Skip to content

ForecasterRecursiveClassifier

skforecast.recursive._forecaster_recursive_classifier.ForecasterRecursiveClassifier

ForecasterRecursiveClassifier(
    estimator,
    lags=None,
    window_features=None,
    features_encoding="auto",
    transformer_exog=None,
    weight_func=None,
    fit_kwargs=None,
    forecaster_id=None,
)

Bases: ForecasterBase

This class turns any classification estimator compatible with the scikit-learn API into a recursive autoregressive (multi-step) forecaster.

Parameters:

Name Type Description Default
estimator estimator or pipeline compatible with the scikit-learn API

An instance of a estimator or pipeline compatible with the scikit-learn API.

required
lags int, list, numpy ndarray, range

Lags used as predictors. Index starts at 1, so lag 1 is equal to t-1.

  • int: include lags from 1 to lags (included).
  • list, 1d numpy ndarray or range: include only lags present in lags, all elements must be int.
  • None: no lags are included as predictors.
None
window_features (object, list)

Instance or list of instances used to create window features. Window features are created from the original time series and are included as predictors.

None
features_encoding str

Encoding method for features derived from the time series (lags and window features that return class values):

  • 'auto': Use categorical dtype if estimator supports native categorical features (LightGBM, CatBoost, XGBoost), otherwise numeric encoding.
  • 'categorical': Force categorical dtype (requires compatible estimator).
  • 'ordinal': Use ordinal encoding (0, 1, 2, ...). The estimator will treat class codes as numeric values, assuming an ordinal relationship between classes (e.g., 'low' < 'medium' < 'high').

Note: This only affects features derived from the target series (y) not exogenous variables.

'auto'
transformer_exog object transformer (preprocessor)

An instance of a transformer (preprocessor) compatible with the scikit-learn preprocessing API. The transformation is applied to exog before training the forecaster. inverse_transform is not available when using ColumnTransformers.

None
weight_func Callable

Function that defines the individual weights for each sample based on the index. For example, a function that assigns a lower weight to certain dates. Ignored if estimator does not have the argument sample_weight in its fit method. The resulting sample_weight cannot have negative values.

None
fit_kwargs dict

Additional arguments to be passed to the fit method of the estimator.

None
forecaster_id (str, int)

Name used as an identifier of the forecaster.

None

Attributes:

Name Type Description
estimator estimator or pipeline compatible with the scikit-learn API

An instance of a estimator or pipeline compatible with the scikit-learn API.

lags numpy ndarray

Lags used as predictors.

lags_names list

Names of the lags used as predictors.

max_lag int

Maximum lag included in lags.

window_features list

Class or list of classes used to create window features.

window_features_names list

Names of the window features to be included in the X_train matrix.

window_features_class_names list

Names of the classes used to create the window features.

max_size_window_features int

Maximum window size required by the window features.

window_size int

The window size needed to create the predictors. It is calculated as the maximum value between max_lag and max_size_window_features.

features_encoding str

Encoding method for features derived from the time series (lags and window features that return class values).

use_native_categoricals bool

Indicates whether the estimator supports native categorical features.

classes_ list

List of class labels seen during training.

class_codes_ list

List of class codes assigned by the OrdinalEncoder during training.

n_classes_ int

Number of classes seen during training.

encoder OrdinalEncoder

Instance of OrdinalEncoder used to encode target variable class labels.

encoding_mapping_ dict

Mapping of original class labels to encoded values.

code_to_class_mapping_ dict

Mapping of encoded values to original class labels.

transformer_exog object transformer (preprocessor)

An instance of a transformer (preprocessor) compatible with the scikit-learn preprocessing API. The transformation is applied to exog before training the forecaster. inverse_transform is not available when using ColumnTransformers.

weight_func Callable

Function that defines the individual weights for each sample based on the index. For example, a function that assigns a lower weight to certain dates. Ignored if estimator does not have the argument sample_weight in its fit method. The resulting sample_weight cannot have negative values.

source_code_weight_func str

Source code of the custom function used to create weights.

last_window_ pandas DataFrame

This window represents the most recent data observed by the predictor during its training phase. It contains the values needed to predict the next step immediately after the training data. These values are stored in the original scale of the time series before undergoing any transformation.

index_type_ type

Type of index of the input used in training.

index_freq_ str

Frequency of Index of the input used in training.

training_range_ pandas Index

First and last values of index of the data used during training.

series_name_in_ str

Names of the series provided by the user during training.

exog_in_ bool

If the forecaster has been trained using exogenous variable/s.

exog_names_in_ list

Names of the exogenous variables used during training.

exog_type_in_ type

Type of exogenous data (pandas Series or DataFrame) used in training.

exog_dtypes_in_ dict

Type of each exogenous variable/s used in training before the transformation applied by transformer_exog. If transformer_exog is not used, it is equal to exog_dtypes_out_.

exog_dtypes_out_ dict

Type of each exogenous variable/s used in training after the transformation applied by transformer_exog. If transformer_exog is not used, it is equal to exog_dtypes_in_.

X_train_window_features_names_out_ list

Names of the window features included in the matrix X_train created internally for training.

X_train_exog_names_out_ list

Names of the exogenous variables included in the matrix X_train created internally for training. It can be different from exog_names_in_ if some exogenous variables are transformed during the training process.

X_train_features_names_out_ list

Names of columns of the matrix created internally for training.

fit_kwargs dict

Additional arguments to be passed to the fit method of the estimator.

creation_date str

Date of creation.

is_fitted bool

Tag to identify if the estimator has been fitted (trained).

fit_date str

Date of last fit.

skforecast_version str

Version of skforecast library used to create the forecaster.

python_version str

Version of python used to create the forecaster.

forecaster_id (str, int)

Name used as an identifier of the forecaster.

__skforecast_tags__ dict

Tags associated with the forecaster.

_probabilistic_mode (str, bool)

Private attribute used to indicate whether the forecaster should perform some calculations during backtesting.

transformer_y Ignored

Not used, present here for API consistency by convention.

differentiation Ignored

Not used, present here for API consistency by convention.

differentiation_max Ignored

Not used, present here for API consistency by convention.

Notes

Categorical features are transformed using an OrdinalEncoder (self.encoder). The encoder's learned mappings (self.encoding_mapping_) are stored so that later, when creating lag (autoregressive) features, the same category-to-integer relationships can be applied consistently.

The goal is to ensure that the lag features — which are recreated as categorical variables — use the exact same integer codes as the original encoding. In other words, the numerical values in the lagged features should exactly match the integer codes that the OrdinalEncoder assigned. Formally, this means the following should hold true:

(X_train['lag_1'].cat.codes == X_train['lag_1']).all()

This consistency is guaranteed because:

  • OrdinalEncoder assigns integer codes starting from 0, in the alphabetical order of category labels.

  • When autoregressive (lag) features are created later, they are converted to pandas Categorical types using the same category ordering (categories = forecaster.class_codes_).

As a result, the categorical codes used in lag features remain aligned with the original encoding from the OrdinalEncoder.

During prediction, we can work directly with NumPy arrays because the OrdinalEncoder transforms new observations into the same integer codes used by pandas Categorical during training. This eliminates the need to convert data to pandas categorical types at inference time.

Methods:

Name Description
create_train_X_y

Create training matrices from univariate time series and exogenous

create_sample_weights

Create weights for each observation according to the forecaster's attribute

fit

Training Forecaster.

create_predict_X

Create the predictors needed to predict steps ahead. As it is a recursive

predict

Predict n steps ahead. It is an recursive process in which, each prediction,

predict_proba

Predict class probabilities n steps ahead. It is a recursive process in

set_params

Set new values to the parameters of the scikit-learn model stored in the

set_fit_kwargs

Set new values for the additional keyword arguments passed to the fit

set_lags

Set new value to the attribute lags. Attributes lags_names,

set_window_features

Set new value to the attribute window_features. Attributes

get_feature_importances

Return feature importances of the estimator stored in the forecaster.

Source code in skforecast\recursive\_forecaster_recursive_classifier.py
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
def __init__(
    self,
    estimator: object,
    lags: int | list[int] | np.ndarray[int] | range[int] | None = None,
    window_features: object | list[object] | None = None,
    features_encoding: str = 'auto',
    transformer_exog: object | None = None,
    weight_func: Callable | None = None,
    fit_kwargs: dict[str, object] | None = None,
    forecaster_id: str | int | None = None
) -> None:

    self.estimator                          = copy(estimator)
    self.transformer_exog                   = transformer_exog
    self.weight_func                        = weight_func
    self.source_code_weight_func            = None
    self.last_window_                       = None
    self.index_type_                        = None
    self.index_freq_                        = None
    self.training_range_                    = None
    self.series_name_in_                    = None
    self.exog_in_                           = False
    self.exog_names_in_                     = None
    self.exog_type_in_                      = None
    self.exog_dtypes_in_                    = None
    self.exog_dtypes_out_                   = None
    self.X_train_window_features_names_out_ = None
    self.X_train_exog_names_out_            = None
    self.X_train_features_names_out_        = None
    self.creation_date                      = pd.Timestamp.today().strftime('%Y-%m-%d %H:%M:%S')
    self.is_fitted                          = False
    self.fit_date                           = None
    self.skforecast_version                 = skforecast.__version__
    self.python_version                     = sys.version.split(" ")[0]
    self.forecaster_id                      = forecaster_id
    self._probabilistic_mode                = False  # NOTE: Ignored in this forecaster
    self.transformer_y                      = None  # NOTE: Ignored in this forecaster
    self.differentiation                    = None  # NOTE: Ignored in this forecaster
    self.differentiation_max                = None  # NOTE: Ignored in this forecaster

