Skip to content

ForecasterAutoreg

ForecasterAutoreg (ForecasterBase)

This class turns any regressor compatible with the scikit-learn API into a

recursive autoregressive (multi-step) forecaster.

Parameters:

Name Type Description Default
regressor object

An instance of a regressor or pipeline compatible with the scikit-learn API.

required
lags Union[int, numpy.ndarray, list]

Lags used as predictors. Index starts at 1, so lag 1 is equal to t-1. int: include lags from 1 to lags (included). list, numpy ndarray or range: include only lags present in lags, all elements must be int.

required
transformer_y Optional[object]

An instance of a transformer (preprocessor) compatible with the scikit-learn preprocessing API with methods: fit, transform, fit_transform and inverse_transform. ColumnTransformers are not allowed since they do not have inverse_transform method. The transformation is applied to y before training the forecaster.

None
transformer_exog Optional[object]

An instance of a transformer (preprocessor) compatible with the scikit-learn preprocessing API. The transformation is applied to exog before training the forecaster. inverse_transform is not available when using ColumnTransformers.

None
weight_func Optional[Callable]

Function that defines the individual weights for each sample based on the index. For example, a function that assigns a lower weight to certain dates. Ignored if regressor does not have the argument sample_weight in its fit method. The resulting sample_weight cannot have negative values.

None
fit_kwargs Optional[dict]

Additional arguments to be passed to the fit method of the regressor. New in version 0.8.0

None
forecaster_id Union[str, int]

Name used as an identifier of the forecaster. New in version 0.7.0

None

Attributes:

Name Type Description
regressor regressor or pipeline compatible with the scikit-learn API

An instance of a regressor or pipeline compatible with the scikit-learn API.

lags numpy ndarray

Lags used as predictors.

transformer_y object transformer (preprocessor), default `None`

An instance of a transformer (preprocessor) compatible with the scikit-learn preprocessing API with methods: fit, transform, fit_transform and inverse_transform. ColumnTransformers are not allowed since they do not have inverse_transform method. The transformation is applied to y before training the forecaster.

transformer_exog object transformer (preprocessor), default `None`

An instance of a transformer (preprocessor) compatible with the scikit-learn preprocessing API. The transformation is applied to exog before training the forecaster. inverse_transform is not available when using ColumnTransformers.

weight_func Callable

Function that defines the individual weights for each sample based on the index. For example, a function that assigns a lower weight to certain dates. Ignored if regressor does not have the argument sample_weight in its fit method. New in version 0.6.0

source_code_weight_func str

Source code of the custom function used to create weights. New in version 0.6.0

max_lag int

Maximum value of lag included in lags.

window_size int

Size of the window needed to create the predictors. It is equal to max_lag.

last_window pandas Series

Last window the forecaster has seen during training. It stores the values needed to predict the next step immediately after the training data.

index_type type

Type of index of the input used in training.

index_freq str

Frequency of Index of the input used in training.

training_range pandas Index

First and last values of index of the data used during training.

included_exog bool

If the forecaster has been trained using exogenous variable/s.

exog_type type

Type of exogenous data (pandas Series or DataFrame) used in training.

exog_dtypes dict

Type of each exogenous variable/s used in training. If transformer_exog is used, the dtypes are calculated after the transformation.

exog_col_names list

Names of columns of exog if exog used in training was a pandas DataFrame.

X_train_col_names list

Names of columns of the matrix created internally for training.

fit_kwargs dict

Additional arguments to be passed to the fit method of the regressor. New in version 0.8.0

in_sample_residuals numpy ndarray

Residuals of the model when predicting training data. Only stored up to 1000 values. If transformer_y is not None, residuals are stored in the transformed scale.

out_sample_residuals numpy ndarray

Residuals of the model when predicting non training data. Only stored up to 1000 values. If transformer_y is not None, residuals are assumed to be in the transformed scale. Use set_out_sample_residuals method to set values.

fitted bool

Tag to identify if the regressor has been fitted (trained).

creation_date str

Date of creation.

fit_date str

Date of last fit.

skforcast_version str

Version of skforecast library used to create the forecaster.

python_version str

Version of python used to create the forecaster.

forecaster_id str, int default `None`

Name used as an identifier of the forecaster. New in version 0.7.0

Source code in skforecast/ForecasterAutoreg/ForecasterAutoreg.py
class ForecasterAutoreg(ForecasterBase):
    """
    This class turns any regressor compatible with the scikit-learn API into a
    recursive autoregressive (multi-step) forecaster.

    Parameters
    ----------
    regressor : regressor or pipeline compatible with the scikit-learn API
        An instance of a regressor or pipeline compatible with the scikit-learn API.

    lags : int, list, 1d numpy ndarray, range
        Lags used as predictors. Index starts at 1, so lag 1 is equal to t-1.
            `int`: include lags from 1 to `lags` (included).
            `list`, `numpy ndarray` or `range`: include only lags present in `lags`,
            all elements must be int.

    transformer_y : object transformer (preprocessor), default `None`
        An instance of a transformer (preprocessor) compatible with the scikit-learn
        preprocessing API with methods: fit, transform, fit_transform and inverse_transform.
        ColumnTransformers are not allowed since they do not have inverse_transform method.
        The transformation is applied to `y` before training the forecaster. 

    transformer_exog : object transformer (preprocessor), default `None`
        An instance of a transformer (preprocessor) compatible with the scikit-learn
        preprocessing API. The transformation is applied to `exog` before training the
        forecaster. `inverse_transform` is not available when using ColumnTransformers.

    weight_func : Callable, default `None`
        Function that defines the individual weights for each sample based on the
        index. For example, a function that assigns a lower weight to certain dates.
        Ignored if `regressor` does not have the argument `sample_weight` in its `fit`
        method. The resulting `sample_weight` cannot have negative values.

    fit_kwargs : dict, default `None`
        Additional arguments to be passed to the `fit` method of the regressor.
        **New in version 0.8.0**

    forecaster_id : str, int, default `None`
        Name used as an identifier of the forecaster.
        **New in version 0.7.0**

    Attributes
    ----------
    regressor : regressor or pipeline compatible with the scikit-learn API
        An instance of a regressor or pipeline compatible with the scikit-learn API.

    lags : numpy ndarray
        Lags used as predictors.

    transformer_y : object transformer (preprocessor), default `None`
        An instance of a transformer (preprocessor) compatible with the scikit-learn
        preprocessing API with methods: fit, transform, fit_transform and inverse_transform.
        ColumnTransformers are not allowed since they do not have inverse_transform method.
        The transformation is applied to `y` before training the forecaster.

    transformer_exog : object transformer (preprocessor), default `None`
        An instance of a transformer (preprocessor) compatible with the scikit-learn
        preprocessing API. The transformation is applied to `exog` before training the
        forecaster. `inverse_transform` is not available when using ColumnTransformers.

    weight_func : Callable
        Function that defines the individual weights for each sample based on the
        index. For example, a function that assigns a lower weight to certain dates.
        Ignored if `regressor` does not have the argument `sample_weight` in its `fit`
        method.
        **New in version 0.6.0**

    source_code_weight_func : str
        Source code of the custom function used to create weights.
        **New in version 0.6.0**

    max_lag : int
        Maximum value of lag included in `lags`.

    window_size : int
        Size of the window needed to create the predictors. It is equal to
        `max_lag`.

    last_window : pandas Series
        Last window the forecaster has seen during training. It stores the
        values needed to predict the next `step` immediately after the training data.

    index_type : type
        Type of index of the input used in training.

    index_freq : str
        Frequency of Index of the input used in training.

    training_range : pandas Index
        First and last values of index of the data used during training.

    included_exog : bool
        If the forecaster has been trained using exogenous variable/s.

    exog_type : type
        Type of exogenous data (pandas Series or DataFrame) used in training.

    exog_dtypes : dict
        Type of each exogenous variable/s used in training. If `transformer_exog` 
        is used, the dtypes are calculated after the transformation.

    exog_col_names : list
        Names of columns of `exog` if `exog` used in training was a pandas
        DataFrame.

    X_train_col_names : list
        Names of columns of the matrix created internally for training.

    fit_kwargs : dict
        Additional arguments to be passed to the `fit` method of the regressor.
        **New in version 0.8.0**

    in_sample_residuals : numpy ndarray
        Residuals of the model when predicting training data. Only stored up to
        1000 values. If `transformer_y` is not `None`, residuals are stored in the
        transformed scale.

    out_sample_residuals : numpy ndarray
        Residuals of the model when predicting non training data. Only stored
        up to 1000 values. If `transformer_y` is not `None`, residuals
        are assumed to be in the transformed scale. Use `set_out_sample_residuals` 
        method to set values.

    fitted : bool
        Tag to identify if the regressor has been fitted (trained).

    creation_date : str
        Date of creation.

    fit_date : str
        Date of last fit.

    skforcast_version : str
        Version of skforecast library used to create the forecaster.

    python_version : str
        Version of python used to create the forecaster.

    forecaster_id : str, int default `None`
        Name used as an identifier of the forecaster.
        **New in version 0.7.0**

