parallel. If -1, then the number of jobs is set to the number of cores. If 'auto', n_jobs is set using the function skforecast.utils.select_n_jobs_backtesting. New in version 0.9.0

`'auto'`
verbose bool

Print number of folds and index of training and validation sets used for backtesting.

`False`
show_progress bool

Whether to show a progress bar.

True

Returns:

Name Type Description
metrics_levels pandas DataFrame

Value(s) of the metric(s). Index are the levels and columns the metrics.

backtest_predictions pandas DataFrame

Value of predictions and their estimated interval if interval is not None. If there is more than one level, this structure will be repeated for each of them.

  • column pred: predictions.
  • column lower_bound: lower bound of the interval.
  • column upper_bound: upper bound of the interval.
Source code in skforecast\model_selection_multiseries\model_selection_multiseries.py
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
def backtesting_forecaster_multiseries(
    forecaster,
    series: pd.DataFrame,
    steps: int,
    metric: Union[str, Callable, list],
    initial_train_size: Optional[int],
    fixed_train_size: bool=True,
    gap: int=0,
    allow_incomplete_fold: bool=True,
    levels: Optional[Union[str, list]]=None,
    exog: Optional[Union[pd.Series, pd.DataFrame]]=None,
    refit: Optional[Union[bool, int]]=False,
    interval: Optional[list]=None,
    n_boot: int=500,
    random_state: int=123,
    in_sample_residuals: bool=True,
    n_jobs: Optional[Union[int, str]]='auto',
    verbose: bool=False,
    show_progress: bool=True
) -> Tuple[pd.DataFrame, pd.DataFrame]:
    """
    Backtesting for multi-series and multivariate forecasters.

    - If `refit` is `False`, the model will be trained only once using the 
    `initial_train_size` first observations. 
    - If `refit` is `True`, the model is trained on each iteration, increasing
    the training set. 
    - If `refit` is an `integer`, the model will be trained every that number 
    of iterations.
    - If `forecaster` is already trained and `initial_train_size` is `None`,
    no initial train will be done and all data will be used to evaluate the model.
    However, the first `len(forecaster.last_window)` observations are needed
    to create the initial predictors, so no predictions are calculated for them.

    A copy of the original forecaster is created so that it is not modified during 
    the process.

    Parameters
    ----------
    forecaster : ForecasterAutoregMultiSeries, ForecasterAutoregMultiSeriesCustom, ForecasterAutoregMultiVariate
        Forecaster model.
    series : pandas DataFrame
        Training time series.
    steps : int
        Number of steps to predict.
    metric : str, Callable, list
        Metric used to quantify the goodness of fit of the model.

            - If `string`: {'mean_squared_error', 'mean_absolute_error',
             'mean_absolute_percentage_error', 'mean_squared_log_error'}
            - If `Callable`: Function with arguments y_true, y_pred that returns 
            a float.
            - If `list`: List containing multiple strings and/or Callables.
    initial_train_size : int, default `None`
        Number of samples in the initial train split. If `None` and `forecaster` is 
        already trained, no initial train is done and all data is used to evaluate the 
        model. However, the first `len(forecaster.last_window)` observations are needed 
        to create the initial predictors, so no predictions are calculated for them. 
        This useful to backtest the model on the same data used to train it.
        `None` is only allowed when `refit` is `False` and `forecaster` is already
        trained.
    fixed_train_size : bool, default `True`
        If True, train size doesn't increase but moves by `steps` in each iteration.
    gap : int, default `0`
        Number of samples to be excluded after the end of each training set and 
        before the test set.
    allow_incomplete_fold : bool, default `True`
        Last fold is allowed to have a smaller number of samples than the 
        `test_size`. If `False`, the last fold is excluded.
    levels : str, list, default `None`
        Time series to be predicted. If `None` all levels will be predicted.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s. Must have the same
        number of observations as `y` and should be aligned so that y[i] is
        regressed on exog[i].
    refit : bool, int, default `False`
        Whether to re-fit the forecaster in each iteration. If `refit` is an integer, 
        the Forecaster will be trained every that number of iterations.
    interval : list, default `None`
        Confidence of the prediction interval estimated. Sequence of percentiles
        to compute, which must be between 0 and 100 inclusive. If `None`, no
        intervals are estimated.
    n_boot : int, default `500`
        Number of bootstrapping iterations used to estimate prediction
        intervals.
    random_state : int, default `123`
        Sets a seed to the random generator, so that boot intervals are always 
        deterministic.
    in_sample_residuals : bool, default `True`
        If `True`, residuals from the training data are used as proxy of prediction 
        error to create prediction intervals.  If `False`, out_sample_residuals 
        are used if they are already stored inside the forecaster.
    n_jobs : int, 'auto', default `'auto'`
        The number of jobs to run in parallel. If `-1`, then the number of jobs is 
        set to the number of cores. If 'auto', `n_jobs` is set using the function
        skforecast.utils.select_n_jobs_backtesting.
        **New in version 0.9.0**
    verbose : bool, default `False`
        Print number of folds and index of training and validation sets used 
        for backtesting.
    show_progress: bool, default `True`
        Whether to show a progress bar.

    Returns
    -------
    metrics_levels : pandas DataFrame
        Value(s) of the metric(s). Index are the levels and columns the metrics.
    backtest_predictions : pandas DataFrame
        Value of predictions and their estimated interval if `interval` is not `None`.
        If there is more than one level, this structure will be repeated for each of them.

            - column pred: predictions.
            - column lower_bound: lower bound of the interval.
            - column upper_bound: upper bound of the interval.