    self.features_encoding                  = features_encoding
    self.use_native_categoricals            = False
    self.classes_                           = None
    self.class_codes_                       = None
    self.n_classes_                         = None
    self.encoding_mapping_                  = None
    self.code_to_class_mapping_             = None

    valid_encodings = ['auto', 'categorical', 'ordinal']
    if features_encoding not in valid_encodings:
        raise ValueError(
            f"`features_encoding` must be one of {valid_encodings}. "
            f"Got '{features_encoding}'."
        )

    supports_categorical = self._check_categorical_support(estimator)
    if features_encoding == 'categorical':
        if supports_categorical:
            self.use_native_categoricals = True
        else:
            raise ValueError(
                f"`features_encoding='categorical'` requires a estimator that "
                f"supports native categorical features (LightGBM, CatBoost, XGBoost). "
                f"Got {type(estimator).__name__}. Use 'auto' or 'ordinal' instead."
            )
    elif features_encoding == 'auto':
        if supports_categorical:
            self.use_native_categoricals = True

    self.encoder = OrdinalEncoder(
                       categories = 'auto',
                       dtype      = int if self.use_native_categoricals else float
                   )

    self.lags, self.lags_names, self.max_lag = initialize_lags(type(self).__name__, lags)
    self.window_features, self.window_features_names, self.max_size_window_features = (
        initialize_window_features(window_features)
    )
    if self.window_features is None and self.lags is None:
        raise ValueError(
            "At least one of the arguments `lags` or `window_features` "
            "must be different from None. This is required to create the "
            "predictors used in training the forecaster."
        )

    self.window_size = max(
        [ws for ws in [self.max_lag, self.max_size_window_features] 
         if ws is not None]
    )
    self.window_features_class_names = None
    if window_features is not None:
        self.window_features_class_names = [
            type(wf).__name__ for wf in self.window_features
        ]

    self.weight_func, self.source_code_weight_func, _ = initialize_weights(
        forecaster_name = type(self).__name__, 
        estimator       = estimator, 
        weight_func     = weight_func, 
        series_weights  = None
    )

    self.fit_kwargs = check_select_fit_kwargs(
                          estimator  = estimator,
                          fit_kwargs = fit_kwargs
                      )

    self.__skforecast_tags__ = {
        "library": "skforecast",
        "forecaster_name": "ForecasterRecursiveClassifier",
        "forecaster_task": "classification",
        "forecasting_scope": "single-series",  # single-series | global
        "forecasting_strategy": "recursive",   # recursive | direct | deep_learning
        "index_types_supported": ["pandas.RangeIndex", "pandas.DatetimeIndex"],
        "requires_index_frequency": True,

        "allowed_input_types_series": ["pandas.Series"],
        "supports_exog": True,
        "allowed_input_types_exog": ["pandas.Series", "pandas.DataFrame"],
        "handles_missing_values_series": False, 
        "handles_missing_values_exog": True, 

        "supports_lags": True,
        "supports_window_features": True,
        "supports_transformer_series": False,
        "supports_transformer_exog": True,
        "supports_weight_func": True,
        "supports_differentiation": False,

        "prediction_types": ["point", "probabilities"],
        "supports_probabilistic": True,
        "probabilistic_methods": ["class-probabilities"],
        "handles_binned_residuals": False
    }

estimator instance-attribute

estimator = copy(estimator)

transformer_exog instance-attribute

transformer_exog = transformer_exog

weight_func instance-attribute

weight_func = weight_func

source_code_weight_func instance-attribute

source_code_weight_func = None

last_window_ instance-attribute

last_window_ = None

index_type_ instance-attribute

index_type_ = None

index_freq_ instance-attribute

index_freq_ = None

training_range_ instance-attribute

training_range_ = None

series_name_in_ instance-attribute

series_name_in_ = None

exog_in_ instance-attribute

exog_in_ = False

exog_names_in_ instance-attribute

exog_names_in_ = None

exog_type_in_ instance-attribute

exog_type_in_ = None

exog_dtypes_in_ instance-attribute

exog_dtypes_in_ = None

exog_dtypes_out_ instance-attribute

exog_dtypes_out_ = None

X_train_window_features_names_out_ instance-attribute

X_train_window_features_names_out_ = None

X_train_exog_names_out_ instance-attribute

X_train_exog_names_out_ = None

X_train_features_names_out_ instance-attribute

X_train_features_names_out_ = None

creation_date instance-attribute

creation_date = strftime('%Y-%m-%d %H:%M:%S')

is_fitted instance-attribute

is_fitted = False

fit_date instance-attribute

fit_date = None

skforecast_version instance-attribute

skforecast_version = __version__

python_version instance-attribute

python_version = split(' ')[0]

forecaster_id instance-attribute

forecaster_id = forecaster_id

_probabilistic_mode instance-attribute

_probabilistic_mode = False

transformer_y instance-attribute

transformer_y = None

differentiation instance-attribute

differentiation = None

differentiation_max instance-attribute

differentiation_max = None

features_encoding instance-attribute

features_encoding = features_encoding

use_native_categoricals instance-attribute

use_native_categoricals = False

classes_ instance-attribute

classes_ = None

class_codes_ instance-attribute

class_codes_ = None

n_classes_ instance-attribute

n_classes_ = None

encoding_mapping_ instance-attribute

encoding_mapping_ = None

code_to_class_mapping_ instance-attribute

code_to_class_mapping_ = None

encoder instance-attribute

encoder = OrdinalEncoder(
    categories="auto",
    dtype=int if use_native_categoricals else float,
)

window_size instance-attribute

window_size = max(
    [
        ws
        for ws in [max_lag, max_size_window_features]
        if ws is not None
    ]
)

window_features_class_names instance-attribute

window_features_class_names = None

fit_kwargs instance-attribute

fit_kwargs = check_select_fit_kwargs(
    estimator=estimator, fit_kwargs=fit_kwargs
)

_repr_html_

_repr_html_()

HTML representation of the object. The "General Information" section is expanded by default.

Source code in skforecast\recursive\_forecaster_recursive_classifier.py
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
def _repr_html_(self):
    """
    HTML representation of the object.
    The "General Information" section is expanded by default.
    """

    (
        params,
        _,
        _,
        exog_names_in_,
        _,
    ) = self._preprocess_repr(
            estimator      = self.estimator,
            exog_names_in_ = self.exog_names_in_
        )

    style, unique_id = get_style_repr_html(self.is_fitted)

    content = f"""
    <div class="container-{unique_id}">
        <p style="font-size: 1.5em; font-weight: bold; margin-block-start: 0.83em; margin-block-end: 0.83em;">{type(self).__name__}</p>
        <details open>
            <summary>General Information</summary>
            <ul>
                <li><strong>Estimator:</strong> {type(self.estimator).__name__}</li>
                <li><strong>Lags:</strong> {self.lags}</li>
                <li><strong>Window features:</strong> {self.window_features_names}</li>
                <li><strong>Window size:</strong> {self.window_size}</li>
                <li><strong>Series name:</strong> {self.series_name_in_}</li>
                <li><strong>Exogenous included:</strong> {self.exog_in_}</li>
                <li><strong>Weight function included:</strong> {self.weight_func is not None}</li>
                <li><strong>Creation date:</strong> {self.creation_date}</li>
                <li><strong>Last fit date:</strong> {self.fit_date}</li>
                <li><strong>Skforecast version:</strong> {self.skforecast_version}</li>
                <li><strong>Python version:</strong> {self.python_version}</li>
                <li><strong>Forecaster id:</strong> {self.forecaster_id}</li>
            </ul>
        </details>
        <details>
            <summary>Classification Information</summary>
            <ul>
                <li><strong>Classes:</strong> {self.classes_}</li>
                <li><strong>Class encoding:</strong> {self.encoding_mapping_}</li>
            </ul>
        </details>
        <details>
            <summary>Exogenous Variables</summary>
            <ul>
                <li><strong>Exogenous names:</strong> {exog_names_in_}</li>
                <li><strong>Transformer for exog:</strong> {self.transformer_exog}</li>
            </ul>
        </details>
        <details>
            <summary>Training Information</summary>
            <ul>
                <li><strong>Training range:</strong> {self.training_range_.to_list() if self.is_fitted else 'Not fitted'}</li>
                <li><strong>Training index type:</strong> {str(self.index_type_).split('.')[-1][:-2] if self.is_fitted else 'Not fitted'}</li>
                <li><strong>Training index frequency:</strong> {self.index_freq_ if self.is_fitted else 'Not fitted'}</li>
            </ul>
        </details>
        <details>
            <summary>Estimator Parameters</summary>
            <ul>
                {params}
            </ul>
        </details>
        <details>
            <summary>Fit Kwargs</summary>
            <ul>
                {self.fit_kwargs}
            </ul>
        </details>
        <p>
            <a href="https://skforecast.org/{skforecast.__version__}/api/forecasterrecursiveclassifier.html">&#128712 <strong>API Reference</strong></a>
            &nbsp;&nbsp;
            <a href="https://skforecast.org/{skforecast.__version__}/user_guides/autoregressive-classification-forecasting.html">&#128462 <strong>User Guide</strong></a>
        </p>
    </div>
    """

    return style + content

_check_categorical_support

_check_categorical_support(estimator)

Check if estimator supports native categorical features. Checks by class name to avoid importing optional dependencies.