    """

    def __init__(
        self,
        regressor: object,
        lags: Union[int, np.ndarray, list],
        transformer_y: Optional[object]=None,
        transformer_exog: Optional[object]=None,
        weight_func: Optional[Callable]=None,
        fit_kwargs: Optional[dict]=None,
        forecaster_id: Optional[Union[str, int]]=None
    ) -> None:

        self.regressor               = regressor
        self.transformer_y           = transformer_y
        self.transformer_exog        = transformer_exog
        self.weight_func             = weight_func
        self.source_code_weight_func = None
        self.last_window             = None
        self.index_type              = None
        self.index_freq              = None
        self.training_range          = None
        self.included_exog           = False
        self.exog_type               = None
        self.exog_dtypes             = None
        self.exog_col_names          = None
        self.X_train_col_names       = None
        self.in_sample_residuals     = None
        self.out_sample_residuals    = None
        self.fitted                  = False
        self.creation_date           = pd.Timestamp.today().strftime('%Y-%m-%d %H:%M:%S')
        self.fit_date                = None
        self.skforcast_version       = skforecast.__version__
        self.python_version          = sys.version.split(" ")[0]
        self.forecaster_id           = forecaster_id

        self.lags = initialize_lags(type(self).__name__, lags)
        self.max_lag = max(self.lags)
        self.window_size = self.max_lag

        self.weight_func, self.source_code_weight_func, _ = initialize_weights(
            forecaster_name = type(self).__name__, 
            regressor       = regressor, 
            weight_func     = weight_func, 
            series_weights  = None
        )

        self.fit_kwargs = check_select_fit_kwargs(
                              regressor  = regressor,
                              fit_kwargs = fit_kwargs
                          )


    def __repr__(
        self
    ) -> str:
        """
        Information displayed when a ForecasterAutoreg object is printed.
        """

        if isinstance(self.regressor, sklearn.pipeline.Pipeline):
            name_pipe_steps = tuple(name + "__" for name in self.regressor.named_steps.keys())
            params = {key : value for key, value in self.regressor.get_params().items() \
                      if key.startswith(name_pipe_steps)}
        else:
            params = self.regressor.get_params(deep=True)

        info = (
            f"{'=' * len(type(self).__name__)} \n"
            f"{type(self).__name__} \n"
            f"{'=' * len(type(self).__name__)} \n"
            f"Regressor: {self.regressor} \n"
            f"Lags: {self.lags} \n"
            f"Transformer for y: {self.transformer_y} \n"
            f"Transformer for exog: {self.transformer_exog} \n"
            f"Window size: {self.window_size} \n"
            f"Weight function included: {True if self.weight_func is not None else False} \n"
            f"Exogenous included: {self.included_exog} \n"
            f"Type of exogenous variable: {self.exog_type} \n"
            f"Exogenous variables names: {self.exog_col_names} \n"
            f"Training range: {self.training_range.to_list() if self.fitted else None} \n"
            f"Training index type: {str(self.index_type).split('.')[-1][:-2] if self.fitted else None} \n"
            f"Training index frequency: {self.index_freq if self.fitted else None} \n"
            f"Regressor parameters: {params} \n"
            f"fit_kwargs: {self.fit_kwargs} \n"
            f"Creation date: {self.creation_date} \n"
            f"Last fit date: {self.fit_date} \n"
            f"Skforecast version: {self.skforcast_version} \n"
            f"Python version: {self.python_version} \n"
            f"Forecaster id: {self.forecaster_id} \n"
        )

        return info


    def _create_lags(
        self, 
        y: np.ndarray
    ) -> Tuple[np.ndarray, np.ndarray]:
        """       
        Transforms a 1d array into a 2d array (X) and a 1d array (y). Each row
        in X is associated with a value of y and it represents the lags that
        precede it.

        Notice that, the returned matrix X_data, contains the lag 1 in the first
        column, the lag 2 in the second column and so on.

        Parameters
        ----------        
        y : 1d numpy ndarray
            Training time series.

        Returns 
        -------
        X_data : 2d numpy ndarray, shape (samples - max(self.lags), len(self.lags))
            2d numpy array with the lagged values (predictors).

        y_data : 1d numpy ndarray, shape (samples - max(self.lags),)
            Values of the time series related to each row of `X_data`.

        """

        n_splits = len(y) - self.max_lag
        if n_splits <= 0:
            raise ValueError(
                f"The maximum lag ({self.max_lag}) must be less than the length "
                f"of the series ({len(y)})."
            )

        X_data = np.full(shape=(n_splits, len(self.lags)), fill_value=np.nan, dtype=float)

        for i, lag in enumerate(self.lags):
            X_data[:, i] = y[self.max_lag - lag: -lag]

        y_data = y[self.max_lag:]

        return X_data, y_data


    def create_train_X_y(
        self,
        y: pd.Series,
        exog: Optional[Union[pd.Series, pd.DataFrame]]=None
    ) -> Tuple[pd.DataFrame, pd.Series]:
        """
        Create training matrices from univariate time series and exogenous
        variables.

        Parameters
        ----------        
        y : pandas Series
            Training time series.

        exog : pandas Series, pandas DataFrame, default `None`
            Exogenous variable/s included as predictor/s. Must have the same
            number of observations as `y` and their indexes must be aligned.

        Returns 
        -------
        X_train : pandas DataFrame, shape (len(y) - self.max_lag, len(self.lags))
            Pandas DataFrame with the training values (predictors).

        y_train : pandas Series, shape (len(y) - self.max_lag, )
            Values (target) of the time series related to each row of `X_train`.

        """

        check_y(y=y)
        y = transform_series(
                series            = y,
                transformer       = self.transformer_y,
                fit               = True,
                inverse_transform = False
            )
        y_values, y_index = preprocess_y(y=y)

        if exog is not None:
            if len(exog) != len(y):
                raise ValueError(
                    (f'`exog` must have same number of samples as `y`. '
                     f'length `exog`: ({len(exog)}), length `y`: ({len(y)})')
                )
            check_exog(exog=exog, allow_nan=True)
            if isinstance(exog, pd.Series):
                exog = transform_series(
                           series            = exog,
                           transformer       = self.transformer_exog,
                           fit               = True,
                           inverse_transform = False
                       )
            else:
                exog = transform_dataframe(
                           df                = exog,
                           transformer       = self.transformer_exog,
                           fit               = True,
                           inverse_transform = False
                       )

            check_exog(exog=exog, allow_nan=False)
            check_exog_dtypes(exog)
            self.exog_dtypes = get_exog_dtypes(exog=exog)

            _, exog_index = preprocess_exog(exog=exog, return_values=False)
            if not (exog_index[:len(y_index)] == y_index).all():
                raise ValueError(
                    ("Different index for `y` and `exog`. They must be equal "
                     "to ensure the correct alignment of values.")
                )

        X_train, y_train = self._create_lags(y=y_values)
        X_train_col_names = [f"lag_{i}" for i in self.lags]
        X_train = pd.DataFrame(
                      data    = X_train,
                      columns = X_train_col_names,
                      index   = y_index[self.max_lag: ]
                  )

        if exog is not None:
            # The first `self.max_lag` positions have to be removed from exog
            # since they are not in X_train.
            exog_to_train = exog.iloc[self.max_lag:, ]
            X_train = pd.concat((X_train, exog_to_train), axis=1)

        self.X_train_col_names = X_train.columns.to_list()
        y_train = pd.Series(
                      data  = y_train,
                      index = y_index[self.max_lag: ],
                      name  = 'y'
                  )

        return X_train, y_train


    def create_sample_weights(
        self,
        X_train: pd.DataFrame,
    )-> np.ndarray:
        """
        Crate weights for each observation according to the forecaster's attribute
        `weight_func`.

        Parameters
        ----------
        X_train : pandas DataFrame
            Dataframe generated with the method `create_train_X_y`, first return.

        Returns
        -------
        sample_weight : numpy ndarray
            Weights to use in `fit` method.

        """

        sample_weight = None

        if self.weight_func is not None:
            sample_weight = self.weight_func(X_train.index)

        if sample_weight is not None:
            if np.isnan(sample_weight).any():
                raise ValueError(
                    "The resulting `sample_weight` cannot have NaN values."
                )
            if np.any(sample_weight < 0):
                raise ValueError(
                    "The resulting `sample_weight` cannot have negative values."
                )
            if np.sum(sample_weight) == 0:
                raise ValueError(
                    ("The resulting `sample_weight` cannot be normalized because "
                     "the sum of the weights is zero.")
                )

        return sample_weight


    def fit(
        self,
        y: pd.Series,
        exog: Optional[Union[pd.Series, pd.DataFrame]]=None
    ) -> None:
        """
        Training Forecaster.

        Additional arguments to be passed to the `fit` method of the regressor 
        can be added with the `fit_kwargs` argument when initializing the forecaster.

        Parameters
        ----------        
        y : pandas Series
            Training time series.

        exog : pandas Series, pandas DataFrame, default `None`
            Exogenous variable/s included as predictor/s. Must have the same
            number of observations as `y` and their indexes must be aligned so
            that y[i] is regressed on exog[i].

        Returns 
        -------
        None

        """

        # Reset values in case the forecaster has already been fitted.
        self.index_type          = None
        self.index_freq          = None
        self.last_window         = None
        self.included_exog       = False
        self.exog_type           = None
        self.exog_dtypes         = None
        self.exog_col_names      = None
        self.X_train_col_names   = None
        self.in_sample_residuals = None
        self.fitted              = False
        self.training_range      = None

        if exog is not None:
            self.included_exog = True
            self.exog_type = type(exog)
            self.exog_col_names = \
                 exog.columns.to_list() if isinstance(exog, pd.DataFrame) else exog.name

        X_train, y_train = self.create_train_X_y(y=y, exog=exog)
        sample_weight = self.create_sample_weights(X_train=X_train)

        if sample_weight is not None:
            self.regressor.fit(X=X_train, y=y_train, sample_weight=sample_weight,
                               **self.fit_kwargs)
        else:
            self.regressor.fit(X=X_train, y=y_train, **self.fit_kwargs)

        self.fitted = True
        self.fit_date = pd.Timestamp.today().strftime('%Y-%m-%d %H:%M:%S')
        self.training_range = preprocess_y(y=y, return_values=False)[1][[0, -1]]
        self.index_type = type(X_train.index)
        if isinstance(X_train.index, pd.DatetimeIndex):
            self.index_freq = X_train.index.freqstr
        else: 
            self.index_freq = X_train.index.step

        residuals = (y_train - self.regressor.predict(X_train)).to_numpy()

        if len(residuals) > 1000:
            # Only up to 1000 residuals are stored
            rng = np.random.default_rng(seed=123)
            residuals = rng.choice(
                            a       = residuals, 
                            size    = 1000, 
                            replace = False
                        )

        self.in_sample_residuals = residuals

        # The last time window of training data is stored so that lags needed as
        # predictors in the first iteration of `predict()` can be calculated.
        self.last_window = y.iloc[-self.max_lag:].copy()


    def _recursive_predict(
        self,
        steps: int,
        last_window: np.ndarray,
        exog: Optional[np.ndarray]=None
    ) -> np.ndarray:
        """
        Predict n steps ahead. It is an iterative process in which, each prediction,
        is used as a predictor for the next step.