    """

    if type(forecaster).__name__ not in ['ForecasterAutoregMultiSeries', 
                                         'ForecasterAutoregMultiSeriesCustom', 
                                         'ForecasterAutoregMultiVariate']:
        raise TypeError(
            ("`forecaster` must be of type `ForecasterAutoregMultiSeries`, "
             "`ForecasterAutoregMultiSeriesCustom` or `ForecasterAutoregMultiVariate`, "
             "for all other types of forecasters use the functions available in "
             f"the `model_selection` module. Got {type(forecaster).__name__}")
        )

    check_backtesting_input(
        forecaster            = forecaster,
        steps                 = steps,
        metric                = metric,
        series                = series,
        initial_train_size    = initial_train_size,
        fixed_train_size      = fixed_train_size,
        gap                   = gap,
        allow_incomplete_fold = allow_incomplete_fold,
        refit                 = refit,
        interval              = interval,
        n_boot                = n_boot,
        random_state          = random_state,
        in_sample_residuals   = in_sample_residuals,
        n_jobs                = n_jobs,
        verbose               = verbose,
        show_progress         = show_progress
    )

    if type(forecaster).__name__ in ['ForecasterAutoregMultiSeries', 
                                     'ForecasterAutoregMultiSeriesCustom'] \
        and levels is not None and not isinstance(levels, (str, list)):
        raise TypeError(
            ("`levels` must be a `list` of column names, a `str` of a column name "
             "or `None` when using a `ForecasterAutoregMultiSeries` or "
             "`ForecasterAutoregMultiSeriesCustom`. If the forecaster is of type "
             "`ForecasterAutoregMultiVariate`, this argument is ignored.")
        )

    if type(forecaster).__name__ == 'ForecasterAutoregMultiVariate' \
        and levels and levels != forecaster.level and levels != [forecaster.level]:
        warnings.warn(
            (f"`levels` argument have no use when the forecaster is of type "
             f"`ForecasterAutoregMultiVariate`. The level of this forecaster is "
             f"'{forecaster.level}', to predict another level, change the `level` "
             f"argument when initializing the forecaster."),
             IgnoredArgumentWarning
        )

    metrics_levels, backtest_predictions = _backtesting_forecaster_multiseries(
        forecaster            = forecaster,
        series                = series,
        steps                 = steps,
        levels                = levels,
        metric                = metric,
        initial_train_size    = initial_train_size,
        fixed_train_size      = fixed_train_size,
        gap                   = gap,
        allow_incomplete_fold = allow_incomplete_fold,
        exog                  = exog,
        refit                 = refit,
        interval              = interval,
        n_boot                = n_boot,
        random_state          = random_state,
        in_sample_residuals   = in_sample_residuals,
        n_jobs                = n_jobs,
        verbose               = verbose,
        show_progress         = show_progress
    )

    return metrics_levels, backtest_predictions

grid_search_forecaster_multiseries(forecaster, series, param_grid, steps, metric, initial_train_size, fixed_train_size=True, gap=0, allow_incomplete_fold=True, levels=None, exog=None, lags_grid=None, refit=False, return_best=True, n_jobs='auto', verbose=True, show_progress=True)

Exhaustive search over specified parameter values for a Forecaster object. Validation is done using multi-series backtesting.

Parameters:

Name Type Description Default
forecaster ForecasterAutoregMultiSeries, ForecasterAutoregMultiSeriesCustom, ForecasterAutoregMultiVariate

Forecaster model.

required
series pandas DataFrame

Training time series.

required
param_grid dict

Dictionary with parameters names (str) as keys and lists of parameter settings to try as values.

required
steps int

Number of steps to predict.

required
metric str, Callable, list

Metric used to quantify the goodness of fit of the model.

  • If string: {'mean_squared_error', 'mean_absolute_error', 'mean_absolute_percentage_error', 'mean_squared_log_error'}
  • If Callable: Function with arguments y_true, y_pred that returns a float.
  • If list: List containing multiple strings and/or Callables.
required
initial_train_size int

Number of samples in the initial train split.

required
fixed_train_size bool

If True, train size doesn't increase but moves by steps in each iteration.

`True`
gap int

Number of samples to be excluded after the end of each training set and before the test set.

`0`
allow_incomplete_fold bool

Last fold is allowed to have a smaller number of samples than the test_size. If False, the last fold is excluded.

`True`
levels str, list

level (str) or levels (list) at which the forecaster is optimized. If None, all levels are taken into account. The resulting metric will be the average of the optimization of all levels.

`None`
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s. Must have the same number of observations as y and should be aligned so that y[i] is regressed on exog[i].

`None`
lags_grid list of int, lists, np.narray or range

Lists of lags to try. Only used if forecaster is an instance of ForecasterAutoregMultiSeries or ForecasterAutoregMultiVariate.

`None`
refit bool, int

Whether to re-fit the forecaster in each iteration. If refit is an integer, the Forecaster will be trained every that number of iterations.

`False`
return_best bool

Refit the forecaster using the best found parameters on the whole data.

`True`
n_jobs int, auto

The number of jobs to run in parallel. If -1, then the number of jobs is set to the number of cores. If 'auto', n_jobs is set using the function skforecast.utils.select_n_jobs_backtesting. New in version 0.9.0

`'auto'`
verbose bool

Print number of folds used for cv or backtesting.

`True`
show_progress bool

Whether to show a progress bar.

True

Returns:

Name Type Description
results pandas DataFrame

Results for each combination of parameters.

  • column levels: levels configuration for each iteration.
  • column lags: lags configuration for each iteration.
  • column params: parameters configuration for each iteration.
  • column metric: metric value estimated for each iteration. The resulting metric will be the average of the optimization of all levels.
  • additional n columns with param = value.
Source code in skforecast\model_selection_multiseries\model_selection_multiseries.py
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
def grid_search_forecaster_multiseries(
    forecaster,
    series: pd.DataFrame,
    param_grid: dict,
    steps: int,
    metric: Union[str, Callable, list],
    initial_train_size: int,
    fixed_train_size: bool=True,
    gap: int=0,
    allow_incomplete_fold: bool=True,
    levels: Optional[Union[str, list]]=None,
    exog: Optional[Union[pd.Series, pd.DataFrame]]=None,
    lags_grid: Optional[list]=None,
    refit: Optional[Union[bool, int]]=False,
    return_best: bool=True,
    n_jobs: Optional[Union[int, str]]='auto',
    verbose: bool=True,
    show_progress: bool=True
) -> pd.DataFrame:
    """
    Exhaustive search over specified parameter values for a Forecaster object.
    Validation is done using multi-series backtesting.