Source code in skforecast\recursive\_forecaster_recursive_classifier.py
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
def _check_categorical_support(
    self, 
    estimator: object
) -> bool:
    """
    Check if estimator supports native categorical features.
    Checks by class name to avoid importing optional dependencies.
    """

    if isinstance(estimator, Pipeline):
        estimator = estimator[-1]
    if type(estimator).__name__ == 'CalibratedClassifierCV':
        estimator = estimator.estimator         

    class_name = type(estimator).__name__
    module_name = type(estimator).__module__

    supported_models = {
        'LGBMClassifier': 'lightgbm',
        'CatBoostClassifier': 'catboost',
        'XGBClassifier': 'xgboost',
        'HistGradientBoostingClassifier': 'sklearn.ensemble._hist_gradient_boosting'
    }

    if class_name in supported_models:
        expected_module = supported_models[class_name]
        # NOTE: Verify if the estimator is from the expected module
        # (in case someone creates a class with the same name)
        if expected_module in module_name:
            return True

    return False

_create_lags

_create_lags(
    y, X_as_pandas=False, train_index=None, class_codes=None
)

Create the lagged values and their target variable from a time series.

Note that the returned matrix X_data contains the lag 1 in the first column, the lag 2 in the in the second column and so on.

Parameters:

Name Type Description Default
y numpy ndarray

Training time series values.

required
X_as_pandas bool

If True, the returned matrix X_data is a pandas DataFrame.

False
train_index pandas Index

Index of the training data. It is used to create the pandas DataFrame X_data when X_as_pandas is True.

None
class_codes list

List of category codes to be used when converting lagged values to pandas Categorical. Only used when self.use_native_categoricals is True.

None

Returns:

Name Type Description
X_data numpy ndarray, pandas DataFrame, None

Lagged values (predictors).

y_data numpy ndarray

Values of the time series related to each row of X_data.

Notes

Returned matrices are views into the original y so care must be taken when modifying them.

Source code in skforecast\recursive\_forecaster_recursive_classifier.py
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
def _create_lags(
    self,
    y: np.ndarray,
    X_as_pandas: bool = False,
    train_index: pd.Index | None = None,
    class_codes: list[int | float] | None = None
) -> tuple[np.ndarray | pd.DataFrame | None, np.ndarray]:
    """
    Create the lagged values and their target variable from a time series.

    Note that the returned matrix `X_data` contains the lag 1 in the first 
    column, the lag 2 in the in the second column and so on.

    Parameters
    ----------
    y : numpy ndarray
        Training time series values.
    X_as_pandas : bool, default False
        If `True`, the returned matrix `X_data` is a pandas DataFrame.
    train_index : pandas Index, default None
        Index of the training data. It is used to create the pandas DataFrame
        `X_data` when `X_as_pandas` is `True`.
    class_codes : list, default None
        List of category codes to be used when converting lagged values to
        pandas Categorical. Only used when `self.use_native_categoricals` is 
        `True`.

    Returns
    -------
    X_data : numpy ndarray, pandas DataFrame, None
        Lagged values (predictors).
    y_data : numpy ndarray
        Values of the time series related to each row of `X_data`.

    Notes
    -----
    Returned matrices are views into the original `y` so care must be taken
    when modifying them.

    """

    X_data = None
    if self.lags is not None:
        y_strided = np.lib.stride_tricks.sliding_window_view(y, self.window_size)[:-1]
        X_data = y_strided[:, self.window_size - self.lags]

        if X_as_pandas:
            X_data = pd.DataFrame(
                         data    = X_data,
                         columns = self.lags_names,
                         index   = train_index
                     )
            if self.use_native_categoricals:
                for col in X_data.columns:
                    X_data[col] = pd.Categorical(
                                      values     = X_data[col],
                                      categories = class_codes,
                                      ordered    = False
                                  )

    y_data = y[self.window_size:]

    return X_data, y_data

_create_window_features

_create_window_features(y, train_index, X_as_pandas=False)

Create window features from a time series.

Parameters:

Name Type Description Default
y pandas Series

Training time series.

required
train_index pandas Index

Index of the training data. It is used to create the pandas DataFrame X_train_window_features when X_as_pandas is True.

required
X_as_pandas bool

If True, the returned matrix X_train_window_features is a pandas DataFrame.

False

Returns:

Name Type Description
X_train_window_features list

List of numpy ndarrays or pandas DataFrames with the window features.

X_train_window_features_names_out_ list

Names of the window features.

Source code in skforecast\recursive\_forecaster_recursive_classifier.py
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
def _create_window_features(
    self, 
    y: pd.Series,
    train_index: pd.Index,
    X_as_pandas: bool = False,
) -> tuple[list[np.ndarray | pd.DataFrame], list[str]]:
    """
    Create window features from a time series.

    Parameters
    ----------
    y : pandas Series
        Training time series.
    train_index : pandas Index
        Index of the training data. It is used to create the pandas DataFrame
        `X_train_window_features` when `X_as_pandas` is `True`.
    X_as_pandas : bool, default False
        If `True`, the returned matrix `X_train_window_features` is a 
        pandas DataFrame.

    Returns
    -------
    X_train_window_features : list
        List of numpy ndarrays or pandas DataFrames with the window features.
    X_train_window_features_names_out_ : list
        Names of the window features.

    """

    len_train_index = len(train_index)
    X_train_window_features = []
    X_train_window_features_names_out_ = []
    for wf in self.window_features:
        X_train_wf = wf.transform_batch(y)
        if not isinstance(X_train_wf, pd.DataFrame):
            raise TypeError(
                f"The method `transform_batch` of {type(wf).__name__} "
                f"must return a pandas DataFrame."
            )
        X_train_wf = X_train_wf.iloc[-len_train_index:]
        if not len(X_train_wf) == len_train_index:
            raise ValueError(
                f"The method `transform_batch` of {type(wf).__name__} "
                f"must return a DataFrame with the same number of rows as "
                f"the input time series - `window_size`: {len_train_index}."
            )
        if not (X_train_wf.index == train_index).all():
            raise ValueError(
                f"The method `transform_batch` of {type(wf).__name__} "
                f"must return a DataFrame with the same index as "
                f"the input time series - `window_size`."
            )

        X_train_window_features_names_out_.extend(X_train_wf.columns)
        if not X_as_pandas:
            X_train_wf = X_train_wf.to_numpy()     
        X_train_window_features.append(X_train_wf)

    return X_train_window_features, X_train_window_features_names_out_

_create_train_X_y

_create_train_X_y(y, exog=None, store_last_window=True)

Create training matrices from univariate time series and exogenous variables.

Parameters:

Name Type Description Default
y pandas Series

Training time series.

required
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s. Must have the same number of observations as y and their indexes must be aligned.

None
store_last_window bool

Whether or not to store the last window (last_window_) of training data.

True

Returns:

Name Type Description
X_train pandas DataFrame

Training values (predictors).

y_train pandas Series

Values of the time series related to each row of X_train.

y_encoding_info_ dict

Information related to the encoding of the target variable.

exog_names_in_ list

Names of the exogenous variables used during training.

X_train_window_features_names_out_ list

Names of the window features included in the matrix X_train created internally for training.

X_train_exog_names_out_ list

Names of the exogenous variables included in the matrix X_train created internally for training. It can be different from exog_names_in_ if some exogenous variables are transformed during the training process.

X_train_features_names_out_ list

Names of the columns of the matrix created internally for training.

exog_dtypes_in_ dict

Type of each exogenous variable/s used in training before the transformation applied by transformer_exog. If transformer_exog is not used, it is equal to exog_dtypes_out_.

exog_dtypes_out_ dict

Type of each exogenous variable/s used in training after the transformation applied by transformer_exog. If transformer_exog is not used, it is equal to exog_dtypes_in_.

last_window_ pandas DataFrame

This window represents the most recent data observed by the predictor during its training phase. It contains the values needed to predict the next step immediately after the training data. These values are stored in the original scale of the time series before undergoing any transformation.

Source code in skforecast\recursive\_forecaster_recursive_classifier.py
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
def _create_train_X_y(
    self,
    y: pd.Series,
    exog: pd.Series | pd.DataFrame | None = None,
    store_last_window: bool | list[str] = True
) -> tuple[
    pd.DataFrame, 
    pd.Series, 
    dict[str, Any],
    list[str], 
    list[str], 
    list[str], 
    list[str], 
    dict[str, type],
    dict[str, type],
    pd.DataFrame
]:
    """
    Create training matrices from univariate time series and exogenous
    variables.

    Parameters
    ----------
    y : pandas Series
        Training time series.
    exog : pandas Series, pandas DataFrame, default None
        Exogenous variable/s included as predictor/s. Must have the same
        number of observations as `y` and their indexes must be aligned.
    store_last_window : bool, default True
        Whether or not to store the last window (`last_window_`) of training data.

    Returns
    -------
    X_train : pandas DataFrame
        Training values (predictors).
    y_train : pandas Series
        Values of the time series related to each row of `X_train`.
    y_encoding_info_ : dict
        Information related to the encoding of the target variable.
    exog_names_in_ : list
        Names of the exogenous variables used during training.
    X_train_window_features_names_out_ : list
        Names of the window features included in the matrix `X_train` created
        internally for training.
    X_train_exog_names_out_ : list
        Names of the exogenous variables included in the matrix `X_train` created
        internally for training. It can be different from `exog_names_in_` if
        some exogenous variables are transformed during the training process.
    X_train_features_names_out_ : list
        Names of the columns of the matrix created internally for training.
    exog_dtypes_in_ : dict
        Type of each exogenous variable/s used in training before the transformation
        applied by `transformer_exog`. If `transformer_exog` is not used, it
        is equal to `exog_dtypes_out_`.
    exog_dtypes_out_ : dict
        Type of each exogenous variable/s used in training after the transformation
        applied by `transformer_exog`. If `transformer_exog` is not used, it 
        is equal to `exog_dtypes_in_`.
    last_window_ : pandas DataFrame
        This window represents the most recent data observed by the predictor
        during its training phase. It contains the values needed to predict the
        next step immediately after the training data. These values are stored
        in the original scale of the time series before undergoing any transformation.