        Parameters
        ----------
        steps : int
            Number of future steps predicted.

        last_window : numpy ndarray
            Series values used to create the predictors (lags) needed in the 
            first iteration of the prediction (t + 1).

        exog : numpy ndarray, default `None`
            Exogenous variable/s included as predictor/s.

        Returns 
        -------
        predictions : numpy ndarray
            Predicted values.

        """

        predictions = np.full(shape=steps, fill_value=np.nan)

        for i in range(steps):
            X = last_window[-self.lags].reshape(1, -1)
            if exog is not None:
                X = np.column_stack((X, exog[i, ].reshape(1, -1)))
            with warnings.catch_warnings():
                # Suppress scikit-learn warning: "X does not have valid feature names,
                # but NoOpTransformer was fitted with feature names".
                warnings.simplefilter("ignore")
                prediction = self.regressor.predict(X)
                predictions[i] = prediction.ravel()[0]

            # Update `last_window` values. The first position is discarded and 
            # the new prediction is added at the end.
            last_window = np.append(last_window[1:], prediction)

        return predictions


    def predict(
        self,
        steps: int,
        last_window: Optional[pd.Series]=None,
        exog: Optional[Union[pd.Series, pd.DataFrame]]=None
    ) -> pd.Series:
        """
        Predict n steps ahead. It is an recursive process in which, each prediction,
        is used as a predictor for the next step.

        Parameters
        ----------
        steps : int
            Number of future steps predicted.

        last_window : pandas Series, default `None`
            Series values used to create the predictors (lags) needed in the 
            first iteration of the prediction (t + 1).

            If `last_window = None`, the values stored in `self.last_window` are
            used to calculate the initial predictors, and the predictions start
            right after training data.

        exog : pandas Series, pandas DataFrame, default `None`
            Exogenous variable/s included as predictor/s.

        Returns 
        -------
        predictions : pandas Series
            Predicted values.

        """

        if last_window is None:
            last_window = copy(self.last_window)

        check_predict_input(
            forecaster_name  = type(self).__name__,
            steps            = steps,
            fitted           = self.fitted,
            included_exog    = self.included_exog,
            index_type       = self.index_type,
            index_freq       = self.index_freq,
            window_size      = self.window_size,
            last_window      = last_window,
            last_window_exog = None,
            exog             = exog,
            exog_type        = self.exog_type,
            exog_col_names   = self.exog_col_names,
            interval         = None,
            alpha            = None,
            max_steps        = None,
            levels           = None,
            series_col_names = None
        ) 

        if exog is not None:
            if isinstance(exog, pd.DataFrame):
                exog = transform_dataframe(
                           df                = exog,
                           transformer       = self.transformer_exog,
                           fit               = False,
                           inverse_transform = False
                       )
            else:
                exog = transform_series(
                           series            = exog,
                           transformer       = self.transformer_exog,
                           fit               = False,
                           inverse_transform = False
                       )
            check_exog_dtypes(exog=exog)
            exog_values = exog.iloc[:steps, ].to_numpy()
        else:
            exog_values = None

        last_window = transform_series(
                          series            = last_window,
                          transformer       = self.transformer_y,
                          fit               = False,
                          inverse_transform = False
                      )
        last_window_values, last_window_index = preprocess_last_window(
                                                    last_window = last_window
                                                )

        predictions = self._recursive_predict(
                          steps       = steps,
                          last_window = copy(last_window_values),
                          exog        = copy(exog_values)
                      )

        predictions = pd.Series(
                          data  = predictions,
                          index = expand_index(
                                      index = last_window_index,
                                      steps = steps
                                  ),
                          name = 'pred'
                      )

        predictions = transform_series(
                          series            = predictions,
                          transformer       = self.transformer_y,
                          fit               = False,
                          inverse_transform = True
                      )

        return predictions


    def predict_bootstrapping(
        self,
        steps: int,
        last_window: Optional[pd.Series]=None,
        exog: Optional[Union[pd.Series, pd.DataFrame]]=None,
        n_boot: int=500,
        random_state: int=123,
        in_sample_residuals: bool=True
    ) -> pd.DataFrame:
        """
        Generate multiple forecasting predictions using a bootstrapping process. 
        By sampling from a collection of past observed errors (the residuals),
        each iteration of bootstrapping generates a different set of predictions. 
        See the Notes section for more information. 

        Parameters
        ----------   
        steps : int
            Number of future steps predicted.

        last_window : pandas Series, default `None`
            Series values used to create the predictors (lags) needed in the 
            first iteration of the prediction (t + 1).

            If `last_window = None`, the values stored in `self.last_window` are
            used to calculate the initial predictors, and the predictions start
            right after training data.

        exog : pandas Series, pandas DataFrame, default `None`
            Exogenous variable/s included as predictor/s.

        n_boot : int, default `500`
            Number of bootstrapping iterations used to estimate prediction
            intervals.

        random_state : int, default `123`
            Sets a seed to the random generator, so that boot intervals are always 
            deterministic.

        in_sample_residuals : bool, default `True`
            If `True`, residuals from the training data are used as proxy of
            prediction error to create prediction intervals. If `False`, out of
            sample residuals are used. In the latter case, the user should have
            calculated and stored the residuals within the forecaster (see
            `set_out_sample_residuals()`).

        Returns 
        -------
        boot_predictions : pandas DataFrame, shape (steps, n_boot)
            Predictions generated by bootstrapping.

        Notes
        -----
        More information about prediction intervals in forecasting:
        https://otexts.com/fpp3/prediction-intervals.html#prediction-intervals-from-bootstrapped-residuals
        Forecasting: Principles and Practice (3nd ed) Rob J Hyndman and George Athanasopoulos.

        """

        if not in_sample_residuals and self.out_sample_residuals is None:
            raise ValueError(
                ('`forecaster.out_sample_residuals` is `None`. Use '
                 '`in_sample_residuals=True` or method `set_out_sample_residuals()` '
                 'before `predict_interval()`, `predict_bootstrapping()` or '
                 '`predict_dist()`.')
            )

        if last_window is None:
            last_window = copy(self.last_window)

        check_predict_input(
            forecaster_name  = type(self).__name__,
            steps            = steps,
            fitted           = self.fitted,
            included_exog    = self.included_exog,
            index_type       = self.index_type,
            index_freq       = self.index_freq,
            window_size      = self.window_size,
            last_window      = last_window,
            last_window_exog = None,
            exog             = exog,
            exog_type        = self.exog_type,
            exog_col_names   = self.exog_col_names,
            interval         = None,
            alpha            = None,
            max_steps        = None,
            levels           = None,
            series_col_names = None
        )

        if exog is not None:
            if isinstance(exog, pd.DataFrame):
                exog = transform_dataframe(
                           df                = exog,
                           transformer       = self.transformer_exog,
                           fit               = False,
                           inverse_transform = False
                       )
            else:
                exog = transform_series(
                           series            = exog,
                           transformer       = self.transformer_exog,
                           fit               = False,
                           inverse_transform = False
                       )
            exog_values = exog.iloc[:steps, ].to_numpy()
        else:
            exog_values = None

        last_window = transform_series(
                          series            = last_window,
                          transformer       = self.transformer_y,
                          fit               = False,
                          inverse_transform = False
                      )
        last_window_values, last_window_index = preprocess_last_window(
                                                    last_window = last_window
                                                )

        boot_predictions = np.full(
                               shape      = (steps, n_boot),
                               fill_value = np.nan,
                               dtype      = float
                           )
        rng = np.random.default_rng(seed=random_state)
        seeds = rng.integers(low=0, high=10000, size=n_boot)

        if in_sample_residuals:
            residuals = self.in_sample_residuals
        else:
            residuals = self.out_sample_residuals

        for i in range(n_boot):
            # In each bootstraping iteration the initial last_window and exog 
            # need to be restored.
            last_window_boot = last_window_values.copy()
            exog_boot = exog_values.copy() if exog is not None else None

            rng = np.random.default_rng(seed=seeds[i])
            sample_residuals = rng.choice(
                                   a       = residuals,
                                   size    = steps,
                                   replace = True
                               )

            for step in range(steps):

                prediction = self._recursive_predict(
                                 steps       = 1,
                                 last_window = last_window_boot,
                                 exog        = exog_boot 
                             )

                prediction_with_residual  = prediction + sample_residuals[step]
                boot_predictions[step, i] = prediction_with_residual

                last_window_boot = np.append(
                                       last_window_boot[1:],
                                       prediction_with_residual
                                   )

                if exog is not None:
                    exog_boot = exog_boot[1:]

        boot_predictions = pd.DataFrame(
                               data    = boot_predictions,
                               index   = expand_index(last_window_index, steps=steps),
                               columns = [f"pred_boot_{i}" for i in range(n_boot)]
                           )

        if self.transformer_y:
            for col in boot_predictions.columns:
                boot_predictions[col] = transform_series(
                                            series            = boot_predictions[col],
                                            transformer       = self.transformer_y,
                                            fit               = False,
                                            inverse_transform = True
                                        )

        return boot_predictions


    def predict_interval(
        self,
        steps: int,
        last_window: Optional[pd.Series]=None,
        exog: Optional[Union[pd.Series, pd.DataFrame]]=None,
        interval: list=[5, 95],
        n_boot: int=500,
        random_state: int=123,
        in_sample_residuals: bool=True
    ) -> pd.DataFrame:
        """
        Iterative process in which each prediction is used as a predictor
        for the next step, and bootstrapping is used to estimate prediction
        intervals. Both predictions and intervals are returned.