    Parameters
    ----------
    forecaster : ForecasterAutoregMultiSeries, ForecasterAutoregMultiSeriesCustom, ForecasterAutoregMultiVariate
        Forecaster model.
    series : pandas DataFrame
        Training time series.
    param_grid : dict
        Dictionary with parameters names (`str`) as keys and lists of parameter
        settings to try as values.
    steps : int
        Number of steps to predict.
    metric : str, Callable, list
        Metric used to quantify the goodness of fit of the model.

            - If `string`: {'mean_squared_error', 'mean_absolute_error',
             'mean_absolute_percentage_error', 'mean_squared_log_error'}
            - If `Callable`: Function with arguments y_true, y_pred that returns 
            a float.
            - If `list`: List containing multiple strings and/or Callables.
    initial_train_size : int 
        Number of samples in the initial train split.
    fixed_train_size : bool, default `True`
        If True, train size doesn't increase but moves by `steps` in each iteration.
    gap : int, default `0`
        Number of samples to be excluded after the end of each training set and 
        before the test set.
    allow_incomplete_fold : bool, default `True`
        Last fold is allowed to have a smaller number of samples than the 
        `test_size`. If `False`, the last fold is excluded.
    levels : str, list, default `None`
        level (`str`) or levels (`list`) at which the forecaster is optimized. 
        If `None`, all levels are taken into account. The resulting metric will be
        the average of the optimization of all levels.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s. Must have the same
        number of observations as `y` and should be aligned so that y[i] is
        regressed on exog[i].
    lags_grid : list of int, lists, np.narray or range, default `None`
        Lists of `lags` to try. Only used if forecaster is an instance of 
        `ForecasterAutoregMultiSeries` or `ForecasterAutoregMultiVariate`.
    refit : bool, int, default `False`
        Whether to re-fit the forecaster in each iteration. If `refit` is an integer, 
        the Forecaster will be trained every that number of iterations.
    return_best : bool, default `True`
        Refit the `forecaster` using the best found parameters on the whole data.
    n_jobs : int, 'auto', default `'auto'`
        The number of jobs to run in parallel. If `-1`, then the number of jobs is 
        set to the number of cores. If 'auto', `n_jobs` is set using the function
        skforecast.utils.select_n_jobs_backtesting.
        **New in version 0.9.0**
    verbose : bool, default `True`
        Print number of folds used for cv or backtesting.
    show_progress: bool, default `True`
        Whether to show a progress bar.

    Returns
    -------
    results : pandas DataFrame
        Results for each combination of parameters.

            - column levels: levels configuration for each iteration.
            - column lags: lags configuration for each iteration.
            - column params: parameters configuration for each iteration.
            - column metric: metric value estimated for each iteration. The resulting 
            metric will be the average of the optimization of all levels.
            - additional n columns with param = value.

    """

    param_grid = list(ParameterGrid(param_grid))

    results = _evaluate_grid_hyperparameters_multiseries(
                  forecaster            = forecaster,
                  series                = series,
                  param_grid            = param_grid,
                  steps                 = steps,
                  metric                = metric,
                  initial_train_size    = initial_train_size,
                  fixed_train_size      = fixed_train_size,
                  gap                   = gap,
                  allow_incomplete_fold = allow_incomplete_fold,
                  levels                = levels,
                  exog                  = exog,
                  lags_grid             = lags_grid,
                  refit                 = refit,
                  n_jobs                = n_jobs,
                  return_best           = return_best,
                  verbose               = verbose,
                  show_progress         = show_progress
              )

    return results

random_search_forecaster_multiseries(forecaster, series, param_distributions, steps, metric, initial_train_size, fixed_train_size=True, gap=0, allow_incomplete_fold=True, levels=None, exog=None, lags_grid=None, refit=False, n_iter=10, random_state=123, return_best=True, n_jobs='auto', verbose=True, show_progress=True)

Random search over specified parameter values or distributions for a Forecaster object. Validation is done using multi-series backtesting.

Parameters:

Name Type Description Default
forecaster ForecasterAutoregMultiSeries, ForecasterAutoregMultiSeriesCustom, ForecasterAutoregMultiVariate

Forecaster model.

required
series pandas DataFrame

Training time series.

required
param_distributions dict

Dictionary with parameters names (str) as keys and distributions or lists of parameters to try.

required
steps int

Number of steps to predict.

required
metric str, Callable, list

Metric used to quantify the goodness of fit of the model.

  • If string: {'mean_squared_error', 'mean_absolute_error', 'mean_absolute_percentage_error', 'mean_squared_log_error'}
  • If Callable: Function with arguments y_true, y_pred that returns a float.
  • If list: List containing multiple strings and/or Callables.
required
initial_train_size int

Number of samples in the initial train split.

required
fixed_train_size bool

If True, train size doesn't increase but moves by steps in each iteration.

`True`
gap int

Number of samples to be excluded after the end of each training set and before the test set.

`0`
allow_incomplete_fold bool

Last fold is allowed to have a smaller number of samples than the test_size. If False, the last fold is excluded.

`True`
levels str, list

level (str) or levels (list) at which the forecaster is optimized. If None, all levels are taken into account. The resulting metric will be the average of the optimization of all levels.

`None`
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s. Must have the same number of observations as y and should be aligned so that y[i] is regressed on exog[i].

`None`
lags_grid list of int, lists, np.narray or range

Lists of lags to try. Only used if forecaster is an instance of ForecasterAutoregMultiSeries or ForecasterAutoregMultiVariate.

`None`
refit bool, int

Whether to re-fit the forecaster in each iteration. If refit is an integer, the Forecaster will be trained every that number of iterations.