    """

    check_y(y=y)
    y = input_to_frame(data=y, input_name='y')

    if len(y) <= self.window_size:
        raise ValueError(
            f"Length of `y` must be greater than the maximum window size "
            f"needed by the forecaster.\n"
            f"    Length `y`: {len(y)}.\n"
            f"    Max window size: {self.window_size}.\n"
            f"    Lags window size: {self.max_lag}.\n"
            f"    Window features window size: {self.max_size_window_features}."
        )

    y_values, y_index = check_extract_values_and_index(data=y, data_label='`y`')

    if np.issubdtype(y_values.dtype, np.floating):
        not_allowed = np.mod(y_values, 1) != 0
        if np.any(not_allowed):
            examples = ", ".join(map(str, np.unique(y_values[not_allowed])[:5]))
            raise ValueError(
                f"Invalid target for classification: targets must be discrete "
                f"class labels (strings, integers or floats with decimals "
                f"equal to 0). Received float dtype '{y_values.dtype}' with "
                f"decimals (e.g., {examples}). "
            )

    # NOTE: See Notes sections for explanation
    fit_transformer = False if self.is_fitted else True
    if fit_transformer:
        encoding_mapping_ = {}
        y_encoded = self.encoder.fit_transform(y_values.reshape(-1, 1)).ravel()
        for i, cat in enumerate(self.encoder.categories_[0]):
            encoding_mapping_[cat] = i if self.use_native_categoricals else float(i)
    else:
        encoding_mapping_ = self.encoding_mapping_
        y_encoded = self.encoder.transform(y_values.reshape(-1, 1)).ravel()

    classes = list(encoding_mapping_.keys())
    class_codes = list(encoding_mapping_.values())
    n_classes = len(classes)
    if n_classes < 2:
        raise ValueError(
            f"The target variable must have at least 2 classes. "
            f"Found {classes} class."
        )

    y_encoding_info_ = {
        'classes_': classes,
        'class_codes_': class_codes,
        'n_classes_': n_classes,
        'encoding_mapping_': encoding_mapping_
    }
    train_index = y_index[self.window_size:]

    exog_names_in_ = None
    exog_dtypes_in_ = None
    exog_dtypes_out_ = None
    X_as_pandas = False if not self.use_native_categoricals else True
    if exog is not None:
        check_exog(exog=exog, allow_nan=True)
        exog = input_to_frame(data=exog, input_name='exog')
        _, exog_index = check_extract_values_and_index(
            data=exog, data_label='`exog`', ignore_freq=True, return_values=False
        )

        len_y = len(y_values)
        len_train_index = len(train_index)
        len_exog = len(exog)
        if not len_exog == len_y and not len_exog == len_train_index:
            raise ValueError(
                f"Length of `exog` must be equal to the length of `y` (if index is "
                f"fully aligned) or length of `y` - `window_size` (if `exog` "
                f"starts after the first `window_size` values).\n"
                f"    `exog`              : ({exog_index[0]} -- {exog_index[-1]})  (n={len_exog})\n"
                f"    `y`                 : ({y.index[0]} -- {y.index[-1]})  (n={len_y})\n"
                f"    `y` - `window_size` : ({train_index[0]} -- {train_index[-1]})  (n={len_train_index})"
            )

        exog_names_in_ = exog.columns.to_list()
        exog_dtypes_in_ = get_exog_dtypes(exog=exog)

        exog = transform_dataframe(
                   df                = exog,
                   transformer       = self.transformer_exog,
                   fit               = fit_transformer,
                   inverse_transform = False
               )

        check_exog_dtypes(exog, call_check_exog=True)
        exog_dtypes_out_ = get_exog_dtypes(exog=exog)
        if X_as_pandas is False:
            X_as_pandas = any(
                not pd.api.types.is_numeric_dtype(dtype) or pd.api.types.is_bool_dtype(dtype) 
                for dtype in set(exog.dtypes)
            )

        if len_exog == len_y:
            if not (exog_index == y_index).all():
                raise ValueError(
                    "When `exog` has the same length as `y`, the index of "
                    "`exog` must be aligned with the index of `y` "
                    "to ensure the correct alignment of values."
                )
            # The first `self.window_size` positions have to be removed from 
            # exog since they are not in X_train.
            exog = exog.iloc[self.window_size:, ]
        else:
            if not (exog_index == train_index).all():
                raise ValueError(
                    "When `exog` doesn't contain the first `window_size` observations, "
                    "the index of `exog` must be aligned with the index of `y` minus "
                    "the first `window_size` observations to ensure the correct "
                    "alignment of values."
                )

    X_train = []
    X_train_features_names_out_ = []

    X_train_lags, y_train = self._create_lags(
                                y           = y_encoded, 
                                X_as_pandas = X_as_pandas, 
                                train_index = train_index,
                                class_codes = class_codes
                            )
    if X_train_lags is not None:
        X_train.append(X_train_lags)
        X_train_features_names_out_.extend(self.lags_names)

    X_train_window_features_names_out_ = None
    if self.window_features is not None:
        y_window_features = pd.Series(y_encoded, index=y_index)
        X_train_window_features, X_train_window_features_names_out_ = (
            self._create_window_features(
                y=y_window_features, X_as_pandas=X_as_pandas, train_index=train_index
            )
        )

        # FIXME: When 'mode' is used, ideally it should be converted to categorical
        # not done as we can't know its position when 'proportion' is used.

        X_train.extend(X_train_window_features)
        X_train_features_names_out_.extend(X_train_window_features_names_out_)

    X_train_exog_names_out_ = None
    if exog is not None:
        X_train_exog_names_out_ = exog.columns.to_list()  
        if not X_as_pandas:
            exog = exog.to_numpy()     
        X_train_features_names_out_.extend(X_train_exog_names_out_)
        X_train.append(exog)

    if len(X_train) == 1:
        X_train = X_train[0]
    else:
        if X_as_pandas:
            X_train = pd.concat(X_train, axis=1)
        else:
            X_train = np.concatenate(X_train, axis=1)

    if X_as_pandas:
        X_train.index = train_index
    else:
        X_train = pd.DataFrame(
                      data    = X_train,
                      index   = train_index,
                      columns = X_train_features_names_out_
                  )

    y_train = pd.Series(
                  data  = y_train,
                  index = train_index,
                  name  = 'y'
              )

    last_window_ = None
    if store_last_window:
        last_window_ = pd.DataFrame(
                           data    = y_values[-self.window_size:],
                           index   = y_index[-self.window_size:],
                           columns = y.columns   
                       )

    return (
        X_train,
        y_train,
        y_encoding_info_,
        exog_names_in_,
        X_train_window_features_names_out_,
        X_train_exog_names_out_,
        X_train_features_names_out_,
        exog_dtypes_in_,
        exog_dtypes_out_,
        last_window_
    )

create_train_X_y

create_train_X_y(y, exog=None, encoded=True)

Create training matrices from univariate time series and exogenous variables.

Parameters:

Name Type Description Default
y pandas Series

Training time series.

required
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s. Must have the same number of observations as y and their indexes must be aligned.

None
encoded bool

Whether to return the target and lag features encoded as integers (as used during training) or decoded to their original categories.

True

Returns:

Name Type Description
X_train pandas DataFrame

Training values (predictors).

y_train pandas Series

Values of the time series related to each row of X_data.

Notes

Categorical features are transformed using an OrdinalEncoder (self.encoder). The encoder's learned mappings (self.encoding_mapping_) are stored so that later, when creating lag (autoregressive) features, the same category-to-integer relationships can be applied consistently.

The goal is to ensure that the lag features — which are recreated as categorical variables — use the exact same integer codes as the original encoding. In other words, the numerical values in the lagged features should exactly match the integer codes that the OrdinalEncoder assigned. Formally, this means the following should hold true:

(X_train['lag_1'].cat.codes == X_train['lag_1']).all()

This consistency is guaranteed because:

  • OrdinalEncoder assigns integer codes starting from 0, in the alphabetical order of category labels.

  • When autoregressive (lag) features are created later, they are converted to pandas Categorical types using the same category ordering (categories = forecaster.class_codes_).

As a result, the categorical codes used in lag features remain aligned with the original encoding from the OrdinalEncoder.

During prediction, we can work directly with NumPy arrays because the OrdinalEncoder transforms new observations into the same integer codes used by pandas Categorical during training. This eliminates the need to convert data to pandas categorical types at inference time.

Source code in skforecast\recursive\_forecaster_recursive_classifier.py
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
def create_train_X_y(
    self,
    y: pd.Series,
    exog: pd.Series | pd.DataFrame | None = None,
    encoded: bool = True
) -> tuple[pd.DataFrame, pd.Series]:
    """
    Create training matrices from univariate time series and exogenous
    variables.

    Parameters
    ----------
    y : pandas Series
        Training time series.
    exog : pandas Series, pandas DataFrame, default None
        Exogenous variable/s included as predictor/s. Must have the same
        number of observations as `y` and their indexes must be aligned.
    encoded : bool, default True
        Whether to return the target and lag features encoded as integers
        (as used during training) or decoded to their original categories.

    Returns
    -------
    X_train : pandas DataFrame
        Training values (predictors).
    y_train : pandas Series
        Values of the time series related to each row of `X_data`.

    Notes
    -----
    Categorical features are transformed using an `OrdinalEncoder` (self.encoder).
    The encoder's learned mappings (self.encoding_mapping_) are stored so that 
    later, when creating lag (autoregressive) features, the same category-to-integer 
    relationships can be applied consistently.

