Avoid negative predictions when forecasting¶
When training a forecasting model, even though none of the training observations is negative, some predictions may turn out to be negative. To avoid this, it is possible to model the series on a logarithmic scale.
Libraries¶
In [1]:
Copied!
# Libraries
# ==============================================================================
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
plt.style.use('fivethirtyeight')
plt.rcParams['lines.linewidth'] = 1.5
from sklearn.linear_model import Ridge
from sklearn.preprocessing import FunctionTransformer
from sklearn.metrics import mean_squared_error
from skforecast.ForecasterAutoreg import ForecasterAutoreg
from skforecast.model_selection import backtesting_forecaster
# Libraries
# ==============================================================================
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
plt.style.use('fivethirtyeight')
plt.rcParams['lines.linewidth'] = 1.5
from sklearn.linear_model import Ridge
from sklearn.preprocessing import FunctionTransformer
from sklearn.metrics import mean_squared_error
from skforecast.ForecasterAutoreg import ForecasterAutoreg
from skforecast.model_selection import backtesting_forecaster
Data¶
In [2]:
Copied!
# Downloading data
# ==============================================================================
url = ('https://raw.githubusercontent.com/JoaquinAmatRodrigo/Estadistica-machine-'
'learning-python/master/data/bike_sharing_dataset_clean.csv')
data = pd.read_csv(url, usecols=['date_time', 'users'], nrows=1000)
data['date_time'] = pd.to_datetime(data['date_time'], format='%Y-%m-%d %H:%M:%S')
data = data.set_index('date_time')
data = data.asfreq('H')
data = data.sort_index()
# Downloading data
# ==============================================================================
url = ('https://raw.githubusercontent.com/JoaquinAmatRodrigo/Estadistica-machine-'
'learning-python/master/data/bike_sharing_dataset_clean.csv')
data = pd.read_csv(url, usecols=['date_time', 'users'], nrows=1000)
data['date_time'] = pd.to_datetime(data['date_time'], format='%Y-%m-%d %H:%M:%S')
data = data.set_index('date_time')
data = data.asfreq('H')
data = data.sort_index()
In [3]:
Copied!
# Split train-test
# ==============================================================================
end_train = '2011-01-31 23:59:00'
data_train = data.loc[: end_train, :]
data_test = data.loc[end_train:, :]
print(f"Dates train: {data_train.index.min()} --- {data_train.index.max()} (n={len(data_train)})")
print(f"Dates test : {data_test.index.min()} --- {data_test.index.max()} (n={len(data_test)})")
# Split train-test
# ==============================================================================
end_train = '2011-01-31 23:59:00'
data_train = data.loc[: end_train, :]
data_test = data.loc[end_train:, :]
print(f"Dates train: {data_train.index.min()} --- {data_train.index.max()} (n={len(data_train)})")
print(f"Dates test : {data_test.index.min()} --- {data_test.index.max()} (n={len(data_test)})")
Dates train: 2011-01-01 00:00:00 --- 2011-01-31 23:00:00 (n=744) Dates test : 2011-02-01 00:00:00 --- 2011-02-11 15:00:00 (n=256)
In [4]:
Copied!
# Plot time series
# ==============================================================================
fig, ax = plt.subplots(figsize=(11, 4))
data_train['users'].plot(ax=ax, label='train')
data_test['users'].plot(ax=ax, label='test')
ax.set_title('Number of users')
ax.legend();
# Plot time series
# ==============================================================================
fig, ax = plt.subplots(figsize=(11, 4))
data_train['users'].plot(ax=ax, label='train')
data_test['users'].plot(ax=ax, label='test')
ax.set_title('Number of users')
ax.legend();
Forecaster¶
In [5]:
Copied!
# Create forecaster and train
# ==============================================================================
forecaster = ForecasterAutoreg(
regressor = Ridge(random_state=123),
lags = 24
)
# Create forecaster and train
# ==============================================================================
forecaster = ForecasterAutoreg(
regressor = Ridge(random_state=123),
lags = 24
)
In [6]:
Copied!