`False`
n_iter int

Number of parameter settings that are sampled per lags configuration. n_iter trades off runtime vs quality of the solution.

`10`
random_state int

Sets a seed to the random sampling for reproducible output.

`123`
return_best bool

Refit the forecaster using the best found parameters on the whole data.

`True`
n_jobs int, auto

The number of jobs to run in parallel. If -1, then the number of jobs is set to the number of cores. If 'auto', n_jobs is set using the function skforecast.utils.select_n_jobs_backtesting. New in version 0.9.0

`'auto'`
verbose bool

Print number of folds used for cv or backtesting.

`True`
show_progress bool

Whether to show a progress bar.

True

Returns:

Name Type Description
results pandas DataFrame

Results for each combination of parameters.

  • column levels: levels configuration for each iteration.
  • column lags: lags configuration for each iteration.
  • column params: parameters configuration for each iteration.
  • column metric: metric value estimated for each iteration. The resulting metric will be the average of the optimization of all levels.
  • additional n columns with param = value.
Source code in skforecast\model_selection_multiseries\model_selection_multiseries.py
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
def random_search_forecaster_multiseries(
    forecaster,
    series: pd.DataFrame,
    param_distributions: dict,
    steps: int,
    metric: Union[str, Callable, list],
    initial_train_size: int,
    fixed_train_size: bool=True,
    gap: int=0,
    allow_incomplete_fold: bool=True,
    levels: Optional[Union[str, list]]=None,
    exog: Optional[Union[pd.Series, pd.DataFrame]]=None,
    lags_grid: Optional[list]=None,
    refit: Optional[Union[bool, int]]=False,
    n_iter: int=10,
    random_state: int=123,
    return_best: bool=True,
    n_jobs: Optional[Union[int, str]]='auto',
    verbose: bool=True,
    show_progress: bool=True
) -> pd.DataFrame:
    """
    Random search over specified parameter values or distributions for a Forecaster 
    object. Validation is done using multi-series backtesting.

    Parameters
    ----------
    forecaster : ForecasterAutoregMultiSeries, ForecasterAutoregMultiSeriesCustom, ForecasterAutoregMultiVariate
        Forecaster model.
    series : pandas DataFrame
        Training time series.
    param_distributions : dict
        Dictionary with parameters names (`str`) as keys and distributions or 
        lists of parameters to try.
    steps : int
        Number of steps to predict.
    metric : str, Callable, list
        Metric used to quantify the goodness of fit of the model.

            - If `string`: {'mean_squared_error', 'mean_absolute_error',
             'mean_absolute_percentage_error', 'mean_squared_log_error'}
            - If `Callable`: Function with arguments y_true, y_pred that returns 
            a float.
            - If `list`: List containing multiple strings and/or Callables.
    initial_train_size : int 
        Number of samples in the initial train split.
    fixed_train_size : bool, default `True`
        If True, train size doesn't increase but moves by `steps` in each iteration.
    gap : int, default `0`
        Number of samples to be excluded after the end of each training set and 
        before the test set.
    allow_incomplete_fold : bool, default `True`
        Last fold is allowed to have a smaller number of samples than the 
        `test_size`. If `False`, the last fold is excluded.
    levels : str, list, default `None`
        level (`str`) or levels (`list`) at which the forecaster is optimized. 
        If `None`, all levels are taken into account. The resulting metric will be
        the average of the optimization of all levels.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s. Must have the same
        number of observations as `y` and should be aligned so that y[i] is
        regressed on exog[i].
    lags_grid : list of int, lists, np.narray or range, default `None`
        Lists of `lags` to try. Only used if forecaster is an instance of 
        `ForecasterAutoregMultiSeries` or `ForecasterAutoregMultiVariate`.
    refit : bool, int, default `False`
        Whether to re-fit the forecaster in each iteration. If `refit` is an integer, 
        the Forecaster will be trained every that number of iterations.
    n_iter : int, default `10`
        Number of parameter settings that are sampled per lags configuration. 
        n_iter trades off runtime vs quality of the solution.
    random_state : int, default `123`
        Sets a seed to the random sampling for reproducible output.
    return_best : bool, default `True`
        Refit the `forecaster` using the best found parameters on the whole data.
    n_jobs : int, 'auto', default `'auto'`
        The number of jobs to run in parallel. If `-1`, then the number of jobs is 
        set to the number of cores. If 'auto', `n_jobs` is set using the function
        skforecast.utils.select_n_jobs_backtesting.
        **New in version 0.9.0**
    verbose : bool, default `True`
        Print number of folds used for cv or backtesting.
    show_progress: bool, default `True`
        Whether to show a progress bar.

    Returns
    -------
    results : pandas DataFrame
        Results for each combination of parameters.

            - column levels: levels configuration for each iteration.
            - column lags: lags configuration for each iteration.
            - column params: parameters configuration for each iteration.
            - column metric: metric value estimated for each iteration. The resulting 
            metric will be the average of the optimization of all levels.
            - additional n columns with param = value.

    """

    param_grid = list(ParameterSampler(param_distributions, n_iter=n_iter, 
                                       random_state=random_state))

    results = _evaluate_grid_hyperparameters_multiseries(
                  forecaster            = forecaster,
                  series                = series,
                  param_grid            = param_grid,
                  steps                 = steps,
                  metric                = metric,
                  initial_train_size    = initial_train_size,
                  fixed_train_size      = fixed_train_size,
                  gap                   = gap,
                  allow_incomplete_fold = allow_incomplete_fold,
                  levels                = levels,
                  exog                  = exog,
                  lags_grid             = lags_grid,
                  refit                 = refit,
                  return_best           = return_best,
                  n_jobs                = n_jobs,
                  verbose               = verbose,
                  show_progress         = show_progress
              )

    return results

backtesting_forecaster_multivariate(forecaster, series, steps, metric, initial_train_size, fixed_train_size=True, gap=0, allow_incomplete_fold=True, levels=None, exog=None, refit=False, interval=None, n_boot=500, random_state=123, in_sample_residuals=True, n_jobs='auto', verbose=False, show_progress=True)

This function is an alias of backtesting_forecaster_multiseries.