        Parameters
        ---------- 
        steps : int
            Number of future steps predicted.

        last_window : pandas Series, default `None`
            Series values used to create the predictors (lags) needed in the 
            first iteration of the prediction (t + 1).

            If `last_window = None`, the values stored in` self.last_window` are
            used to calculate the initial predictors, and the predictions start
            right after training data.

        exog : pandas Series, pandas DataFrame, default `None`
            Exogenous variable/s included as predictor/s.

        interval : list, default `[5, 95]`
            Confidence of the prediction interval estimated. Sequence of 
            percentiles to compute, which must be between 0 and 100 inclusive. 
            For example, interval of 95% should be as `interval = [2.5, 97.5]`.

        n_boot : int, default `500`
            Number of bootstrapping iterations used to estimate prediction
            intervals.

        random_state : int, default `123`
            Sets a seed to the random generator, so that boot intervals are always 
            deterministic.

        in_sample_residuals : bool, default `True`
            If `True`, residuals from the training data are used as proxy of
            prediction error to create prediction intervals. If `False`, out of
            sample residuals are used. In the latter case, the user should have
            calculated and stored the residuals within the forecaster (see
            `set_out_sample_residuals()`).

        Returns 
        -------
        predictions : pandas DataFrame
            Values predicted by the forecaster and their estimated interval:

            - pred: predictions.
            - lower_bound: lower bound of the interval.
            - upper_bound: upper bound interval of the interval.

        Notes
        -----
        More information about prediction intervals in forecasting:
        https://otexts.com/fpp2/prediction-intervals.html
        Forecasting: Principles and Practice (2nd ed) Rob J Hyndman and
        George Athanasopoulos.

        """

        check_interval(interval=interval)

        predictions = self.predict(
                          steps       = steps,
                          last_window = last_window,
                          exog        = exog
                      )

        boot_predictions = self.predict_bootstrapping(
                               steps               = steps,
                               last_window         = last_window,
                               exog                = exog,
                               n_boot              = n_boot,
                               random_state        = random_state,
                               in_sample_residuals = in_sample_residuals
                           )

        interval = np.array(interval)/100
        predictions_interval = boot_predictions.quantile(q=interval, axis=1).transpose()
        predictions_interval.columns = ['lower_bound', 'upper_bound']
        predictions = pd.concat((predictions, predictions_interval), axis=1)

        return predictions


    def predict_dist(
        self,
        steps: int,
        distribution: object,
        last_window: Optional[pd.Series]=None,
        exog: Optional[Union[pd.Series, pd.DataFrame]]=None,
        n_boot: int=500,
        random_state: int=123,
        in_sample_residuals: bool=True
    ) -> pd.DataFrame:
        """
        Fit a given probability distribution for each step. After generating 
        multiple forecasting predictions through a bootstrapping process, each 
        step is fitted to the given distribution.

        Parameters
        ---------- 
        steps : int
            Number of future steps predicted.

        distribution : Object
            A distribution object from scipy.stats.

        last_window : pandas Series, default `None`
            Series values used to create the predictors (lags) needed in the 
            first iteration of the prediction (t + 1).

            If `last_window = None`, the values stored in` self.last_window` are
            used to calculate the initial predictors, and the predictions start
            right after training data.

        exog : pandas Series, pandas DataFrame, default `None`
            Exogenous variable/s included as predictor/s.

        n_boot : int, default `500`
            Number of bootstrapping iterations used to estimate prediction
            intervals.

        random_state : int, default `123`
            Sets a seed to the random generator, so that boot intervals are always 
            deterministic.

        in_sample_residuals : bool, default `True`
            If `True`, residuals from the training data are used as proxy of
            prediction error to create prediction intervals. If `False`, out of
            sample residuals are used. In the latter case, the user should have
            calculated and stored the residuals within the forecaster (see
            `set_out_sample_residuals()`).

        Returns 
        -------
        predictions : pandas DataFrame
            Distribution parameters estimated for each step.

        """

        boot_samples = self.predict_bootstrapping(
                           steps               = steps,
                           last_window         = last_window,
                           exog                = exog,
                           n_boot              = n_boot,
                           random_state        = random_state,
                           in_sample_residuals = in_sample_residuals
                       )       

        param_names = [p for p in inspect.signature(distribution._pdf).parameters if not p=='x'] + ["loc","scale"]
        param_values = np.apply_along_axis(lambda x: distribution.fit(x), axis=1, arr=boot_samples)
        predictions = pd.DataFrame(
                          data    = param_values,
                          columns = param_names,
                          index   = boot_samples.index
                      )

        return predictions


    def set_params(
        self, 
        params: dict
    ) -> None:
        """
        Set new values to the parameters of the scikit learn model stored in the
        forecaster.

        Parameters
        ----------
        params : dict
            Parameters values.

        Returns 
        -------
        self

        """

        self.regressor = clone(self.regressor)
        self.regressor.set_params(**params)


    def set_fit_kwargs(
        self, 
        fit_kwargs: dict
    ) -> None:
        """
        Set new values for the additional keyword arguments passed to the `fit` 
        method of the regressor.

        Parameters
        ----------
        fit_kwargs : dict
            Dict of the form {"argument": new_value}.

        Returns 
        -------
        None

        """

        self.fit_kwargs = check_select_fit_kwargs(self.regressor, fit_kwargs=fit_kwargs)


    def set_lags(
        self, 
        lags: Union[int, list, np.ndarray, range]
    ) -> None:
        """
        Set new value to the attribute `lags`.
        Attributes `max_lag` and `window_size` are also updated.

        Parameters
        ----------
        lags : int, list, 1D np.ndarray, range
            Lags used as predictors. Index starts at 1, so lag 1 is equal to t-1.
                `int`: include lags from 1 to `lags`.
                `list` or `np.ndarray`: include only lags present in `lags`.

        Returns 
        -------
        None

        """

        self.lags = initialize_lags(type(self).__name__, lags)
        self.max_lag = max(self.lags)
        self.window_size = max(self.lags)


    def set_out_sample_residuals(
        self, 
        residuals: np.ndarray, 
        append: bool=True,
        transform: bool=True,
        random_state: int=123
    )-> None:
        """
        Set new values to the attribute `out_sample_residuals`. Out of sample
        residuals are meant to be calculated using observations that did not
        participate in the training process.

        Parameters
        ----------
        residuals : numpy ndarray
            Values of residuals. If len(residuals) > 1000, only a random sample
            of 1000 values are stored.

        append : bool, default `True`
            If `True`, new residuals are added to the once already stored in the
            attribute `out_sample_residuals`. Once the limit of 1000 values is
            reached, no more values are appended. If False, `out_sample_residuals`
            is overwritten with the new residuals.

        transform : bool, default `True`
            If `True`, new residuals are transformed using self.transformer_y.

        random_state : int, default `123`
            Sets a seed to the random sampling for reproducible output.

        Returns 
        -------
        self

        """

        if not isinstance(residuals, np.ndarray):
            raise TypeError(
                f"`residuals` argument must be `numpy ndarray`. Got {type(residuals)}."
            )

        if not transform and self.transformer_y is not None:
            warnings.warn(
                (f"Argument `transform` is set to `False` but forecaster was trained "
                 f"using a transformer {self.transformer_y}. Ensure that the new residuals "
                 f"are already transformed or set `transform=True`.")
            )

        if transform and self.transformer_y is not None:
            warnings.warn(
                (f"Residuals will be transformed using the same transformer used "
                 f"when training the forecaster ({self.transformer_y}). Ensure that the "
                 f"new residuals are on the same scale as the original time series.")
            )

            residuals = transform_series(
                            series            = pd.Series(residuals, name='residuals'),
                            transformer       = self.transformer_y,
                            fit               = False,
                            inverse_transform = False
                        ).to_numpy()

        if len(residuals) > 1000:
            rng = np.random.default_rng(seed=random_state)
            residuals = rng.choice(a=residuals, size=1000, replace=False)

        if append and self.out_sample_residuals is not None:
            free_space = max(0, 1000 - len(self.out_sample_residuals))
            if len(residuals) < free_space:
                residuals = np.hstack((
                                self.out_sample_residuals,
                                residuals
                            ))
            else:
                residuals = np.hstack((
                                self.out_sample_residuals,
                                residuals[:free_space]
                            ))

        self.out_sample_residuals = residuals


    def get_feature_importances(
        self
    ) -> pd.DataFrame:
        """
        Return feature importances of the regressor stored in the
        forecaster. Only valid when regressor stores internally the feature
        importances in the attribute `feature_importances_` or `coef_`.

        Parameters
        ----------
        self

        Returns
        -------
        feature_importances : pandas DataFrame
            Feature importances associated with each predictor.

        """

        if not self.fitted:
            raise sklearn.exceptions.NotFittedError(
                ("This forecaster is not fitted yet. Call `fit` with appropriate "
                 "arguments before using `get_feature_importances()`.")
            )

        if isinstance(self.regressor, sklearn.pipeline.Pipeline):
            estimator = self.regressor[-1]
        else:
            estimator = self.regressor

        if hasattr(estimator, 'feature_importances_'):
            feature_importances = estimator.feature_importances_
        elif hasattr(estimator, 'coef_'):
            feature_importances = estimator.coef_
        else:
            warnings.warn(
                (f"Impossible to access feature importances for regressor of type "
                 f"{type(estimator)}. This method is only valid when the "
                 f"regressor stores internally the feature importances in the "
                 f"attribute `feature_importances_` or `coef_`.")
            )
            feature_importances = None

        if feature_importances is not None:
            feature_importances = pd.DataFrame({
                                      'feature': self.X_train_col_names,
                                      'importance': feature_importances
                                  })

        return feature_importances


    def get_feature_importance(
        self
    ) -> pd.DataFrame:
        """
        This method has been replaced by `get_feature_importances()`.