# Backtesting predictions on test data
# ==============================================================================
metric, predictions = backtesting_forecaster(
forecaster = forecaster,
y = data['users'],
steps = 24,
metric = 'mean_squared_error',
initial_train_size = len(data.loc[:end_train]),
fixed_train_size = False,
gap = 0,
allow_incomplete_fold = True,
refit = False,
verbose = False,
show_progress = True
)
# Backtesting predictions on test data
# ==============================================================================
metric, predictions = backtesting_forecaster(
forecaster = forecaster,
y = data['users'],
steps = 24,
metric = 'mean_squared_error',
initial_train_size = len(data.loc[:end_train]),
fixed_train_size = False,
gap = 0,
allow_incomplete_fold = True,
refit = False,
verbose = False,
show_progress = True
)
0%| | 0/11 [00:00<?, ?it/s]
In [7]:
Copied!
# Plot predictions
# ==============================================================================
fig, ax = plt.subplots(figsize=(11, 4))
data_test['users'].plot(ax=ax, label='test')
predictions['pred'].plot(ax=ax, label='predictions')
ax.legend();
# Plot predictions
# ==============================================================================
fig, ax = plt.subplots(figsize=(11, 4))
data_test['users'].plot(ax=ax, label='test')
predictions['pred'].plot(ax=ax, label='predictions')
ax.legend();
The graph above shows that some predictions are negative.
In [8]:
Copied!
# Negative predictions
predictions[predictions.pred < 0]
# Negative predictions
predictions[predictions.pred < 0]
Out[8]:
pred | |
---|---|
2011-02-01 00:00:00 | -23.337236 |
2011-02-01 01:00:00 | -17.691405 |
2011-02-02 00:00:00 | -5.243456 |
2011-02-02 01:00:00 | -19.363139 |
2011-02-03 01:00:00 | -6.441943 |
2011-02-04 01:00:00 | -10.579940 |
2011-02-05 00:00:00 | -6.026119 |
2011-02-05 01:00:00 | -21.396841 |
2011-02-07 04:00:00 | -3.412043 |
2011-02-07 05:00:00 | -3.701964 |
2011-02-08 00:00:00 | -17.045913 |
2011-02-08 01:00:00 | -13.233004 |
2011-02-09 00:00:00 | -25.315228 |
2011-02-09 01:00:00 | -24.743686 |
2011-02-10 01:00:00 | -5.704407 |
2011-02-11 01:00:00 | -11.758940 |
Modeling time series in logarithmic scale¶
In [9]:
Copied!
# Transform data into logarithmic scale
# =============================================================================
data_log = np.log1p(data)
data_train_log = np.log1p(data_train)
data_test_log = np.log1p(data_test)
# Transform data into logarithmic scale
# =============================================================================
data_log = np.log1p(data)
data_train_log = np.log1p(data_train)
data_test_log = np.log1p(data_test)
In [10]:
Copied!
# Create forecaster and train
# ==============================================================================
forecaster = ForecasterAutoreg(
regressor = Ridge(random_state=123),
lags = 24,
)
# Backtesting predictions on test data
# ==============================================================================
metric, predictions = backtesting_forecaster(
forecaster = forecaster,
y = data_log['users'],
steps = 24,
metric = 'mean_squared_error',
initial_train_size = len(data_log.loc[:end_train]),
fixed_train_size = False,
gap = 0,
allow_incomplete_fold = True,
refit = False,
verbose = False,
show_progress = True
)
# Create forecaster and train
# ==============================================================================
forecaster = ForecasterAutoreg(
regressor = Ridge(random_state=123),
lags = 24,
)
# Backtesting predictions on test data
# ==============================================================================
metric, predictions = backtesting_forecaster(
forecaster = forecaster,
y = data_log['users'],
steps = 24,
metric = 'mean_squared_error',
initial_train_size = len(data_log.loc[:end_train]),
fixed_train_size = False,
gap = 0,
allow_incomplete_fold = True,
refit = False,
verbose = False,
show_progress = True
)
0%| | 0/11 [00:00<?, ?it/s]
In [11]:
Copied!