    The goal is to ensure that the lag features — which are recreated as 
    categorical variables — use the exact same integer codes as the original encoding.
    In other words, the numerical values in the lagged features should 
    exactly match the integer codes that the `OrdinalEncoder` assigned.
    Formally, this means the following should hold true:

    `(X_train['lag_1'].cat.codes == X_train['lag_1']).all()`

    This consistency is guaranteed because:

    - `OrdinalEncoder` assigns integer codes starting from 0, in the alphabetical 
    order of category labels.

    - When autoregressive (lag) features are created later, they are converted 
    to pandas Categorical types using the same category ordering 
    (`categories = forecaster.class_codes_`).

    As a result, the categorical codes used in lag features remain aligned
    with the original encoding from the `OrdinalEncoder`.

    During prediction, we can work directly with NumPy arrays because the 
    `OrdinalEncoder` transforms new observations into the same integer codes 
    used by pandas Categorical during training. This eliminates the need to 
    convert data to pandas categorical types at inference time.

    """

    output = self._create_train_X_y(y=y, exog=exog, store_last_window=False)

    X_train = output[0]
    y_train = output[1]

    if not encoded:

        for col in self.lags_names:
            X_train[col] = self.encoder.inverse_transform(
                X_train[col].to_numpy().reshape(-1, 1)
            ).ravel()

        y_train = pd.Series(
                      data  = self.encoder.inverse_transform(y_train.to_numpy().reshape(-1, 1)).ravel(),
                      index = y_train.index,
                      name  = y_train.name
                  )

    return X_train, y_train

_train_test_split_one_step_ahead

_train_test_split_one_step_ahead(
    y, initial_train_size, exog=None
)

Create matrices needed to train and test the forecaster for one-step-ahead predictions.

Parameters:

Name Type Description Default
y pandas Series

Training time series.

required
initial_train_size int

Initial size of the training set. It is the number of observations used to train the forecaster before making the first prediction.

required
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s. Must have the same number of observations as y and their indexes must be aligned.

None

Returns:

Name Type Description
X_train pandas DataFrame

Predictor values used to train the model.

y_train pandas Series

Target values related to each row of X_train.

X_test pandas DataFrame

Predictor values used to test the model.

y_test pandas Series

Target values related to each row of X_test.

Source code in skforecast\recursive\_forecaster_recursive_classifier.py
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
def _train_test_split_one_step_ahead(
    self,
    y: pd.Series,
    initial_train_size: int,
    exog: pd.Series | pd.DataFrame | None = None
) -> tuple[pd.DataFrame, pd.Series, pd.DataFrame, pd.Series]:
    """
    Create matrices needed to train and test the forecaster for one-step-ahead
    predictions.

    Parameters
    ----------
    y : pandas Series
        Training time series.
    initial_train_size : int
        Initial size of the training set. It is the number of observations used
        to train the forecaster before making the first prediction.
    exog : pandas Series, pandas DataFrame, default None
        Exogenous variable/s included as predictor/s. Must have the same
        number of observations as `y` and their indexes must be aligned.

    Returns
    -------
    X_train : pandas DataFrame
        Predictor values used to train the model.
    y_train : pandas Series
        Target values related to each row of `X_train`.
    X_test : pandas DataFrame
        Predictor values used to test the model.
    y_test : pandas Series
        Target values related to each row of `X_test`.

    """

    is_fitted = self.is_fitted
    encoding_mapping_ = self.encoding_mapping_

    self.is_fitted = False
    X_train, y_train, y_encoding_info_, *_ = self._create_train_X_y(
        y    = y.iloc[: initial_train_size],
        exog = exog.iloc[: initial_train_size] if exog is not None else None
    )

    test_init = initial_train_size - self.window_size
    self.is_fitted = True
    self.encoding_mapping_ = y_encoding_info_['encoding_mapping_']
    X_test, y_test, *_ = self._create_train_X_y(
        y    = y.iloc[test_init:],
        exog = exog.iloc[test_init:] if exog is not None else None
    )

    self.is_fitted = is_fitted
    self.encoding_mapping_ = encoding_mapping_

    return X_train, y_train, X_test, y_test

create_sample_weights

create_sample_weights(X_train)

Create weights for each observation according to the forecaster's attribute weight_func.

Parameters:

Name Type Description Default
X_train pandas DataFrame

Dataframe created with the create_train_X_y method, first return.

required

Returns:

Name Type Description
sample_weight numpy ndarray

Weights to use in fit method.

Source code in skforecast\recursive\_forecaster_recursive_classifier.py
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
def create_sample_weights(
    self,
    X_train: pd.DataFrame,
) -> np.ndarray:
    """
    Create weights for each observation according to the forecaster's attribute
    `weight_func`.

    Parameters
    ----------
    X_train : pandas DataFrame
        Dataframe created with the `create_train_X_y` method, first return.

    Returns
    -------
    sample_weight : numpy ndarray
        Weights to use in `fit` method.

    """

    sample_weight = None

    if self.weight_func is not None:
        sample_weight = self.weight_func(X_train.index)

    if sample_weight is not None:
        if np.isnan(sample_weight).any():
            raise ValueError(
                "The resulting `sample_weight` cannot have NaN values."
            )
        if np.any(sample_weight < 0):
            raise ValueError(
                "The resulting `sample_weight` cannot have negative values."
            )
        if np.sum(sample_weight) == 0:
            raise ValueError(
                "The resulting `sample_weight` cannot be normalized because "
                "the sum of the weights is zero."
            )

    return sample_weight

fit

fit(
    y,
    exog=None,
    store_last_window=True,
    store_in_sample_residuals=None,
)

Training Forecaster.

Additional arguments to be passed to the fit method of the estimator can be added with the fit_kwargs argument when initializing the forecaster.

Parameters:

Name Type Description Default
y pandas Series

Training time series.

required
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s. Must have the same number of observations as y and their indexes must be aligned so that y[i] is regressed on exog[i].

None
store_last_window bool

Whether or not to store the last window (last_window_) of training data.

True
store_in_sample_residuals Ignored

Not used, present here for API consistency by convention.

None

Returns:

Type Description
None
Notes

Categorical features are transformed using an OrdinalEncoder (self.encoder). The encoder's learned mappings (self.encoding_mapping_) are stored so that later, when creating lag (autoregressive) features, the same category-to-integer relationships can be applied consistently.

The goal is to ensure that the lag features — which are recreated as categorical variables — use the exact same integer codes as the original encoding. In other words, the numerical values in the lagged features should exactly match the integer codes that the OrdinalEncoder assigned. Formally, this means the following should hold true:

(X_train['lag_1'].cat.codes == X_train['lag_1']).all()

This consistency is guaranteed because:

  • OrdinalEncoder assigns integer codes starting from 0, in the alphabetical order of category labels.

  • When autoregressive (lag) features are created later, they are converted to pandas Categorical types using the same category ordering (categories = forecaster.class_codes_).

As a result, the categorical codes used in lag features remain aligned with the original encoding from the OrdinalEncoder.

During prediction, we can work directly with NumPy arrays because the OrdinalEncoder transforms new observations into the same integer codes used by pandas Categorical during training. This eliminates the need to convert data to pandas categorical types at inference time.

Source code in skforecast\recursive\_forecaster_recursive_classifier.py
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
def fit(
    self,
    y: pd.Series,
    exog: pd.Series | pd.DataFrame | None = None,
    store_last_window: bool = True,
    store_in_sample_residuals: Any = None
) -> None:
    """
    Training Forecaster.

    Additional arguments to be passed to the `fit` method of the estimator 
    can be added with the `fit_kwargs` argument when initializing the forecaster.

    Parameters
    ----------
    y : pandas Series
        Training time series.
    exog : pandas Series, pandas DataFrame, default None
        Exogenous variable/s included as predictor/s. Must have the same
        number of observations as `y` and their indexes must be aligned so
        that y[i] is regressed on exog[i].
    store_last_window : bool, default True
        Whether or not to store the last window (`last_window_`) of training data.
    store_in_sample_residuals : Ignored
        Not used, present here for API consistency by convention.

    Returns
    -------
    None

    Notes
    -----
    Categorical features are transformed using an `OrdinalEncoder` (self.encoder).
    The encoder's learned mappings (self.encoding_mapping_) are stored so that 
    later, when creating lag (autoregressive) features, the same category-to-integer 
    relationships can be applied consistently.

    The goal is to ensure that the lag features — which are recreated as 
    categorical variables — use the exact same integer codes as the original encoding.
    In other words, the numerical values in the lagged features should 
    exactly match the integer codes that the `OrdinalEncoder` assigned.
    Formally, this means the following should hold true:

    `(X_train['lag_1'].cat.codes == X_train['lag_1']).all()`

    This consistency is guaranteed because:

    - `OrdinalEncoder` assigns integer codes starting from 0, in the alphabetical 
    order of category labels.

    - When autoregressive (lag) features are created later, they are converted 
    to pandas Categorical types using the same category ordering 
    (`categories = forecaster.class_codes_`).

    As a result, the categorical codes used in lag features remain aligned
    with the original encoding from the `OrdinalEncoder`.

    During prediction, we can work directly with NumPy arrays because the 
    `OrdinalEncoder` transforms new observations into the same integer codes 
    used by pandas Categorical during training. This eliminates the need to 
    convert data to pandas categorical types at inference time.