        Return feature importances of the regressor stored in the
        forecaster. Only valid when regressor stores internally the feature
        importances in the attribute `feature_importances_` or `coef_`.

        Parameters
        ----------
        self

        Returns
        -------
        feature_importances : pandas DataFrame
            Feature importances associated with each predictor.

        """

        warnings.warn(
            ("get_feature_importance() method has been renamed to get_feature_importances(). "
             "This method will be removed in skforecast 0.9.0.")
        )

        return self.get_feature_importances()

create_sample_weights(self, X_train)

Crate weights for each observation according to the forecaster's attribute

weight_func.

Parameters:

Name Type Description Default
X_train DataFrame

Dataframe generated with the method create_train_X_y, first return.

required

Returns:

Type Description
ndarray

Weights to use in fit method.

Source code in skforecast/ForecasterAutoreg/ForecasterAutoreg.py
def create_sample_weights(
    self,
    X_train: pd.DataFrame,
)-> np.ndarray:
    """
    Crate weights for each observation according to the forecaster's attribute
    `weight_func`.

    Parameters
    ----------
    X_train : pandas DataFrame
        Dataframe generated with the method `create_train_X_y`, first return.

    Returns
    -------
    sample_weight : numpy ndarray
        Weights to use in `fit` method.

    """

    sample_weight = None

    if self.weight_func is not None:
        sample_weight = self.weight_func(X_train.index)

    if sample_weight is not None:
        if np.isnan(sample_weight).any():
            raise ValueError(
                "The resulting `sample_weight` cannot have NaN values."
            )
        if np.any(sample_weight < 0):
            raise ValueError(
                "The resulting `sample_weight` cannot have negative values."
            )
        if np.sum(sample_weight) == 0:
            raise ValueError(
                ("The resulting `sample_weight` cannot be normalized because "
                 "the sum of the weights is zero.")
            )

    return sample_weight

create_train_X_y(self, y, exog=None)

Create training matrices from univariate time series and exogenous

variables.

Parameters:

Name Type Description Default
y Series

Training time series.

required
exog Union[pandas.core.series.Series, pandas.core.frame.DataFrame]

Exogenous variable/s included as predictor/s. Must have the same number of observations as y and their indexes must be aligned.

None

Returns:

Type Description
Tuple[pandas.core.frame.DataFrame, pandas.core.series.Series]

Pandas DataFrame with the training values (predictors).

Source code in skforecast/ForecasterAutoreg/ForecasterAutoreg.py
def create_train_X_y(
    self,
    y: pd.Series,
    exog: Optional[Union[pd.Series, pd.DataFrame]]=None
) -> Tuple[pd.DataFrame, pd.Series]:
    """
    Create training matrices from univariate time series and exogenous
    variables.

    Parameters
    ----------        
    y : pandas Series
        Training time series.

    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s. Must have the same
        number of observations as `y` and their indexes must be aligned.

    Returns 
    -------
    X_train : pandas DataFrame, shape (len(y) - self.max_lag, len(self.lags))
        Pandas DataFrame with the training values (predictors).

    y_train : pandas Series, shape (len(y) - self.max_lag, )
        Values (target) of the time series related to each row of `X_train`.

    """

    check_y(y=y)
    y = transform_series(
            series            = y,
            transformer       = self.transformer_y,
            fit               = True,
            inverse_transform = False
        )
    y_values, y_index = preprocess_y(y=y)

    if exog is not None:
        if len(exog) != len(y):
            raise ValueError(
                (f'`exog` must have same number of samples as `y`. '
                 f'length `exog`: ({len(exog)}), length `y`: ({len(y)})')
            )
        check_exog(exog=exog, allow_nan=True)
        if isinstance(exog, pd.Series):
            exog = transform_series(
                       series            = exog,
                       transformer       = self.transformer_exog,
                       fit               = True,
                       inverse_transform = False
                   )
        else:
            exog = transform_dataframe(
                       df                = exog,
                       transformer       = self.transformer_exog,
                       fit               = True,
                       inverse_transform = False
                   )

        check_exog(exog=exog, allow_nan=False)
        check_exog_dtypes(exog)
        self.exog_dtypes = get_exog_dtypes(exog=exog)

        _, exog_index = preprocess_exog(exog=exog, return_values=False)
        if not (exog_index[:len(y_index)] == y_index).all():
            raise ValueError(
                ("Different index for `y` and `exog`. They must be equal "
                 "to ensure the correct alignment of values.")
            )

    X_train, y_train = self._create_lags(y=y_values)
    X_train_col_names = [f"lag_{i}" for i in self.lags]
    X_train = pd.DataFrame(
                  data    = X_train,
                  columns = X_train_col_names,
                  index   = y_index[self.max_lag: ]
              )

    if exog is not None:
        # The first `self.max_lag` positions have to be removed from exog
        # since they are not in X_train.
        exog_to_train = exog.iloc[self.max_lag:, ]
        X_train = pd.concat((X_train, exog_to_train), axis=1)

    self.X_train_col_names = X_train.columns.to_list()
    y_train = pd.Series(
                  data  = y_train,
                  index = y_index[self.max_lag: ],
                  name  = 'y'
              )

    return X_train, y_train

fit(self, y, exog=None)

Training Forecaster.

Additional arguments to be passed to the fit method of the regressor can be added with the fit_kwargs argument when initializing the forecaster.

Parameters:

Name Type Description Default
y Series

Training time series.

required
exog Union[pandas.core.series.Series, pandas.core.frame.DataFrame]

Exogenous variable/s included as predictor/s. Must have the same number of observations as y and their indexes must be aligned so that y[i] is regressed on exog[i].

None
Source code in skforecast/ForecasterAutoreg/ForecasterAutoreg.py
def fit(
    self,
    y: pd.Series,
    exog: Optional[Union[pd.Series, pd.DataFrame]]=None
) -> None:
    """
    Training Forecaster.

    Additional arguments to be passed to the `fit` method of the regressor 
    can be added with the `fit_kwargs` argument when initializing the forecaster.

    Parameters
    ----------        
    y : pandas Series
        Training time series.

    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s. Must have the same
        number of observations as `y` and their indexes must be aligned so
        that y[i] is regressed on exog[i].

    Returns 
    -------
    None

    """

    # Reset values in case the forecaster has already been fitted.
    self.index_type          = None
    self.index_freq          = None
    self.last_window         = None
    self.included_exog       = False
    self.exog_type           = None
    self.exog_dtypes         = None
    self.exog_col_names      = None
    self.X_train_col_names   = None
    self.in_sample_residuals = None
    self.fitted              = False
    self.training_range      = None

    if exog is not None:
        self.included_exog = True
        self.exog_type = type(exog)
        self.exog_col_names = \
             exog.columns.to_list() if isinstance(exog, pd.DataFrame) else exog.name

    X_train, y_train = self.create_train_X_y(y=y, exog=exog)
    sample_weight = self.create_sample_weights(X_train=X_train)

    if sample_weight is not None:
        self.regressor.fit(X=X_train, y=y_train, sample_weight=sample_weight,
                           **self.fit_kwargs)
    else:
        self.regressor.fit(X=X_train, y=y_train, **self.fit_kwargs)

    self.fitted = True
    self.fit_date = pd.Timestamp.today().strftime('%Y-%m-%d %H:%M:%S')
    self.training_range = preprocess_y(y=y, return_values=False)[1][[0, -1]]
    self.index_type = type(X_train.index)
    if isinstance(X_train.index, pd.DatetimeIndex):
        self.index_freq = X_train.index.freqstr
    else: 
        self.index_freq = X_train.index.step

    residuals = (y_train - self.regressor.predict(X_train)).to_numpy()

    if len(residuals) > 1000:
        # Only up to 1000 residuals are stored
        rng = np.random.default_rng(seed=123)
        residuals = rng.choice(
                        a       = residuals, 
                        size    = 1000, 
                        replace = False
                    )

    self.in_sample_residuals = residuals

    # The last time window of training data is stored so that lags needed as
    # predictors in the first iteration of `predict()` can be calculated.
    self.last_window = y.iloc[-self.max_lag:].copy()

get_feature_importance(self)

This method has been replaced by get_feature_importances().

Return feature importances of the regressor stored in the forecaster. Only valid when regressor stores internally the feature importances in the attribute feature_importances_ or coef_.

Parameters:

Name Type Description Default
self None required

Returns:

Type Description
DataFrame

Feature importances associated with each predictor.

Source code in skforecast/ForecasterAutoreg/ForecasterAutoreg.py
def get_feature_importance(
    self
) -> pd.DataFrame:
    """
    This method has been replaced by `get_feature_importances()`.

    Return feature importances of the regressor stored in the
    forecaster. Only valid when regressor stores internally the feature
    importances in the attribute `feature_importances_` or `coef_`.

    Parameters
    ----------
    self

    Returns
    -------
    feature_importances : pandas DataFrame
        Feature importances associated with each predictor.

    """

    warnings.warn(
        ("get_feature_importance() method has been renamed to get_feature_importances(). "
         "This method will be removed in skforecast 0.9.0.")
    )

    return self.get_feature_importances()

get_feature_importances(self)

Return feature importances of the regressor stored in the

forecaster. Only valid when regressor stores internally the feature importances in the attribute feature_importances_ or coef_.

Parameters:

Name Type Description Default
self None required

Returns:

Type Description
DataFrame

Feature importances associated with each predictor.

Source code in skforecast/ForecasterAutoreg/ForecasterAutoreg.py
def get_feature_importances(
    self
) -> pd.DataFrame:
    """
    Return feature importances of the regressor stored in the
    forecaster. Only valid when regressor stores internally the feature
    importances in the attribute `feature_importances_` or `coef_`.