# Revert the transformation
# ==============================================================================
predictions = np.expm1(predictions)
predictions.head(4)
# Revert the transformation
# ==============================================================================
predictions = np.expm1(predictions)
predictions.head(4)
Out[11]:
pred | |
---|---|
2011-02-01 00:00:00 | 7.936823 |
2011-02-01 01:00:00 | 4.210682 |
2011-02-01 02:00:00 | 3.009993 |
2011-02-01 03:00:00 | 3.083922 |
In [12]:
Copied!
metric = mean_squared_error(y_true=data_test['users'], y_pred=predictions)
print(f"Backtesting metric: {metric}")
metric = mean_squared_error(y_true=data_test['users'], y_pred=predictions)
print(f"Backtesting metric: {metric}")
Backtesting metric: 1991.9332571759892
In [13]:
Copied!
# Plot predictions
# ==============================================================================
fig, ax = plt.subplots(figsize=(11, 4))
data_test['users'].plot(ax=ax, label='test')
predictions['pred'].plot(ax=ax, label='predictions')
ax.legend();
# Plot predictions
# ==============================================================================
fig, ax = plt.subplots(figsize=(11, 4))
data_test['users'].plot(ax=ax, label='test')
predictions['pred'].plot(ax=ax, label='predictions')
ax.legend();
Include a logarithmic transformer as part of the forecaster¶
Using scikit-learn FunctionTransformer it is possible to include custom transformers in the forecaster object, for example, a logarithmic transformation. If the FunctionTransformer
has an inverse function, the output of the predict method is automatically transformed back to the original scale.
In [14]:
Copied!
# Create custom transformer
# =============================================================================
transformer_y = FunctionTransformer(func=np.log1p, inverse_func=np.expm1)
# Create forecaster and train
# ==============================================================================
forecaster = ForecasterAutoreg(
regressor = Ridge(random_state=123),
lags = 24,
transformer_y = transformer_y,
transformer_exog = None
)
forecaster.fit(data['users'])
# Backtesting predictions on test data
# ==============================================================================
metric, predictions = backtesting_forecaster(
forecaster = forecaster,
y = data['users'],
steps = 24,
metric = 'mean_squared_error',
initial_train_size = len(data.loc[:end_train]),
fixed_train_size = False,
gap = 0,
allow_incomplete_fold = True,
refit = False,
verbose = False,
show_progress = True
)
print(f"Backtesting metric: {metric}")
predictions.head()
# Create custom transformer
# =============================================================================
transformer_y = FunctionTransformer(func=np.log1p, inverse_func=np.expm1)
# Create forecaster and train
# ==============================================================================
forecaster = ForecasterAutoreg(
regressor = Ridge(random_state=123),
lags = 24,
transformer_y = transformer_y,
transformer_exog = None
)
forecaster.fit(data['users'])
# Backtesting predictions on test data
# ==============================================================================
metric, predictions = backtesting_forecaster(
forecaster = forecaster,
y = data['users'],
steps = 24,
metric = 'mean_squared_error',
initial_train_size = len(data.loc[:end_train]),
fixed_train_size = False,
gap = 0,
allow_incomplete_fold = True,
refit = False,
verbose = False,
show_progress = True
)
print(f"Backtesting metric: {metric}")
predictions.head()
0%| | 0/11 [00:00<?, ?it/s]
Backtesting metric: 1991.9332571759892
Out[14]:
pred | |
---|---|
2011-02-01 00:00:00 | 7.936823 |
2011-02-01 01:00:00 | 4.210682 |
2011-02-01 02:00:00 | 3.009993 |
2011-02-01 03:00:00 | 3.083922 |
2011-02-01 04:00:00 | 3.865169 |
In [15]:
Copied!
%%html
<style>
.jupyter-wrapper .jp-CodeCell .jp-Cell-inputWrapper .jp-InputPrompt {display: none;}
</style>
%%html