    """

    self.last_window_                       = None
    self.index_type_                        = None
    self.index_freq_                        = None
    self.training_range_                    = None
    self.series_name_in_                    = None
    self.exog_in_                           = False
    self.exog_names_in_                     = None
    self.exog_type_in_                      = None
    self.exog_dtypes_in_                    = None
    self.exog_dtypes_out_                   = None
    self.X_train_window_features_names_out_ = None
    self.X_train_exog_names_out_            = None
    self.X_train_features_names_out_        = None
    self.is_fitted                          = False
    self.fit_date                           = None
    self.classes_                           = None
    self.class_codes_                       = None
    self.n_classes_                         = None
    self.encoding_mapping_                  = None
    self.code_to_class_mapping_             = None

    (
        X_train,
        y_train,
        y_encoding_info_,
        exog_names_in_,
        X_train_window_features_names_out_,
        X_train_exog_names_out_,
        X_train_features_names_out_,
        exog_dtypes_in_,
        exog_dtypes_out_,
        last_window_
    ) = self._create_train_X_y(
            y=y, exog=exog, store_last_window=store_last_window
        )

    sample_weight = self.create_sample_weights(X_train=X_train)

    if sample_weight is not None:
        self.estimator.fit(
            X             = X_train,
            y             = y_train,
            sample_weight = sample_weight,
            **self.fit_kwargs
        )
    else:
        self.estimator.fit(X=X_train, y=y_train, **self.fit_kwargs)

    self.classes_ = y_encoding_info_['classes_']
    self.class_codes_ = y_encoding_info_['class_codes_']
    self.n_classes_ = y_encoding_info_['n_classes_']
    self.encoding_mapping_ = y_encoding_info_['encoding_mapping_']
    self.code_to_class_mapping_ = {
        code: cls for cls, code in self.encoding_mapping_.items()
    }

    self.X_train_window_features_names_out_ = X_train_window_features_names_out_
    self.X_train_features_names_out_ = X_train_features_names_out_

    self.is_fitted = True
    self.series_name_in_ = y.name if y.name is not None else 'y'
    self.fit_date = pd.Timestamp.today().strftime('%Y-%m-%d %H:%M:%S')
    self.training_range_ = y.index[[0, -1]]
    self.index_type_ = type(y.index)
    if isinstance(y.index, pd.DatetimeIndex):
        self.index_freq_ = y.index.freq
    else: 
        self.index_freq_ = y.index.step

    if exog is not None:
        self.exog_in_ = True
        self.exog_type_in_ = type(exog)
        self.exog_names_in_ = exog_names_in_
        self.exog_dtypes_in_ = exog_dtypes_in_
        self.exog_dtypes_out_ = exog_dtypes_out_
        self.X_train_exog_names_out_ = X_train_exog_names_out_

    if store_last_window:
        self.last_window_ = last_window_

_create_predict_inputs

_create_predict_inputs(
    steps, last_window=None, exog=None, check_inputs=True
)

Create the inputs needed for the first iteration of the prediction process. As this is a recursive process, the last window is updated at each iteration of the prediction process.

Parameters:

Name Type Description Default
steps int, str, pandas Timestamp

Number of steps to predict.

  • If steps is int, number of steps to predict.
  • If str or pandas Datetime, the prediction will be up to that date.
required
last_window pandas Series, pandas DataFrame

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1). If last_window = None, the values stored in self.last_window_ are used to calculate the initial predictors, and the predictions start right after training data.

None
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s.

None
check_inputs bool

If True, the input is checked for possible warnings and errors with the check_predict_input function. This argument is created for internal use and is not recommended to be changed.

True

Returns:

Name Type Description
last_window_values numpy ndarray

Series values used to create the predictors needed in the first iteration of the prediction (t + 1).

exog_values numpy ndarray, None

Exogenous variable/s included as predictor/s.

prediction_index pandas Index

Index of the predictions.

steps int

Number of future steps predicted.

Source code in skforecast\recursive\_forecaster_recursive_classifier.py
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
def _create_predict_inputs(
    self,
    steps: int | str | pd.Timestamp, 
    last_window: pd.Series | pd.DataFrame | None = None,
    exog: pd.Series | pd.DataFrame | None = None,
    check_inputs: bool = True
) -> tuple[np.ndarray, np.ndarray | None, pd.Index, int]:
    """
    Create the inputs needed for the first iteration of the prediction 
    process. As this is a recursive process, the last window is updated at 
    each iteration of the prediction process.

    Parameters
    ----------
    steps : int, str, pandas Timestamp
        Number of steps to predict. 

        - If steps is int, number of steps to predict. 
        - If str or pandas Datetime, the prediction will be up to that date.
    last_window : pandas Series, pandas DataFrame, default None
        Series values used to create the predictors (lags) needed in the 
        first iteration of the prediction (t + 1).
        If `last_window = None`, the values stored in `self.last_window_` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : pandas Series, pandas DataFrame, default None
        Exogenous variable/s included as predictor/s.
    check_inputs : bool, default True
        If `True`, the input is checked for possible warnings and errors 
        with the `check_predict_input` function. This argument is created 
        for internal use and is not recommended to be changed.

    Returns
    -------
    last_window_values : numpy ndarray
        Series values used to create the predictors needed in the first 
        iteration of the prediction (t + 1).
    exog_values : numpy ndarray, None
        Exogenous variable/s included as predictor/s.
    prediction_index : pandas Index
        Index of the predictions.
    steps: int
        Number of future steps predicted.

    """

    if last_window is None:
        last_window = self.last_window_

    if self.is_fitted:
        steps = date_to_index_position(
                    index        = last_window.index,
                    date_input   = steps,
                    method       = 'prediction',
                    date_literal = 'steps'
                )

    if check_inputs:
        check_predict_input(
            forecaster_name = type(self).__name__,
            steps           = steps,
            is_fitted       = self.is_fitted,
            exog_in_        = self.exog_in_,
            index_type_     = self.index_type_,
            index_freq_     = self.index_freq_,
            window_size     = self.window_size,
            last_window     = last_window,
            exog            = exog,
            exog_names_in_  = self.exog_names_in_,
            interval        = None
        )

    # NOTE: NaNs are checked in check_predict_input, it creates a warning if found.
    last_window_values = (
        last_window.iloc[-self.window_size:].to_numpy(copy=True).ravel()
    )

    valid_classes = set(self.encoding_mapping_.keys())
    unique_values = set(last_window_values)
    invalid_values = unique_values - valid_classes

    if invalid_values:
        invalid_list = sorted(list(invalid_values))[:5]
        valid_list = sorted(list(valid_classes))[:10]

        raise ValueError(
            f"The `last_window` contains {len(invalid_values)} class label(s) "
            f"not seen during training: {invalid_list}{'...' if len(invalid_values) > 5 else ''}.\n"
            f"Valid class labels (seen during training): {valid_list}"
            f"{'...' if len(valid_classes) > 10 else ''}.\n"
            f"Total valid classes: {len(valid_classes)}."
        )

    # NOTE: Transform class labels to encoded values (same encoding used in 
    # training). This ensures that lag features will have the same numerical 
    # representation as during training.
    last_window_values = self.encoder.transform(
        last_window_values.reshape(-1, 1)
    ).ravel()

    if exog is not None:

        exog = input_to_frame(data=exog, input_name='exog')
        if exog.columns.tolist() != self.exog_names_in_:
            exog = exog[self.exog_names_in_]

        exog = transform_dataframe(
                   df                = exog,
                   transformer       = self.transformer_exog,
                   fit               = False,
                   inverse_transform = False
               )

        # NOTE: Only check dtypes if they are not the same as seen in training
        if not exog.dtypes.to_dict() == self.exog_dtypes_out_:
            check_exog_dtypes(exog=exog)
        else:
            check_exog(exog=exog, allow_nan=False)

        exog_values = exog.to_numpy()[:steps]
    else:
        exog_values = None

    prediction_index = expand_index(
                           index = last_window.index,
                           steps = steps,
                       )

    return last_window_values, exog_values, prediction_index, steps

_recursive_predict

_recursive_predict(
    steps,
    last_window_values,
    exog_values=None,
    predict_proba=False,
)

Predict n steps ahead. It is an iterative process in which, each prediction, is used as a predictor for the next step.

Parameters:

Name Type Description Default
steps int

Number of steps to predict.

required
last_window_values numpy ndarray

Series values used to create the predictors needed in the first iteration of the prediction (t + 1).

required
exog_values numpy ndarray

Exogenous variable/s included as predictor/s.

None
predict_proba bool

Whether to predict class probabilities instead of class labels.

False

Returns:

Name Type Description
predictions numpy ndarray

Predicted values if predict_proba=False, probability matrix of shape (steps, n_classes) with the predicted probabilities for each class at each step if predict_proba=True.

Source code in skforecast\recursive\_forecaster_recursive_classifier.py
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
def _recursive_predict(
    self,
    steps: int,
    last_window_values: np.ndarray,
    exog_values: np.ndarray | None = None,
    predict_proba: bool = False
) -> np.ndarray:
    """
    Predict n steps ahead. It is an iterative process in which, each prediction,
    is used as a predictor for the next step.

    Parameters
    ----------
    steps : int
        Number of steps to predict. 
    last_window_values : numpy ndarray
        Series values used to create the predictors needed in the first 
        iteration of the prediction (t + 1).
    exog_values : numpy ndarray, default None
        Exogenous variable/s included as predictor/s.
    predict_proba : bool, default False
        Whether to predict class probabilities instead of class labels.

    Returns
    -------
    predictions : numpy ndarray
        Predicted values if `predict_proba=False`, probability matrix of 
        shape (steps, n_classes) with the predicted probabilities for each class 
        at each step if `predict_proba=True`.