    Parameters
    ----------
    self

    Returns
    -------
    feature_importances : pandas DataFrame
        Feature importances associated with each predictor.

    """

    if not self.fitted:
        raise sklearn.exceptions.NotFittedError(
            ("This forecaster is not fitted yet. Call `fit` with appropriate "
             "arguments before using `get_feature_importances()`.")
        )

    if isinstance(self.regressor, sklearn.pipeline.Pipeline):
        estimator = self.regressor[-1]
    else:
        estimator = self.regressor

    if hasattr(estimator, 'feature_importances_'):
        feature_importances = estimator.feature_importances_
    elif hasattr(estimator, 'coef_'):
        feature_importances = estimator.coef_
    else:
        warnings.warn(
            (f"Impossible to access feature importances for regressor of type "
             f"{type(estimator)}. This method is only valid when the "
             f"regressor stores internally the feature importances in the "
             f"attribute `feature_importances_` or `coef_`.")
        )
        feature_importances = None

    if feature_importances is not None:
        feature_importances = pd.DataFrame({
                                  'feature': self.X_train_col_names,
                                  'importance': feature_importances
                              })

    return feature_importances

predict(self, steps, last_window=None, exog=None)

Predict n steps ahead. It is an recursive process in which, each prediction,

is used as a predictor for the next step.

Parameters:

Name Type Description Default
steps int

Number of future steps predicted.

required
last_window Optional[pandas.core.series.Series]

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1).

If last_window = None, the values stored in self.last_window are used to calculate the initial predictors, and the predictions start right after training data.

None
exog Union[pandas.core.series.Series, pandas.core.frame.DataFrame]

Exogenous variable/s included as predictor/s.

None

Returns:

Type Description
Series

Predicted values.

Source code in skforecast/ForecasterAutoreg/ForecasterAutoreg.py
def predict(
    self,
    steps: int,
    last_window: Optional[pd.Series]=None,
    exog: Optional[Union[pd.Series, pd.DataFrame]]=None
) -> pd.Series:
    """
    Predict n steps ahead. It is an recursive process in which, each prediction,
    is used as a predictor for the next step.

    Parameters
    ----------
    steps : int
        Number of future steps predicted.

    last_window : pandas Series, default `None`
        Series values used to create the predictors (lags) needed in the 
        first iteration of the prediction (t + 1).

        If `last_window = None`, the values stored in `self.last_window` are
        used to calculate the initial predictors, and the predictions start
        right after training data.

    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s.

    Returns 
    -------
    predictions : pandas Series
        Predicted values.

    """

    if last_window is None:
        last_window = copy(self.last_window)

    check_predict_input(
        forecaster_name  = type(self).__name__,
        steps            = steps,
        fitted           = self.fitted,
        included_exog    = self.included_exog,
        index_type       = self.index_type,
        index_freq       = self.index_freq,
        window_size      = self.window_size,
        last_window      = last_window,
        last_window_exog = None,
        exog             = exog,
        exog_type        = self.exog_type,
        exog_col_names   = self.exog_col_names,
        interval         = None,
        alpha            = None,
        max_steps        = None,
        levels           = None,
        series_col_names = None
    ) 

    if exog is not None:
        if isinstance(exog, pd.DataFrame):
            exog = transform_dataframe(
                       df                = exog,
                       transformer       = self.transformer_exog,
                       fit               = False,
                       inverse_transform = False
                   )
        else:
            exog = transform_series(
                       series            = exog,
                       transformer       = self.transformer_exog,
                       fit               = False,
                       inverse_transform = False
                   )
        check_exog_dtypes(exog=exog)
        exog_values = exog.iloc[:steps, ].to_numpy()
    else:
        exog_values = None

    last_window = transform_series(
                      series            = last_window,
                      transformer       = self.transformer_y,
                      fit               = False,
                      inverse_transform = False
                  )
    last_window_values, last_window_index = preprocess_last_window(
                                                last_window = last_window
                                            )

    predictions = self._recursive_predict(
                      steps       = steps,
                      last_window = copy(last_window_values),
                      exog        = copy(exog_values)
                  )

    predictions = pd.Series(
                      data  = predictions,
                      index = expand_index(
                                  index = last_window_index,
                                  steps = steps
                              ),
                      name = 'pred'
                  )

    predictions = transform_series(
                      series            = predictions,
                      transformer       = self.transformer_y,
                      fit               = False,
                      inverse_transform = True
                  )

    return predictions

predict_bootstrapping(self, steps, last_window=None, exog=None, n_boot=500, random_state=123, in_sample_residuals=True)

Generate multiple forecasting predictions using a bootstrapping process.

By sampling from a collection of past observed errors (the residuals), each iteration of bootstrapping generates a different set of predictions. See the Notes section for more information.

Parameters:

Name Type Description Default
steps int

Number of future steps predicted.

required
last_window Optional[pandas.core.series.Series]

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1).

If last_window = None, the values stored in self.last_window are used to calculate the initial predictors, and the predictions start right after training data.

None
exog Union[pandas.core.series.Series, pandas.core.frame.DataFrame]

Exogenous variable/s included as predictor/s.

None
n_boot int

Number of bootstrapping iterations used to estimate prediction intervals.

500
random_state int

Sets a seed to the random generator, so that boot intervals are always deterministic.

123
in_sample_residuals bool

If True, residuals from the training data are used as proxy of prediction error to create prediction intervals. If False, out of sample residuals are used. In the latter case, the user should have calculated and stored the residuals within the forecaster (see set_out_sample_residuals()).

True

Returns:

Type Description
DataFrame

Predictions generated by bootstrapping.

Source code in skforecast/ForecasterAutoreg/ForecasterAutoreg.py
def predict_bootstrapping(
    self,
    steps: int,
    last_window: Optional[pd.Series]=None,
    exog: Optional[Union[pd.Series, pd.DataFrame]]=None,
    n_boot: int=500,
    random_state: int=123,
    in_sample_residuals: bool=True
) -> pd.DataFrame:
    """
    Generate multiple forecasting predictions using a bootstrapping process. 
    By sampling from a collection of past observed errors (the residuals),
    each iteration of bootstrapping generates a different set of predictions. 
    See the Notes section for more information. 

    Parameters
    ----------   
    steps : int
        Number of future steps predicted.

    last_window : pandas Series, default `None`
        Series values used to create the predictors (lags) needed in the 
        first iteration of the prediction (t + 1).

        If `last_window = None`, the values stored in `self.last_window` are
        used to calculate the initial predictors, and the predictions start
        right after training data.

    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s.

    n_boot : int, default `500`
        Number of bootstrapping iterations used to estimate prediction
        intervals.

    random_state : int, default `123`
        Sets a seed to the random generator, so that boot intervals are always 
        deterministic.

    in_sample_residuals : bool, default `True`
        If `True`, residuals from the training data are used as proxy of
        prediction error to create prediction intervals. If `False`, out of
        sample residuals are used. In the latter case, the user should have
        calculated and stored the residuals within the forecaster (see
        `set_out_sample_residuals()`).

    Returns 
    -------
    boot_predictions : pandas DataFrame, shape (steps, n_boot)
        Predictions generated by bootstrapping.

    Notes
    -----
    More information about prediction intervals in forecasting:
    https://otexts.com/fpp3/prediction-intervals.html#prediction-intervals-from-bootstrapped-residuals
    Forecasting: Principles and Practice (3nd ed) Rob J Hyndman and George Athanasopoulos.

    """

    if not in_sample_residuals and self.out_sample_residuals is None:
        raise ValueError(
            ('`forecaster.out_sample_residuals` is `None`. Use '
             '`in_sample_residuals=True` or method `set_out_sample_residuals()` '
             'before `predict_interval()`, `predict_bootstrapping()` or '
             '`predict_dist()`.')
        )

    if last_window is None:
        last_window = copy(self.last_window)

    check_predict_input(
        forecaster_name  = type(self).__name__,
        steps            = steps,
        fitted           = self.fitted,
        included_exog    = self.included_exog,
        index_type       = self.index_type,
        index_freq       = self.index_freq,
        window_size      = self.window_size,
        last_window      = last_window,
        last_window_exog = None,
        exog             = exog,
        exog_type        = self.exog_type,
        exog_col_names   = self.exog_col_names,
        interval         = None,
        alpha            = None,
        max_steps        = None,
        levels           = None,
        series_col_names = None
    )

    if exog is not None:
        if isinstance(exog, pd.DataFrame):
            exog = transform_dataframe(
                       df                = exog,
                       transformer       = self.transformer_exog,
                       fit               = False,
                       inverse_transform = False
                   )
        else:
            exog = transform_series(
                       series            = exog,
                       transformer       = self.transformer_exog,
                       fit               = False,
                       inverse_transform = False
                   )
        exog_values = exog.iloc[:steps, ].to_numpy()
    else:
        exog_values = None

    last_window = transform_series(
                      series            = last_window,
                      transformer       = self.transformer_y,
                      fit               = False,
                      inverse_transform = False
                  )
    last_window_values, last_window_index = preprocess_last_window(
                                                last_window = last_window
                                            )

    boot_predictions = np.full(
                           shape      = (steps, n_boot),
                           fill_value = np.nan,
                           dtype      = float
                       )
    rng = np.random.default_rng(seed=random_state)
    seeds = rng.integers(low=0, high=10000, size=n_boot)

    if in_sample_residuals:
        residuals = self.in_sample_residuals
    else:
        residuals = self.out_sample_residuals

    for i in range(n_boot):
        # In each bootstraping iteration the initial last_window and exog 
        # need to be restored.
        last_window_boot = last_window_values.copy()
        exog_boot = exog_values.copy() if exog is not None else None

        rng = np.random.default_rng(seed=seeds[i])
        sample_residuals = rng.choice(
                               a       = residuals,
                               size    = steps,
                               replace = True
                           )

        for step in range(steps):

            prediction = self._recursive_predict(
                             steps       = 1,
                             last_window = last_window_boot,
                             exog        = exog_boot 
                         )

            prediction_with_residual  = prediction + sample_residuals[step]
            boot_predictions[step, i] = prediction_with_residual

            last_window_boot = np.append(
                                   last_window_boot[1:],
                                   prediction_with_residual
                               )

            if exog is not None:
                exog_boot = exog_boot[1:]

    boot_predictions = pd.DataFrame(
                           data    = boot_predictions,
                           index   = expand_index(last_window_index, steps=steps),
                           columns = [f"pred_boot_{i}" for i in range(n_boot)]
                       )

    if self.transformer_y:
        for col in boot_predictions.columns:
            boot_predictions[col] = transform_series(
                                        series            = boot_predictions[col],
                                        transformer       = self.transformer_y,
                                        fit               = False,
                                        inverse_transform = True
                                    )

    return boot_predictions

predict_dist(self, steps, distribution, last_window=None, exog=None, n_boot=500, random_state=123, in_sample_residuals=True)

Fit a given probability distribution for each step. After generating

multiple forecasting predictions through a bootstrapping process, each step is fitted to the given distribution.