Backtesting for multi-series and multivariate forecasters.

If refit is False, the model is trained only once using the initial_train_size first observations. If refit is True, the model is trained in each iteration increasing the training set. A copy of the original forecaster is created so it is not modified during the process.

Parameters:

Name Type Description Default
forecaster ForecasterAutoregMultiSeries, ForecasterAutoregMultiSeriesCustom, ForecasterAutoregMultiVariate

Forecaster model.

required
series pandas DataFrame

Training time series.

required
steps int

Number of steps to predict.

required
metric str, Callable, list

Metric used to quantify the goodness of fit of the model.

  • If string: {'mean_squared_error', 'mean_absolute_error', 'mean_absolute_percentage_error', 'mean_squared_log_error'}
  • If Callable: Function with arguments y_true, y_pred that returns a float.
  • If list: List containing multiple strings and/or Callables.
required
initial_train_size int

Number of samples in the initial train split. If None and forecaster is already trained, no initial train is done and all data is used to evaluate the model. However, the first len(forecaster.last_window) observations are needed to create the initial predictors, so no predictions are calculated for them. This useful to backtest the model on the same data used to train it. None is only allowed when refit is False and forecaster is already trained.

`None`
fixed_train_size bool

If True, train size doesn't increase but moves by steps in each iteration.

`True`
gap int

Number of samples to be excluded after the end of each training set and before the test set.

`0`
allow_incomplete_fold bool

Last fold is allowed to have a smaller number of samples than the test_size. If False, the last fold is excluded.

`True`
levels str, list

Time series to be predicted. If None all levels will be predicted.

`None`
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s. Must have the same number of observations as y and should be aligned so that y[i] is regressed on exog[i].

`None`
refit bool, int

Whether to re-fit the forecaster in each iteration. If refit is an integer, the Forecaster will be trained every that number of iterations.

`False`
interval list

Confidence of the prediction interval estimated. Sequence of percentiles to compute, which must be between 0 and 100 inclusive. If None, no intervals are estimated.

`None`
n_boot int

Number of bootstrapping iterations used to estimate prediction intervals.

`500`
random_state int

Sets a seed to the random generator, so that boot intervals are always deterministic.

`123`
in_sample_residuals bool

If True, residuals from the training data are used as proxy of prediction error to create prediction intervals. If False, out_sample_residuals are used if they are already stored inside the forecaster.

`True`
n_jobs int, auto

The number of jobs to run in parallel. If -1, then the number of jobs is set to the number of cores. If 'auto', n_jobs is set using the function skforecast.utils.select_n_jobs_backtesting. New in version 0.9.0

`'auto'`
verbose bool

Print number of folds and index of training and validation sets used for backtesting.

`False`
show_progress bool

Whether to show a progress bar.

True

Returns:

Name Type Description
metrics_levels pandas DataFrame

Value(s) of the metric(s). Index are the levels and columns the metrics.

backtest_predictions pandas DataFrame

Value of predictions and their estimated interval if interval is not None. If there is more than one level, this structure will be repeated for each of them.

  • column pred: predictions.
  • column lower_bound: lower bound of the interval.
  • column upper_bound: upper bound of the interval.
Source code in skforecast\model_selection_multiseries\model_selection_multiseries.py
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
def backtesting_forecaster_multivariate(
    forecaster,
    series: pd.DataFrame,
    steps: int,
    metric: Union[str, Callable, list],
    initial_train_size: Optional[int],
    fixed_train_size: bool=True,
    gap: int=0,
    allow_incomplete_fold: bool=True,
    levels: Optional[Union[str, list]]=None,
    exog: Optional[Union[pd.Series, pd.DataFrame]]=None,
    refit: Optional[Union[bool, int]]=False,
    interval: Optional[list]=None,
    n_boot: int=500,
    random_state: int=123,
    in_sample_residuals: bool=True,
    n_jobs: Optional[Union[int, str]]='auto',
    verbose: bool=False,
    show_progress: bool=True
) -> Tuple[pd.DataFrame, pd.DataFrame]:
    """
    This function is an alias of backtesting_forecaster_multiseries.

    Backtesting for multi-series and multivariate forecasters.

    If `refit` is False, the model is trained only once using the `initial_train_size`
    first observations. If `refit` is True, the model is trained in each iteration
    increasing the training set. A copy of the original forecaster is created so 
    it is not modified during the process.

    Parameters
    ----------
    forecaster : ForecasterAutoregMultiSeries, ForecasterAutoregMultiSeriesCustom, ForecasterAutoregMultiVariate
        Forecaster model.
    series : pandas DataFrame
        Training time series.
    steps : int
        Number of steps to predict.
    metric : str, Callable, list
        Metric used to quantify the goodness of fit of the model.