    """

    original_device = set_cpu_gpu_device(estimator=self.estimator, device='cpu')

    n_lags = len(self.lags) if self.lags is not None else 0
    n_window_features = (
        len(self.X_train_window_features_names_out_)
        if self.window_features is not None
        else 0
    )
    n_exog = exog_values.shape[1] if exog_values is not None else 0

    X = np.full(
        shape=(n_lags + n_window_features + n_exog), fill_value=np.nan, dtype=float
    )
    predictions = np.full(shape=steps, fill_value=np.nan, dtype=float)
    last_window = np.concatenate((last_window_values, predictions))

    if predict_proba:
        predictions = np.full(
            shape=(steps, self.n_classes_), fill_value=np.nan, dtype=float
        )

    for i in range(steps):

        if self.lags is not None:
            X[:n_lags] = last_window[-self.lags - (steps - i)]
        if self.window_features is not None:
            X[n_lags : n_lags + n_window_features] = np.concatenate(
                [
                    wf.transform(last_window[i : -(steps - i)])
                    for wf in self.window_features
                ]
            )
        if exog_values is not None:
            X[n_lags + n_window_features:] = exog_values[i]

        if predict_proba:
            proba = self.estimator.predict_proba(X.reshape(1, -1)).ravel()
            predictions[i, :] = proba
            pred = self.class_codes_[np.argmax(proba)]
        else:
            pred = self.estimator.predict(X.reshape(1, -1)).ravel().item()
            predictions[i] = pred

        # Update `last_window` values. The first position is discarded and 
        # the new prediction is added at the end.
        last_window[-(steps - i)] = pred

    set_cpu_gpu_device(estimator=self.estimator, device=original_device)

    return predictions

create_predict_X

create_predict_X(
    steps, last_window=None, exog=None, check_inputs=True
)

Create the predictors needed to predict steps ahead. As it is a recursive process, the predictors are created at each iteration of the prediction process.

Parameters:

Name Type Description Default
steps int, str, pandas Timestamp

Number of steps to predict.

  • If steps is int, number of steps to predict.
  • If str or pandas Datetime, the prediction will be up to that date.
required
last_window pandas Series, pandas DataFrame

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1). If last_window = None, the values stored in self.last_window_ are used to calculate the initial predictors, and the predictions start right after training data.

None
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s.

None
check_inputs bool

If True, the input is checked for possible warnings and errors with the check_predict_input function. This argument is created for internal use and is not recommended to be changed.

True

Returns:

Name Type Description
X_predict pandas DataFrame

Pandas DataFrame with the predictors for each step. The index is the same as the prediction index.

Source code in skforecast\recursive\_forecaster_recursive_classifier.py
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
def create_predict_X(
    self,
    steps: int,
    last_window: pd.Series | pd.DataFrame | None = None,
    exog: pd.Series | pd.DataFrame | None = None,
    check_inputs: bool = True
) -> pd.DataFrame:
    """
    Create the predictors needed to predict `steps` ahead. As it is a recursive
    process, the predictors are created at each iteration of the prediction 
    process.

    Parameters
    ----------
    steps : int, str, pandas Timestamp
        Number of steps to predict. 

        - If steps is int, number of steps to predict. 
        - If str or pandas Datetime, the prediction will be up to that date.
    last_window : pandas Series, pandas DataFrame, default None
        Series values used to create the predictors (lags) needed in the 
        first iteration of the prediction (t + 1).
        If `last_window = None`, the values stored in `self.last_window_` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : pandas Series, pandas DataFrame, default None
        Exogenous variable/s included as predictor/s.
    check_inputs : bool, default True
        If `True`, the input is checked for possible warnings and errors 
        with the `check_predict_input` function. This argument is created 
        for internal use and is not recommended to be changed.

    Returns
    -------
    X_predict : pandas DataFrame
        Pandas DataFrame with the predictors for each step. The index 
        is the same as the prediction index.

    """

    (
        last_window_values,
        exog_values,
        prediction_index,
        steps
    ) = self._create_predict_inputs(
            steps        = steps,
            last_window  = last_window,
            exog         = exog,
            check_inputs = check_inputs,
        )

    with warnings.catch_warnings():
        warnings.filterwarnings(
            "ignore", 
            message="X does not have valid feature names", 
            category=UserWarning
        )
        predictions = self._recursive_predict(
                          steps              = steps,
                          last_window_values = last_window_values,
                          exog_values        = exog_values,
                          predict_proba      = False
                      )

    X_predict = []
    full_predictors = np.concatenate((last_window_values, predictions))

    if self.lags is not None:
        idx = np.arange(-steps, 0)[:, None] - self.lags
        X_lags = full_predictors[idx + len(full_predictors)]
        X_predict.append(X_lags)

    if self.window_features is not None:
        X_window_features = np.full(
            shape      = (steps, len(self.X_train_window_features_names_out_)), 
            fill_value = np.nan, 
            order      = 'C',
            dtype      = float
        )
        for i in range(steps):
            X_window_features[i, :] = np.concatenate(
                [wf.transform(full_predictors[i:-(steps - i)]) 
                 for wf in self.window_features]
            )
        X_predict.append(X_window_features)

    if exog is not None:
        X_predict.append(exog_values)

    X_predict = pd.DataFrame(
                    data    = np.concatenate(X_predict, axis=1),
                    columns = self.X_train_features_names_out_,
                    index   = prediction_index
                )

    if self.use_native_categoricals:
        for col in self.lags_names:
            X_predict[col] = pd.Categorical(
                                 values     = X_predict[col],
                                 categories = self.class_codes_,
                                 ordered    = False
                             )

    if self.exog_in_:
        categorical_features = any(
            not pd.api.types.is_numeric_dtype(dtype) or pd.api.types.is_bool_dtype(dtype) 
            for dtype in set(self.exog_dtypes_out_.values())
        )
        if categorical_features:
            X_predict = X_predict.astype(self.exog_dtypes_out_)

    if self.transformer_exog is not None:
        warnings.warn(
            "The output matrix is in the transformed scale due to the "
            "inclusion of transformations (`transformer_exog`) in the Forecaster. "
            "As a result, any predictions generated using this matrix will also "
            "be in the transformed scale. Please refer to the documentation "
            "for more details: "
            "https://skforecast.org/latest/user_guides/training-and-prediction-matrices.html",
            DataTransformationWarning
        )

    return X_predict

predict

predict(steps, last_window=None, exog=None)

Predict n steps ahead. It is an recursive process in which, each prediction, is used as a predictor for the next step.

Parameters:

Name Type Description Default
steps int, str, pandas Timestamp

Number of steps to predict.

  • If steps is int, number of steps to predict.
  • If str or pandas Datetime, the prediction will be up to that date.
required
last_window pandas Series, pandas DataFrame

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1). If last_window = None, the values stored in self.last_window_ are used to calculate the initial predictors, and the predictions start right after training data.

None
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s.

None

Returns:

Name Type Description
predictions pandas Series

Predicted values (class labels).

Source code in skforecast\recursive\_forecaster_recursive_classifier.py
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
def predict(
    self,
    steps: int | str | pd.Timestamp,
    last_window: pd.Series | pd.DataFrame | None = None,
    exog: pd.Series | pd.DataFrame | None = None
) -> pd.Series:
    """
    Predict n steps ahead. It is an recursive process in which, each prediction,
    is used as a predictor for the next step.

    Parameters
    ----------
    steps : int, str, pandas Timestamp
        Number of steps to predict. 

        - If steps is int, number of steps to predict. 
        - If str or pandas Datetime, the prediction will be up to that date.
    last_window : pandas Series, pandas DataFrame, default None
        Series values used to create the predictors (lags) needed in the 
        first iteration of the prediction (t + 1).
        If `last_window = None`, the values stored in `self.last_window_` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : pandas Series, pandas DataFrame, default None
        Exogenous variable/s included as predictor/s.

    Returns
    -------
    predictions : pandas Series
        Predicted values (class labels).

    """

    (
        last_window_values,
        exog_values,
        prediction_index,
        steps
    ) = self._create_predict_inputs(
            steps       = steps,
            last_window = last_window,
            exog        = exog
        )

    with warnings.catch_warnings():
        warnings.filterwarnings(
            "ignore", 
            message="X does not have valid feature names", 
            category=UserWarning
        )
        predictions = self._recursive_predict(
                          steps              = steps,
                          last_window_values = last_window_values,
                          exog_values        = exog_values,
                          predict_proba      = False
                      )

    predictions = self.encoder.inverse_transform(
        predictions.reshape(-1, 1)
    ).ravel()

    predictions = pd.Series(
                      data  = predictions,
                      index = prediction_index,
                      name  = 'pred'
                  )

    return predictions

predict_proba

predict_proba(steps, last_window=None, exog=None)

Predict class probabilities n steps ahead. It is a recursive process in which the predicted class (argmax of probabilities) is used as a predictor for the next step.

Parameters:

Name Type Description Default
steps int, str, pandas Timestamp

Number of steps to predict.

  • If steps is int, number of steps to predict.
  • If str or pandas Datetime, the prediction will be up to that date.
required
last_window pandas Series, pandas DataFrame

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1). If last_window = None, the values stored in self.last_window_ are used to calculate the initial predictors, and the predictions start right after training data.

None
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s.

None

Returns:

Name Type Description
probabilities pandas DataFrame

Predicted probabilities for each class. Shape (steps, n_classes). Columns are the original class labels.

Source code in skforecast\recursive\_forecaster_recursive_classifier.py
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
def predict_proba(
    self,
    steps: int | str | pd.Timestamp,
    last_window: pd.Series | pd.DataFrame | None = None,
    exog: pd.Series | pd.DataFrame | None = None
) -> pd.DataFrame:
    """
    Predict class probabilities n steps ahead. It is a recursive process in 
    which the predicted class (argmax of probabilities) is used as a predictor 
    for the next step.