Parameters:

Name Type Description Default
steps int

Number of future steps predicted.

required
distribution object

A distribution object from scipy.stats.

required
last_window Optional[pandas.core.series.Series]

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1).

If last_window = None, the values stored inself.last_window are used to calculate the initial predictors, and the predictions start right after training data.

None
exog Union[pandas.core.series.Series, pandas.core.frame.DataFrame]

Exogenous variable/s included as predictor/s.

None
n_boot int

Number of bootstrapping iterations used to estimate prediction intervals.

500
random_state int

Sets a seed to the random generator, so that boot intervals are always deterministic.

123
in_sample_residuals bool

If True, residuals from the training data are used as proxy of prediction error to create prediction intervals. If False, out of sample residuals are used. In the latter case, the user should have calculated and stored the residuals within the forecaster (see set_out_sample_residuals()).

True

Returns:

Type Description
DataFrame

Distribution parameters estimated for each step.

Source code in skforecast/ForecasterAutoreg/ForecasterAutoreg.py
def predict_dist(
    self,
    steps: int,
    distribution: object,
    last_window: Optional[pd.Series]=None,
    exog: Optional[Union[pd.Series, pd.DataFrame]]=None,
    n_boot: int=500,
    random_state: int=123,
    in_sample_residuals: bool=True
) -> pd.DataFrame:
    """
    Fit a given probability distribution for each step. After generating 
    multiple forecasting predictions through a bootstrapping process, each 
    step is fitted to the given distribution.

    Parameters
    ---------- 
    steps : int
        Number of future steps predicted.

    distribution : Object
        A distribution object from scipy.stats.

    last_window : pandas Series, default `None`
        Series values used to create the predictors (lags) needed in the 
        first iteration of the prediction (t + 1).

        If `last_window = None`, the values stored in` self.last_window` are
        used to calculate the initial predictors, and the predictions start
        right after training data.

    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s.

    n_boot : int, default `500`
        Number of bootstrapping iterations used to estimate prediction
        intervals.

    random_state : int, default `123`
        Sets a seed to the random generator, so that boot intervals are always 
        deterministic.

    in_sample_residuals : bool, default `True`
        If `True`, residuals from the training data are used as proxy of
        prediction error to create prediction intervals. If `False`, out of
        sample residuals are used. In the latter case, the user should have
        calculated and stored the residuals within the forecaster (see
        `set_out_sample_residuals()`).

    Returns 
    -------
    predictions : pandas DataFrame
        Distribution parameters estimated for each step.

    """

    boot_samples = self.predict_bootstrapping(
                       steps               = steps,
                       last_window         = last_window,
                       exog                = exog,
                       n_boot              = n_boot,
                       random_state        = random_state,
                       in_sample_residuals = in_sample_residuals
                   )       

    param_names = [p for p in inspect.signature(distribution._pdf).parameters if not p=='x'] + ["loc","scale"]
    param_values = np.apply_along_axis(lambda x: distribution.fit(x), axis=1, arr=boot_samples)
    predictions = pd.DataFrame(
                      data    = param_values,
                      columns = param_names,
                      index   = boot_samples.index
                  )

    return predictions

predict_interval(self, steps, last_window=None, exog=None, interval=[5, 95], n_boot=500, random_state=123, in_sample_residuals=True)

Iterative process in which each prediction is used as a predictor

for the next step, and bootstrapping is used to estimate prediction intervals. Both predictions and intervals are returned.

Parameters:

Name Type Description Default
steps int

Number of future steps predicted.

required
last_window Optional[pandas.core.series.Series]

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1).

If last_window = None, the values stored inself.last_window are used to calculate the initial predictors, and the predictions start right after training data.

None
exog Union[pandas.core.series.Series, pandas.core.frame.DataFrame]

Exogenous variable/s included as predictor/s.

None
interval list

Confidence of the prediction interval estimated. Sequence of percentiles to compute, which must be between 0 and 100 inclusive. For example, interval of 95% should be as interval = [2.5, 97.5].

[5, 95]
n_boot int

Number of bootstrapping iterations used to estimate prediction intervals.

500
random_state int

Sets a seed to the random generator, so that boot intervals are always deterministic.

123
in_sample_residuals bool

If True, residuals from the training data are used as proxy of prediction error to create prediction intervals. If False, out of sample residuals are used. In the latter case, the user should have calculated and stored the residuals within the forecaster (see set_out_sample_residuals()).

True

Returns:

Type Description
DataFrame

Values predicted by the forecaster and their estimated interval:

  • pred: predictions.
  • lower_bound: lower bound of the interval.
  • upper_bound: upper bound interval of the interval.
Source code in skforecast/ForecasterAutoreg/ForecasterAutoreg.py
def predict_interval(
    self,
    steps: int,
    last_window: Optional[pd.Series]=None,
    exog: Optional[Union[pd.Series, pd.DataFrame]]=None,
    interval: list=[5, 95],
    n_boot: int=500,
    random_state: int=123,
    in_sample_residuals: bool=True
) -> pd.DataFrame:
    """
    Iterative process in which each prediction is used as a predictor
    for the next step, and bootstrapping is used to estimate prediction
    intervals. Both predictions and intervals are returned.

    Parameters
    ---------- 
    steps : int
        Number of future steps predicted.

    last_window : pandas Series, default `None`
        Series values used to create the predictors (lags) needed in the 
        first iteration of the prediction (t + 1).

        If `last_window = None`, the values stored in` self.last_window` are
        used to calculate the initial predictors, and the predictions start
        right after training data.

    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s.

    interval : list, default `[5, 95]`
        Confidence of the prediction interval estimated. Sequence of 
        percentiles to compute, which must be between 0 and 100 inclusive. 
        For example, interval of 95% should be as `interval = [2.5, 97.5]`.

    n_boot : int, default `500`
        Number of bootstrapping iterations used to estimate prediction
        intervals.

    random_state : int, default `123`
        Sets a seed to the random generator, so that boot intervals are always 
        deterministic.

    in_sample_residuals : bool, default `True`
        If `True`, residuals from the training data are used as proxy of
        prediction error to create prediction intervals. If `False`, out of
        sample residuals are used. In the latter case, the user should have
        calculated and stored the residuals within the forecaster (see
        `set_out_sample_residuals()`).

    Returns 
    -------
    predictions : pandas DataFrame
        Values predicted by the forecaster and their estimated interval:

        - pred: predictions.
        - lower_bound: lower bound of the interval.
        - upper_bound: upper bound interval of the interval.

    Notes
    -----
    More information about prediction intervals in forecasting:
    https://otexts.com/fpp2/prediction-intervals.html
    Forecasting: Principles and Practice (2nd ed) Rob J Hyndman and
    George Athanasopoulos.

    """

    check_interval(interval=interval)

    predictions = self.predict(
                      steps       = steps,
                      last_window = last_window,
                      exog        = exog
                  )

    boot_predictions = self.predict_bootstrapping(
                           steps               = steps,
                           last_window         = last_window,
                           exog                = exog,
                           n_boot              = n_boot,
                           random_state        = random_state,
                           in_sample_residuals = in_sample_residuals
                       )

    interval = np.array(interval)/100
    predictions_interval = boot_predictions.quantile(q=interval, axis=1).transpose()
    predictions_interval.columns = ['lower_bound', 'upper_bound']
    predictions = pd.concat((predictions, predictions_interval), axis=1)

    return predictions

set_fit_kwargs(self, fit_kwargs)

Set new values for the additional keyword arguments passed to the fit

method of the regressor.

Parameters:

Name Type Description Default
fit_kwargs dict

Dict of the form {"argument": new_value}.

required
Source code in skforecast/ForecasterAutoreg/ForecasterAutoreg.py
def set_fit_kwargs(
    self, 
    fit_kwargs: dict
) -> None:
    """
    Set new values for the additional keyword arguments passed to the `fit` 
    method of the regressor.

    Parameters
    ----------
    fit_kwargs : dict
        Dict of the form {"argument": new_value}.

    Returns 
    -------
    None

    """

    self.fit_kwargs = check_select_fit_kwargs(self.regressor, fit_kwargs=fit_kwargs)

set_lags(self, lags)

Set new value to the attribute lags.

Attributes max_lag and window_size are also updated.

Parameters:

Name Type Description Default
lags Union[int, list, numpy.ndarray, range]

Lags used as predictors. Index starts at 1, so lag 1 is equal to t-1. int: include lags from 1 to lags. list or np.ndarray: include only lags present in lags.

required
Source code in skforecast/ForecasterAutoreg/ForecasterAutoreg.py
def set_lags(
    self, 
    lags: Union[int, list, np.ndarray, range]
) -> None:
    """
    Set new value to the attribute `lags`.
    Attributes `max_lag` and `window_size` are also updated.