            - If `string`: {'mean_squared_error', 'mean_absolute_error',
             'mean_absolute_percentage_error', 'mean_squared_log_error'}
            - If `Callable`: Function with arguments y_true, y_pred that returns 
            a float.
            - If `list`: List containing multiple strings and/or Callables.
    initial_train_size : int, default `None`
        Number of samples in the initial train split. If `None` and `forecaster` is 
        already trained, no initial train is done and all data is used to evaluate the 
        model. However, the first `len(forecaster.last_window)` observations are needed 
        to create the initial predictors, so no predictions are calculated for them. 
        This useful to backtest the model on the same data used to train it.
        `None` is only allowed when `refit` is `False` and `forecaster` is already
        trained.
    fixed_train_size : bool, default `True`
        If True, train size doesn't increase but moves by `steps` in each iteration.
    gap : int, default `0`
        Number of samples to be excluded after the end of each training set and 
        before the test set.
    allow_incomplete_fold : bool, default `True`
        Last fold is allowed to have a smaller number of samples than the 
        `test_size`. If `False`, the last fold is excluded.
    levels : str, list, default `None`
        Time series to be predicted. If `None` all levels will be predicted.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s. Must have the same
        number of observations as `y` and should be aligned so that y[i] is
        regressed on exog[i].
    refit : bool, int, default `False`
        Whether to re-fit the forecaster in each iteration. If `refit` is an integer, 
        the Forecaster will be trained every that number of iterations.
    interval : list, default `None`
        Confidence of the prediction interval estimated. Sequence of percentiles
        to compute, which must be between 0 and 100 inclusive. If `None`, no
        intervals are estimated.
    n_boot : int, default `500`
        Number of bootstrapping iterations used to estimate prediction
        intervals.
    random_state : int, default `123`
        Sets a seed to the random generator, so that boot intervals are always 
        deterministic.
    in_sample_residuals : bool, default `True`
        If `True`, residuals from the training data are used as proxy of prediction 
        error to create prediction intervals.  If `False`, out_sample_residuals 
        are used if they are already stored inside the forecaster.
    n_jobs : int, 'auto', default `'auto'`
        The number of jobs to run in parallel. If `-1`, then the number of jobs is 
        set to the number of cores. If 'auto', `n_jobs` is set using the function
        skforecast.utils.select_n_jobs_backtesting.
        **New in version 0.9.0** 
    verbose : bool, default `False`
        Print number of folds and index of training and validation sets used 
        for backtesting.
    show_progress: bool, default `True`
        Whether to show a progress bar.

    Returns
    -------
    metrics_levels : pandas DataFrame
        Value(s) of the metric(s). Index are the levels and columns the metrics.
    backtest_predictions : pandas DataFrame
        Value of predictions and their estimated interval if `interval` is not `None`.
        If there is more than one level, this structure will be repeated for each of them.

            - column pred: predictions.
            - column lower_bound: lower bound of the interval.
            - column upper_bound: upper bound of the interval.

    """

    metrics_levels, backtest_predictions = backtesting_forecaster_multiseries(
        forecaster            = forecaster,
        series                = series,
        steps                 = steps,
        metric                = metric,
        initial_train_size    = initial_train_size,
        fixed_train_size      = fixed_train_size,
        gap                   = gap,
        allow_incomplete_fold = allow_incomplete_fold,
        levels                = levels,
        exog                  = exog,
        refit                 = refit,
        interval              = interval,
        n_boot                = n_boot,
        random_state          = random_state,
        in_sample_residuals   = in_sample_residuals,
        n_jobs                = n_jobs,
        verbose               = verbose,
        show_progress         = show_progress

    )

    return metrics_levels, backtest_predictions

grid_search_forecaster_multivariate(forecaster, series, param_grid, steps, metric, initial_train_size, fixed_train_size=True, gap=0, allow_incomplete_fold=True, levels=None, exog=None, lags_grid=None, refit=False, return_best=True, n_jobs='auto', verbose=True, show_progress=True)

This function is an alias of grid_search_forecaster_multiseries.

Exhaustive search over specified parameter values for a Forecaster object. Validation is done using multi-series backtesting.

Parameters:

Name Type Description Default
forecaster ForecasterAutoregMultiSeries, ForecasterAutoregMultiSeriesCustom, ForecasterAutoregMultiVariate

Forecaster model.

required
series pandas DataFrame

Training time series.

required
param_grid dict

Dictionary with parameters names (str) as keys and lists of parameter settings to try as values.

required
steps int

Number of steps to predict.

required
metric str, Callable, list

Metric used to quantify the goodness of fit of the model.

  • If string: {'mean_squared_error', 'mean_absolute_error', 'mean_absolute_percentage_error', 'mean_squared_log_error'}
  • If Callable: Function with arguments y_true, y_pred that returns a float.
  • If list: List containing multiple strings and/or Callables.
required
initial_train_size int

Number of samples in the initial train split.

required
fixed_train_size bool

If True, train size doesn't increase but moves by steps in each iteration.

`True`
gap int

Number of samples to be excluded after the end of each training set and before the test set.

`0`
allow_incomplete_fold bool

Last fold is allowed to have a smaller number of samples than the test_size. If False, the last fold is excluded.

`True`
levels str, list

level (str) or levels (list) at which the forecaster is optimized. If None, all levels are taken into account. The resulting metric will be the average of the optimization of all levels.

`None`
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s. Must have the same number of observations as y and should be aligned so that y[i] is regressed on exog[i].

`None`
lags_grid list of int, lists, np.narray or range

Lists of lags to try. Only used if forecaster is an instance of ForecasterAutoregMultiSeries or ForecasterAutoregMultiVariate.

`None`
refit bool, int

Whether to re-fit the forecaster in each iteration. If refit is an integer, the Forecaster will be trained every that number of iterations.

`False`
return_best bool

Refit the forecaster using the best found parameters on the whole data.

`True`
n_jobs int, auto

The number of jobs to run in parallel. If -1, then the number of jobs is set to the number of cores. If 'auto', n_jobs is set using the function skforecast.utils.select_n_jobs_backtesting. New in version 0.9.0

`'auto'`
verbose bool

Print number of folds used for cv or backtesting.

`True`
show_progress bool

Whether to show a progress bar.

True

Returns:

Name Type Description
results pandas DataFrame

Results for each combination of parameters.

  • column levels: levels configuration for each iteration.
  • column lags: lags configuration for each iteration.
  • column params: parameters configuration for each iteration.
  • column metric: metric value estimated for each iteration. The resulting metric will be the average of the optimization of all levels.
  • additional n columns with param = value.
Source code in skforecast\model_selection_multiseries\model_selection_multiseries.py
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
def grid_search_forecaster_multivariate(
    forecaster,
    series: pd.DataFrame,
    param_grid: dict,
    steps: int,
    metric: Union[str, Callable, list],
    initial_train_size: int,
    fixed_train_size: bool=True,
    gap: int=0,
    allow_incomplete_fold: bool=True,
    levels: Optional[Union[str, list]]=None,
    exog: Optional[Union[pd.Series, pd.DataFrame]]=None,
    lags_grid: Optional[list]=None,
    refit: Optional[Union[bool, int]]=False,
    return_best: bool=True,
    n_jobs: Optional[Union[int, str]]='auto',
    verbose: bool=True,
    show_progress: bool=True
) -> pd.DataFrame:
    """
    This function is an alias of grid_search_forecaster_multiseries.