    Parameters
    ----------
    steps : int, str, pandas Timestamp
        Number of steps to predict.

        - If steps is int, number of steps to predict. 
        - If str or pandas Datetime, the prediction will be up to that date.
    last_window : pandas Series, pandas DataFrame, default None
        Series values used to create the predictors (lags) needed in the 
        first iteration of the prediction (t + 1).
        If `last_window = None`, the values stored in `self.last_window_` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : pandas Series, pandas DataFrame, default None
        Exogenous variable/s included as predictor/s.

    Returns
    -------
    probabilities : pandas DataFrame
        Predicted probabilities for each class. Shape (steps, n_classes).
        Columns are the original class labels.

    """

    if not hasattr(self.estimator, 'predict_proba'):
        raise AttributeError(
            f"The estimator {type(self.estimator).__name__} does not have a "
            f"`predict_proba` method. Use a estimator that supports probability "
            f"predictions (e.g., XGBClassifier, HistGradientBoostingClassifier, etc.)."
        )

    (
        last_window_values,
        exog_values,
        prediction_index,
        steps
    ) = self._create_predict_inputs(
            steps       = steps,
            last_window = last_window,
            exog        = exog
        )

    with warnings.catch_warnings():
        warnings.filterwarnings(
            "ignore", 
            message="X does not have valid feature names", 
            category=UserWarning
        )
        probabilities = self._recursive_predict(
                            steps              = steps,
                            last_window_values = last_window_values,
                            exog_values        = exog_values,
                            predict_proba      = True
                        )

    probabilities = pd.DataFrame(
                        data    = probabilities,
                        index   = prediction_index,
                        columns = [f"{cls}_proba" for cls in self.classes_]
                    )

    return probabilities

set_params

set_params(params)

Set new values to the parameters of the scikit-learn model stored in the forecaster.

Parameters:

Name Type Description Default
params dict

Parameters values.

required

Returns:

Type Description
None
Source code in skforecast\recursive\_forecaster_recursive_classifier.py
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
def set_params(
    self, 
    params: dict[str, object]
) -> None:
    """
    Set new values to the parameters of the scikit-learn model stored in the
    forecaster.

    Parameters
    ----------
    params : dict
        Parameters values.

    Returns
    -------
    None

    """

    self.estimator = clone(self.estimator)
    self.estimator.set_params(**params)

set_fit_kwargs

set_fit_kwargs(fit_kwargs)

Set new values for the additional keyword arguments passed to the fit method of the estimator.

Parameters:

Name Type Description Default
fit_kwargs dict

Dict of the form {"argument": new_value}.

required

Returns:

Type Description
None
Source code in skforecast\recursive\_forecaster_recursive_classifier.py
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
def set_fit_kwargs(
    self, 
    fit_kwargs: dict[str, object]
) -> None:
    """
    Set new values for the additional keyword arguments passed to the `fit` 
    method of the estimator.

    Parameters
    ----------
    fit_kwargs : dict
        Dict of the form {"argument": new_value}.

    Returns
    -------
    None

    """

    self.fit_kwargs = check_select_fit_kwargs(self.estimator, fit_kwargs=fit_kwargs)

set_lags

set_lags(lags=None)

Set new value to the attribute lags. Attributes lags_names, max_lag and window_size are also updated.

Parameters:

Name Type Description Default
lags int, list, numpy ndarray, range

Lags used as predictors. Index starts at 1, so lag 1 is equal to t-1.

  • int: include lags from 1 to lags (included).
  • list, 1d numpy ndarray or range: include only lags present in lags, all elements must be int.
  • None: no lags are included as predictors.
None

Returns:

Type Description
None
Source code in skforecast\recursive\_forecaster_recursive_classifier.py
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
def set_lags(
    self, 
    lags: int | list[int] | np.ndarray[int] | range[int] | None = None
) -> None:
    """
    Set new value to the attribute `lags`. Attributes `lags_names`, 
    `max_lag` and `window_size` are also updated.

    Parameters
    ----------
    lags : int, list, numpy ndarray, range, default None
        Lags used as predictors. Index starts at 1, so lag 1 is equal to t-1. 

        - `int`: include lags from 1 to `lags` (included).
        - `list`, `1d numpy ndarray` or `range`: include only lags present in 
        `lags`, all elements must be int.
        - `None`: no lags are included as predictors. 

    Returns
    -------
    None

    """

    if self.window_features is None and lags is None:
        raise ValueError(
            "At least one of the arguments `lags` or `window_features` "
            "must be different from None. This is required to create the "
            "predictors used in training the forecaster."
        )

    self.lags, self.lags_names, self.max_lag = initialize_lags(type(self).__name__, lags)
    self.window_size = max(
        [ws for ws in [self.max_lag, self.max_size_window_features] 
         if ws is not None]
    )

set_window_features

set_window_features(window_features=None)

Set new value to the attribute window_features. Attributes max_size_window_features, window_features_names, window_features_class_names and window_size are also updated.

Parameters:

Name Type Description Default
window_features (object, list)

Instance or list of instances used to create window features. Window features are created from the original time series and are included as predictors.

None

Returns:

Type Description
None
Source code in skforecast\recursive\_forecaster_recursive_classifier.py
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
def set_window_features(
    self, 
    window_features: object | list[object] | None = None
) -> None:
    """
    Set new value to the attribute `window_features`. Attributes 
    `max_size_window_features`, `window_features_names`, 
    `window_features_class_names` and `window_size` are also updated.

    Parameters
    ----------
    window_features : object, list, default None
        Instance or list of instances used to create window features. Window features
        are created from the original time series and are included as predictors.

    Returns
    -------
    None

    """

    if window_features is None and self.lags is None:
        raise ValueError(
            "At least one of the arguments `lags` or `window_features` "
            "must be different from None. This is required to create the "
            "predictors used in training the forecaster."
        )

    self.window_features, self.window_features_names, self.max_size_window_features = (
        initialize_window_features(window_features)
    )
    self.window_features_class_names = None
    if window_features is not None:
        self.window_features_class_names = [
            type(wf).__name__ for wf in self.window_features
        ] 
    self.window_size = max(
        [ws for ws in [self.max_lag, self.max_size_window_features] 
         if ws is not None]
    )

get_feature_importances

get_feature_importances(sort_importance=True)

Return feature importances of the estimator stored in the forecaster. Only valid when estimator stores internally the feature importances in the attribute feature_importances_ or coef_. Otherwise, returns None.

Parameters:

Name Type Description Default
sort_importance bool

If True, sorts the feature importances in descending order.

True

Returns:

Name Type Description
feature_importances pandas DataFrame

Feature importances associated with each predictor.

Source code in skforecast\recursive\_forecaster_recursive_classifier.py
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
def get_feature_importances(
    self,
    sort_importance: bool = True
) -> pd.DataFrame:
    """
    Return feature importances of the estimator stored in the forecaster.
    Only valid when estimator stores internally the feature importances in the
    attribute `feature_importances_` or `coef_`. Otherwise, returns `None`.

    Parameters
    ----------
    sort_importance: bool, default True
        If `True`, sorts the feature importances in descending order.

    Returns
    -------
    feature_importances : pandas DataFrame
        Feature importances associated with each predictor.

    """

    if not self.is_fitted:
        raise NotFittedError(
            "This forecaster is not fitted yet. Call `fit` with appropriate "
            "arguments before using `get_feature_importances()`."
        )

    estimator = self.estimator
    if isinstance(estimator, Pipeline):
        estimator = estimator[-1]

    # Unify the estimators into a list of tuples: (sub_estimator, cv_fold_index)
    # If it's a single estimator, fold_index is None.
    if type(estimator).__name__ == 'CalibratedClassifierCV':
        if not hasattr(estimator, 'calibrated_classifiers_'):
            warnings.warn(
                "The CalibratedClassifierCV instance is not fitted or does not "
                "expose 'calibrated_classifiers_'. Unable to retrieve importances."
            )
            return None

        estimators_list = [
            (clf.estimator, i) 
            for i, clf in enumerate(estimator.calibrated_classifiers_)
        ]
    else:
        estimators_list = [(estimator, None)]

    dfs_to_concat = []
    for sub_est, fold_idx in estimators_list:

        if hasattr(sub_est, 'feature_importances_'):
            df_fold = pd.DataFrame({
                'feature': self.X_train_features_names_out_,
                'importance': sub_est.feature_importances_
            })
        elif hasattr(sub_est, 'coef_'):
            df_fold = pd.DataFrame(
                data=sub_est.coef_,
                columns=self.X_train_features_names_out_
            )
            df_fold.insert(0, 'classes', self.classes_)
        else:
            continue

        if fold_idx is not None:
            df_fold.insert(0, 'cv_fold', fold_idx)

        dfs_to_concat.append(df_fold)

    # Handle cases where no importances could be extracted
    if not dfs_to_concat:
        warnings.warn(
            f"Impossible to access feature importances for estimator of type "
            f"{type(estimator)}. This method is only valid when the "
            f"estimator stores internally the feature importances in the "
            f"attribute `feature_importances_` or `coef_`."
        )
        return None

    feature_importances = pd.concat(dfs_to_concat, axis=0, ignore_index=True)

    if sort_importance and 'importance' in feature_importances.columns:
        # If it has folds, sort by importance but keep folds grouped nicely? 
        # Usually, just sorting by importance globally is expected, 
        # or (Fold, -Importance). Here we prioritize global importance.
        if 'cv_fold' in feature_importances.columns:
            feature_importances = feature_importances.sort_values(
                by=['cv_fold', 'importance'], ascending=[True, False]
            )
        else:
            feature_importances = feature_importances.sort_values(
                by='importance', ascending=False
            )

    return feature_importances