Skip to content

Tuning forecaster

Skforecast library allows to combine grid search strategy with backtesting in order to identify the combination of lags and hyperparameters that achieve the best prediction performance.

Libraries

1
2
3
4
5
6
7
8
9
# Libraries
# ==============================================================================
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

from skforecast.ForecasterAutoreg import ForecasterAutoreg
from sklearn.ensembre import Ridge
from sklearn.metrics import mean_squared_error

Data

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
# Download data
# ==============================================================================
url = ('https://raw.githubusercontent.com/JoaquinAmatRodrigo/skforecast/master/data/h2o.csv')
data = pd.read_csv(url, sep=',', header=0, names=['y', 'datetime'])

# Data preprocessing
# ==============================================================================
data['datetime'] = pd.to_datetime(data['datetime'], format='%Y/%m/%d')
data = data.set_index('datetime')
data = data.asfreq('MS')
data = data['y']
data = data.sort_index()

# Split train-test
# ==============================================================================
steps = 24
data_train = data.loc[: '2001-01-01']
data_val = data.loc['2001-01-01' : '2006-01-01']
data_test  = data.loc['2006-01-01':]
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# Grid search hyperparameter and lags
# ==============================================================================
forecaster = ForecasterAutoreg(
                regressor = RandomForestRegressor(random_state=123),
                lags      = 12 # Placeholder, the value will be overwritten
             )

# Regressor hyperparameters
param_grid = {'n_estimators': [50, 100],
              'max_depth': [5, 10, 15]}

# Lags used as predictors
lags_grid = [3, 10, [1, 2, 3, 20]]

results_grid = grid_search_forecaster(
                        forecaster  = forecaster,
                        y           = data.loc[:'2006-01-01'],
                        param_grid  = param_grid,
                        lags_grid   = lags_grid,
                        steps       = 12,
                        refit       = True,
                        metric      = 'mean_squared_error',
                        initial_train_size = len(data_train),
                        return_best = True,
                        verbose     = False
                    )
1
results_grid
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
| lags                            | params                                 |    metric |   max_depth |   n_estimators |
|---------------------------------|----------------------------------------|-----------|-------------|----------------|
| [ 1  2  3  4  5  6  7  8  9 10] | {'max_depth': 5, 'n_estimators': 50}   | 0.0334486 |           5 |             50 |
| [ 1  2  3  4  5  6  7  8  9 10] | {'max_depth': 10, 'n_estimators': 50}  | 0.0392212 |          10 |             50 |
| [ 1  2  3  4  5  6  7  8  9 10] | {'max_depth': 15, 'n_estimators': 100} | 0.0392658 |          15 |            100 |
| [ 1  2  3  4  5  6  7  8  9 10] | {'max_depth': 5, 'n_estimators': 100}  | 0.0395258 |           5 |            100 |
| [ 1  2  3  4  5  6  7  8  9 10] | {'max_depth': 10, 'n_estimators': 100} | 0.0402408 |          10 |            100 |
| [ 1  2  3  4  5  6  7  8  9 10] | {'max_depth': 15, 'n_estimators': 50}  | 0.0407645 |          15 |             50 |
| [ 1  2  3 20]                   | {'max_depth': 15, 'n_estimators': 100} | 0.0439092 |          15 |            100 |
| [ 1  2  3 20]                   | {'max_depth': 5, 'n_estimators': 100}  | 0.0449923 |           5 |            100 |
| [ 1  2  3 20]                   | {'max_depth': 5, 'n_estimators': 50}   | 0.0462237 |           5 |             50 |
| [1 2 3]                         | {'max_depth': 5, 'n_estimators': 50}   | 0.0486662 |           5 |             50 |
| [ 1  2  3 20]                   | {'max_depth': 10, 'n_estimators': 100} | 0.0489914 |          10 |            100 |
| [ 1  2  3 20]                   | {'max_depth': 10, 'n_estimators': 50}  | 0.0501932 |          10 |             50 |
| [1 2 3]                         | {'max_depth': 15, 'n_estimators': 100} | 0.0505563 |          15 |            100 |
| [ 1  2  3 20]                   | {'max_depth': 15, 'n_estimators': 50}  | 0.0512172 |          15 |             50 |
| [1 2 3]                         | {'max_depth': 5, 'n_estimators': 100}  | 0.0531229 |           5 |            100 |
| [1 2 3]                         | {'max_depth': 15, 'n_estimators': 50}  | 0.0602604 |          15 |             50 |
| [1 2 3]                         | {'max_depth': 10, 'n_estimators': 50}  | 0.0609513 |          10 |             50 |
| [1 2 3]                         | {'max_depth': 10, 'n_estimators': 100} | 0.0673343 |          10 |            100 |
1
skforecast
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
========================================================================== 
<class 'skforecast.ForecasterAutoreg.ForecasterAutoreg.ForecasterAutoreg'> 
========================================================================== 
Regressor: RandomForestRegressor(max_depth=5, n_estimators=50, random_state=123) 
Lags: [ 1  2  3  4  5  6  7  8  9 10] 
Window size: 10 
Included exogenous: False 
Type of exogenous variable: None 
Exogenous variables names: None 
Training range: [Timestamp('1991-07-01 00:00:00'), Timestamp('2006-01-01 00:00:00')] 
Training index type: <class 'pandas.core.indexes.datetimes.DatetimeIndex'> 
Training index frequancy: MS 
Regressor parameters: {'bootstrap': True, 'ccp_alpha': 0.0, 'criterion': 'squared_error', 'max_depth': 5, 'max_features': 'auto', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 50, 'n_jobs': None, 'oob_score': False, 'random_state': 123, 'verbose': 0, 'warm_start': False}