    Exhaustive search over specified parameter values for a Forecaster object.
    Validation is done using multi-series backtesting.

    Parameters
    ----------
    forecaster : ForecasterAutoregMultiSeries, ForecasterAutoregMultiSeriesCustom, ForecasterAutoregMultiVariate
        Forecaster model.
    series : pandas DataFrame
        Training time series.
    param_grid : dict
        Dictionary with parameters names (`str`) as keys and lists of parameter
        settings to try as values.
    steps : int
        Number of steps to predict.
    metric : str, Callable, list
        Metric used to quantify the goodness of fit of the model.

            - If `string`: {'mean_squared_error', 'mean_absolute_error',
             'mean_absolute_percentage_error', 'mean_squared_log_error'}
            - If `Callable`: Function with arguments y_true, y_pred that returns 
            a float.
            - If `list`: List containing multiple strings and/or Callables.
    initial_train_size : int 
        Number of samples in the initial train split.
    fixed_train_size : bool, default `True`
        If True, train size doesn't increase but moves by `steps` in each iteration.
    gap : int, default `0`
        Number of samples to be excluded after the end of each training set and 
        before the test set.
    allow_incomplete_fold : bool, default `True`
        Last fold is allowed to have a smaller number of samples than the 
        `test_size`. If `False`, the last fold is excluded.
    levels : str, list, default `None`
        level (`str`) or levels (`list`) at which the forecaster is optimized. 
        If `None`, all levels are taken into account. The resulting metric will be
        the average of the optimization of all levels.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s. Must have the same
        number of observations as `y` and should be aligned so that y[i] is
        regressed on exog[i].
    lags_grid : list of int, lists, np.narray or range, default `None`
        Lists of `lags` to try. Only used if forecaster is an instance of 
        `ForecasterAutoregMultiSeries` or `ForecasterAutoregMultiVariate`.
    refit : bool, int, default `False`
        Whether to re-fit the forecaster in each iteration. If `refit` is an integer, 
        the Forecaster will be trained every that number of iterations.
    return_best : bool, default `True`
        Refit the `forecaster` using the best found parameters on the whole data.
    n_jobs : int, 'auto', default `'auto'`
        The number of jobs to run in parallel. If `-1`, then the number of jobs is 
        set to the number of cores. If 'auto', `n_jobs` is set using the function
        skforecast.utils.select_n_jobs_backtesting.
        **New in version 0.9.0**
    verbose : bool, default `True`
        Print number of folds used for cv or backtesting.
    show_progress: bool, default `True`
        Whether to show a progress bar.

    Returns
    -------
    results : pandas DataFrame
        Results for each combination of parameters.

            - column levels: levels configuration for each iteration.
            - column lags: lags configuration for each iteration.
            - column params: parameters configuration for each iteration.
            - column metric: metric value estimated for each iteration. The resulting 
            metric will be the average of the optimization of all levels.
            - additional n columns with param = value.

    """

    results = grid_search_forecaster_multiseries(
        forecaster            = forecaster,
        series                = series,
        param_grid            = param_grid,
        steps                 = steps,
        metric                = metric,
        initial_train_size    = initial_train_size,
        fixed_train_size      = fixed_train_size,
        gap                   = gap,
        allow_incomplete_fold = allow_incomplete_fold,
        levels                = levels,
        exog                  = exog,
        lags_grid             = lags_grid,
        refit                 = refit,
        return_best           = return_best,
        n_jobs                = n_jobs,
        verbose               = verbose,
        show_progress         = show_progress
    )

    return results

random_search_forecaster_multivariate(forecaster, series, param_distributions, steps, metric, initial_train_size, fixed_train_size=True, gap=0, allow_incomplete_fold=True, levels=None, exog=None, lags_grid=None, refit=False, n_iter=10, random_state=123, return_best=True, n_jobs='auto', verbose=True, show_progress=True)

This function is an alias of random_search_forecaster_multiseries.

Random search over specified parameter values or distributions for a Forecaster object. Validation is done using multi-series backtesting.

Parameters:

Name Type Description Default
forecaster ForecasterAutoregMultiSeries, ForecasterAutoregMultiSeriesCustom, ForecasterAutoregMultiVariate

Forecaster model.

required
series pandas DataFrame

Training time series.

required
param_distributions dict

Dictionary with parameters names (str) as keys and distributions or lists of parameters to try.

required
steps int

Number of steps to predict.

required
metric str, Callable, list

Metric used to quantify the goodness of fit of the model.

  • If string: {'mean_squared_error', 'mean_absolute_error', 'mean_absolute_percentage_error', 'mean_squared_log_error'}
  • If Callable: Function with arguments y_true, y_pred that returns a float.
  • If list: List containing multiple strings and/or Callables.
required
initial_train_size int

Number of samples in the initial train split.

required
fixed_train_size bool

If True, train size doesn't increase but moves by steps in each iteration.

`True`
gap int

Number of samples to be excluded after the end of each training set and before the test set.

`0`
allow_incomplete_fold bool

Last fold is allowed to have a smaller number of samples than the test_size. If False, the last fold is excluded.

`True`
levels str, list

level (str) or levels (list) at which the forecaster is optimized. If None, all levels are taken into account. The resulting metric will be the average of the optimization of all levels.

`None`
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s. Must have the same number of observations as y and should be aligned so that y[i] is regressed on exog[i].

`None`
lags_grid list of int, lists, np.narray or range

Lists of lags to try. Only used if forecaster is an instance of ForecasterAutoregMultiSeries or ForecasterAutoregMultiVariate.