    Parameters
    ----------
    lags : int, list, 1D np.ndarray, range
        Lags used as predictors. Index starts at 1, so lag 1 is equal to t-1.
            `int`: include lags from 1 to `lags`.
            `list` or `np.ndarray`: include only lags present in `lags`.

    Returns 
    -------
    None

    """

    self.lags = initialize_lags(type(self).__name__, lags)
    self.max_lag = max(self.lags)
    self.window_size = max(self.lags)

set_out_sample_residuals(self, residuals, append=True, transform=True, random_state=123)

Set new values to the attribute out_sample_residuals. Out of sample

residuals are meant to be calculated using observations that did not participate in the training process.

Parameters:

Name Type Description Default
residuals ndarray

Values of residuals. If len(residuals) > 1000, only a random sample of 1000 values are stored.

required
append bool

If True, new residuals are added to the once already stored in the attribute out_sample_residuals. Once the limit of 1000 values is reached, no more values are appended. If False, out_sample_residuals is overwritten with the new residuals.

True
transform bool

If True, new residuals are transformed using self.transformer_y.

True
random_state int

Sets a seed to the random sampling for reproducible output.

123
Source code in skforecast/ForecasterAutoreg/ForecasterAutoreg.py
def set_out_sample_residuals(
    self, 
    residuals: np.ndarray, 
    append: bool=True,
    transform: bool=True,
    random_state: int=123
)-> None:
    """
    Set new values to the attribute `out_sample_residuals`. Out of sample
    residuals are meant to be calculated using observations that did not
    participate in the training process.

    Parameters
    ----------
    residuals : numpy ndarray
        Values of residuals. If len(residuals) > 1000, only a random sample
        of 1000 values are stored.

    append : bool, default `True`
        If `True`, new residuals are added to the once already stored in the
        attribute `out_sample_residuals`. Once the limit of 1000 values is
        reached, no more values are appended. If False, `out_sample_residuals`
        is overwritten with the new residuals.

    transform : bool, default `True`
        If `True`, new residuals are transformed using self.transformer_y.

    random_state : int, default `123`
        Sets a seed to the random sampling for reproducible output.

    Returns 
    -------
    self

    """

    if not isinstance(residuals, np.ndarray):
        raise TypeError(
            f"`residuals` argument must be `numpy ndarray`. Got {type(residuals)}."
        )

    if not transform and self.transformer_y is not None:
        warnings.warn(
            (f"Argument `transform` is set to `False` but forecaster was trained "
             f"using a transformer {self.transformer_y}. Ensure that the new residuals "
             f"are already transformed or set `transform=True`.")
        )

    if transform and self.transformer_y is not None:
        warnings.warn(
            (f"Residuals will be transformed using the same transformer used "
             f"when training the forecaster ({self.transformer_y}). Ensure that the "
             f"new residuals are on the same scale as the original time series.")
        )

        residuals = transform_series(
                        series            = pd.Series(residuals, name='residuals'),
                        transformer       = self.transformer_y,
                        fit               = False,
                        inverse_transform = False
                    ).to_numpy()

    if len(residuals) > 1000:
        rng = np.random.default_rng(seed=random_state)
        residuals = rng.choice(a=residuals, size=1000, replace=False)

    if append and self.out_sample_residuals is not None:
        free_space = max(0, 1000 - len(self.out_sample_residuals))
        if len(residuals) < free_space:
            residuals = np.hstack((
                            self.out_sample_residuals,
                            residuals
                        ))
        else:
            residuals = np.hstack((
                            self.out_sample_residuals,
                            residuals[:free_space]
                        ))

    self.out_sample_residuals = residuals

set_params(self, params)

Set new values to the parameters of the scikit learn model stored in the

forecaster.

Parameters:

Name Type Description Default
params dict

Parameters values.

required
Source code in skforecast/ForecasterAutoreg/ForecasterAutoreg.py
def set_params(
    self, 
    params: dict
) -> None:
    """
    Set new values to the parameters of the scikit learn model stored in the
    forecaster.

    Parameters
    ----------
    params : dict
        Parameters values.

    Returns 
    -------
    self

    """

    self.regressor = clone(self.regressor)
    self.regressor.set_params(**params)

_create_lags(self, y) private

Transforms a 1d array into a 2d array (X) and a 1d array (y). Each row

in X is associated with a value of y and it represents the lags that precede it.

Notice that, the returned matrix X_data, contains the lag 1 in the first column, the lag 2 in the second column and so on.

Parameters:

Name Type Description Default
y ndarray

Training time series.

required

Returns:

Type Description
Tuple[numpy.ndarray, numpy.ndarray]

2d numpy array with the lagged values (predictors).

Source code in skforecast/ForecasterAutoreg/ForecasterAutoreg.py
def _create_lags(
    self, 
    y: np.ndarray
) -> Tuple[np.ndarray, np.ndarray]:
    """       
    Transforms a 1d array into a 2d array (X) and a 1d array (y). Each row
    in X is associated with a value of y and it represents the lags that
    precede it.

    Notice that, the returned matrix X_data, contains the lag 1 in the first
    column, the lag 2 in the second column and so on.

    Parameters
    ----------        
    y : 1d numpy ndarray
        Training time series.

    Returns 
    -------
    X_data : 2d numpy ndarray, shape (samples - max(self.lags), len(self.lags))
        2d numpy array with the lagged values (predictors).

    y_data : 1d numpy ndarray, shape (samples - max(self.lags),)
        Values of the time series related to each row of `X_data`.

    """

    n_splits = len(y) - self.max_lag
    if n_splits <= 0:
        raise ValueError(
            f"The maximum lag ({self.max_lag}) must be less than the length "
            f"of the series ({len(y)})."
        )

    X_data = np.full(shape=(n_splits, len(self.lags)), fill_value=np.nan, dtype=float)

    for i, lag in enumerate(self.lags):
        X_data[:, i] = y[self.max_lag - lag: -lag]

    y_data = y[self.max_lag:]

    return X_data, y_data

_recursive_predict(self, steps, last_window, exog=None) private

Predict n steps ahead. It is an iterative process in which, each prediction,

is used as a predictor for the next step.

Parameters:

Name Type Description Default
steps int

Number of future steps predicted.

required
last_window ndarray

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1).

required
exog Optional[numpy.ndarray]

Exogenous variable/s included as predictor/s.

None

Returns:

Type Description
ndarray

Predicted values.

Source code in skforecast/ForecasterAutoreg/ForecasterAutoreg.py
def _recursive_predict(
    self,
    steps: int,
    last_window: np.ndarray,
    exog: Optional[np.ndarray]=None
) -> np.ndarray:
    """
    Predict n steps ahead. It is an iterative process in which, each prediction,
    is used as a predictor for the next step.

    Parameters
    ----------
    steps : int
        Number of future steps predicted.

    last_window : numpy ndarray
        Series values used to create the predictors (lags) needed in the 
        first iteration of the prediction (t + 1).

    exog : numpy ndarray, default `None`
        Exogenous variable/s included as predictor/s.

    Returns 
    -------
    predictions : numpy ndarray
        Predicted values.

    """

    predictions = np.full(shape=steps, fill_value=np.nan)

    for i in range(steps):
        X = last_window[-self.lags].reshape(1, -1)
        if exog is not None:
            X = np.column_stack((X, exog[i, ].reshape(1, -1)))
        with warnings.catch_warnings():
            # Suppress scikit-learn warning: "X does not have valid feature names,
            # but NoOpTransformer was fitted with feature names".
            warnings.simplefilter("ignore")
            prediction = self.regressor.predict(X)
            predictions[i] = prediction.ravel()[0]

        # Update `last_window` values. The first position is discarded and 
        # the new prediction is added at the end.
        last_window = np.append(last_window[1:], prediction)

    return predictions

__repr__(self) special

Information displayed when a ForecasterAutoreg object is printed.

Source code in skforecast/ForecasterAutoreg/ForecasterAutoreg.py
def __repr__(
    self
) -> str:
    """
    Information displayed when a ForecasterAutoreg object is printed.
    """

    if isinstance(self.regressor, sklearn.pipeline.Pipeline):
        name_pipe_steps = tuple(name + "__" for name in self.regressor.named_steps.keys())
        params = {key : value for key, value in self.regressor.get_params().items() \
                  if key.startswith(name_pipe_steps)}
    else:
        params = self.regressor.get_params(deep=True)

    info = (
        f"{'=' * len(type(self).__name__)} \n"
        f"{type(self).__name__} \n"
        f"{'=' * len(type(self).__name__)} \n"
        f"Regressor: {self.regressor} \n"
        f"Lags: {self.lags} \n"
        f"Transformer for y: {self.transformer_y} \n"
        f"Transformer for exog: {self.transformer_exog} \n"
        f"Window size: {self.window_size} \n"
        f"Weight function included: {True if self.weight_func is not None else False} \n"
        f"Exogenous included: {self.included_exog} \n"
        f"Type of exogenous variable: {self.exog_type} \n"
        f"Exogenous variables names: {self.exog_col_names} \n"
        f"Training range: {self.training_range.to_list() if self.fitted else None} \n"
        f"Training index type: {str(self.index_type).split('.')[-1][:-2] if self.fitted else None} \n"
        f"Training index frequency: {self.index_freq if self.fitted else None} \n"
        f"Regressor parameters: {params} \n"
        f"fit_kwargs: {self.fit_kwargs} \n"
        f"Creation date: {self.creation_date} \n"
        f"Last fit date: {self.fit_date} \n"
        f"Skforecast version: {self.skforcast_version} \n"
        f"Python version: {self.python_version} \n"
        f"Forecaster id: {self.forecaster_id} \n"
    )

    return info