`None`
refit bool, int

Whether to re-fit the forecaster in each iteration. If refit is an integer, the Forecaster will be trained every that number of iterations.

`False`
n_iter int

Number of parameter settings that are sampled per lags configuration. n_iter trades off runtime vs quality of the solution.

`10`
random_state int

Sets a seed to the random sampling for reproducible output.

`123`
return_best bool

Refit the forecaster using the best found parameters on the whole data.

`True`
n_jobs int, auto

The number of jobs to run in parallel. If -1, then the number of jobs is set to the number of cores. If 'auto', n_jobs is set using the function skforecast.utils.select_n_jobs_backtesting. New in version 0.9.0

`'auto'`
verbose bool

Print number of folds used for cv or backtesting.

`True`
show_progress bool

Whether to show a progress bar.

True

Returns:

Name Type Description
results pandas DataFrame

Results for each combination of parameters.

  • column levels: levels configuration for each iteration.
  • column lags: lags configuration for each iteration.
  • column params: parameters configuration for each iteration.
  • column metric: metric value estimated for each iteration. The resulting metric will be the average of the optimization of all levels.
  • additional n columns with param = value.
Source code in skforecast\model_selection_multiseries\model_selection_multiseries.py
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
def random_search_forecaster_multivariate(
    forecaster,
    series: pd.DataFrame,
    param_distributions: dict,
    steps: int,
    metric: Union[str, Callable, list],
    initial_train_size: int,
    fixed_train_size: bool=True,
    gap: int=0,
    allow_incomplete_fold: bool=True,
    levels: Optional[Union[str, list]]=None,
    exog: Optional[Union[pd.Series, pd.DataFrame]]=None,
    lags_grid: Optional[list]=None,
    refit: Optional[Union[bool, int]]=False,
    n_iter: int=10,
    random_state: int=123,
    return_best: bool=True,
    n_jobs: Optional[Union[int, str]]='auto',
    verbose: bool=True,
    show_progress: bool=True
) -> pd.DataFrame:
    """
    This function is an alias of random_search_forecaster_multiseries.

    Random search over specified parameter values or distributions for a Forecaster 
    object. Validation is done using multi-series backtesting.

    Parameters
    ----------
    forecaster : ForecasterAutoregMultiSeries, ForecasterAutoregMultiSeriesCustom, ForecasterAutoregMultiVariate
        Forecaster model.
    series : pandas DataFrame
        Training time series.
    param_distributions : dict
        Dictionary with parameters names (`str`) as keys and distributions or 
        lists of parameters to try.
    steps : int
        Number of steps to predict.
    metric : str, Callable, list
        Metric used to quantify the goodness of fit of the model.

            - If `string`: {'mean_squared_error', 'mean_absolute_error',
             'mean_absolute_percentage_error', 'mean_squared_log_error'}
            - If `Callable`: Function with arguments y_true, y_pred that returns 
            a float.
            - If `list`: List containing multiple strings and/or Callables.
    initial_train_size : int 
        Number of samples in the initial train split.
    fixed_train_size : bool, default `True`
        If True, train size doesn't increase but moves by `steps` in each iteration.
    gap : int, default `0`
        Number of samples to be excluded after the end of each training set and 
        before the test set.
    allow_incomplete_fold : bool, default `True`
        Last fold is allowed to have a smaller number of samples than the 
        `test_size`. If `False`, the last fold is excluded.
    levels : str, list, default `None`
        level (`str`) or levels (`list`) at which the forecaster is optimized. 
        If `None`, all levels are taken into account. The resulting metric will be
        the average of the optimization of all levels.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s. Must have the same
        number of observations as `y` and should be aligned so that y[i] is
        regressed on exog[i].
    lags_grid : list of int, lists, np.narray or range, default `None`
        Lists of `lags` to try. Only used if forecaster is an instance of 
        `ForecasterAutoregMultiSeries` or `ForecasterAutoregMultiVariate`.
    refit : bool, int, default `False`
        Whether to re-fit the forecaster in each iteration. If `refit` is an integer, 
        the Forecaster will be trained every that number of iterations.
    n_iter : int, default `10`
        Number of parameter settings that are sampled per lags configuration. 
        n_iter trades off runtime vs quality of the solution.
    random_state : int, default `123`
        Sets a seed to the random sampling for reproducible output.
    return_best : bool, default `True`
        Refit the `forecaster` using the best found parameters on the whole data.
    n_jobs : int, 'auto', default `'auto'`
        The number of jobs to run in parallel. If `-1`, then the number of jobs is 
        set to the number of cores. If 'auto', `n_jobs` is set using the function
        skforecast.utils.select_n_jobs_backtesting.
        **New in version 0.9.0**
    verbose : bool, default `True`
        Print number of folds used for cv or backtesting.
    show_progress: bool, default `True`
        Whether to show a progress bar.

    Returns
    -------
    results : pandas DataFrame
        Results for each combination of parameters.

            - column levels: levels configuration for each iteration.
            - column lags: lags configuration for each iteration.
            - column params: parameters configuration for each iteration.
            - column metric: metric value estimated for each iteration. The resulting 
            metric will be the average of the optimization of all levels.
            - additional n columns with param = value.

    """

    results = random_search_forecaster_multiseries(
        forecaster            = forecaster,
        series                = series,
        param_distributions   = param_distributions,
        steps                 = steps,
        metric                = metric,
        initial_train_size    = initial_train_size,
        fixed_train_size      = fixed_train_size,
        gap                   = gap,
        allow_incomplete_fold = allow_incomplete_fold,
        levels                = levels,
        exog                  = exog,
        lags_grid             = lags_grid,
        refit                 = refit,
        n_iter                = n_iter,
        random_state          = random_state,
        return_best           = return_best,
        n_jobs                = n_jobs,
        verbose               = verbose,
        show_progress         = show_progress
    ) 

    return results