model_selection_multiseries
¶
backtesting_forecaster_multiseries(forecaster, series, steps, metric, initial_train_size, fixed_train_size=True, gap=0, allow_incomplete_fold=True, levels=None, exog=None, refit=False, interval=None, n_boot=500, random_state=123, in_sample_residuals=True, verbose=False, show_progress=True)
¶
Backtesting for multi-series and multivariate forecasters.
If refit
is False, the model is trained only once using the initial_train_size
first observations. If refit
is True, the model is trained in each iteration
increasing the training set. A copy of the original forecaster is created so
it is not modified during the process.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
forecaster |
ForecasterAutoregMultiSeries, ForecasterAutoregMultiSeriesCustom, ForecasterAutoregMultiVariate
|
Forecaster model. |
required |
series |
pandas DataFrame
|
Training time series. |
required |
steps |
int
|
Number of steps to predict. |
required |
metric |
str, Callable, list
|
Metric used to quantify the goodness of fit of the model.
|
required |
initial_train_size |
int, default
|
Number of samples in the initial train split. If |
required |
fixed_train_size |
bool, default
|
If True, train size doesn't increase but moves by |
True
|
gap |
int, default
|
Number of samples to be excluded after the end of each training set and before the test set. |
0
|
allow_incomplete_fold |
bool, default
|
Last fold is allowed to have a smaller number of samples than the
|
True
|
levels |
str, list, default
|
Time series to be predicted. If |
None
|
exog |
pandas Series, pandas DataFrame, default
|
Exogenous variable/s included as predictor/s. Must have the same
number of observations as |
None
|
refit |
bool, default
|
Whether to re-fit the forecaster in each iteration. |
False
|
interval |
list, default
|
Confidence of the prediction interval estimated. Sequence of percentiles
to compute, which must be between 0 and 100 inclusive. If |
None
|
n_boot |
int, default
|
Number of bootstrapping iterations used to estimate prediction intervals. |
500
|
random_state |
int, default
|
Sets a seed to the random generator, so that boot intervals are always deterministic. |
123
|
in_sample_residuals |
bool, default
|
If |
True
|
verbose |
bool, default
|
Print number of folds and index of training and validation sets used for backtesting. |
False
|
show_progress |
bool
|
Whether to show a progress bar. Defaults to True. |
True
|
Returns:
Name | Type | Description |
---|---|---|
metrics_levels |
pandas DataFrame
|
Value(s) of the metric(s). Index are the levels and columns the metrics. |
backtest_predictions |
pandas DataFrame
|
Value of predictions and their estimated interval if
|
Source code in skforecast/model_selection_multiseries/model_selection_multiseries.py
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 |
|
grid_search_forecaster_multiseries(forecaster, series, param_grid, steps, metric, initial_train_size, fixed_train_size=True, gap=0, allow_incomplete_fold=True, levels=None, exog=None, lags_grid=None, refit=False, return_best=True, verbose=True)
¶
Exhaustive search over specified parameter values for a Forecaster object. Validation is done using multi-series backtesting.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
forecaster |
ForecasterAutoregMultiSeries, ForecasterAutoregMultiSeriesCustom, ForecasterAutoregMultiVariate
|
Forcaster model. |
required |
series |
pandas DataFrame
|
Training time series. |
required |
param_grid |
dict
|
Dictionary with parameters names ( |
required |
steps |
int
|
Number of steps to predict. |
required |
metric |
str, Callable, list
|
Metric used to quantify the goodness of fit of the model.
|
required |
initial_train_size |
int
|
Number of samples in the initial train split. |
required |
fixed_train_size |
bool, default
|
If True, train size doesn't increase but moves by |
True
|
gap |
int, default
|
Number of samples to be excluded after the end of each training set and before the test set. |
0
|
allow_incomplete_fold |
bool, default
|
Last fold is allowed to have a smaller number of samples than the
|
True
|
levels |
str, list, default
|
level ( |
None
|
exog |
pandas Series, pandas DataFrame, default
|
Exogenous variable/s included as predictor/s. Must have the same
number of observations as |
None
|
lags_grid |
list of int, lists, np.narray or range, default
|
Lists of |
None
|
refit |
bool, default
|
Whether to re-fit the forecaster in each iteration of backtesting. |
False
|
return_best |
bool, default
|
Refit the |
True
|
verbose |
bool, default
|
Print number of folds used for cv or backtesting. |
True
|
Returns:
Name | Type | Description |
---|---|---|
results |
pandas DataFrame
|
Results for each combination of parameters.
|
Source code in skforecast/model_selection_multiseries/model_selection_multiseries.py
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 |
|
random_search_forecaster_multiseries(forecaster, series, param_distributions, steps, metric, initial_train_size, fixed_train_size=True, gap=0, allow_incomplete_fold=True, levels=None, exog=None, lags_grid=None, refit=False, n_iter=10, random_state=123, return_best=True, verbose=True)
¶
Random search over specified parameter values or distributions for a Forecaster object. Validation is done using multi-series backtesting.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
forecaster |
ForecasterAutoregMultiSeries, ForecasterAutoregMultiSeriesCustom, ForecasterAutoregMultiVariate
|
Forcaster model. |
required |
series |
pandas DataFrame
|
Training time series. |
required |
param_distributions |
dict
|
Dictionary with parameters names ( |
required |
steps |
int
|
Number of steps to predict. |
required |
metric |
str, Callable, list
|
Metric used to quantify the goodness of fit of the model.
|
required |
initial_train_size |
int
|
Number of samples in the initial train split. |
required |
fixed_train_size |
bool, default
|
If True, train size doesn't increase but moves by |
True
|
gap |
int, default
|
Number of samples to be excluded after the end of each training set and before the test set. |
0
|
allow_incomplete_fold |
bool, default
|
Last fold is allowed to have a smaller number of samples than the
|
True
|
levels |
str, list, default
|
level ( |
None
|
exog |
pandas Series, pandas DataFrame, default
|
Exogenous variable/s included as predictor/s. Must have the same
number of observations as |
None
|
lags_grid |
list of int, lists, np.narray or range, default
|
Lists of |
None
|
refit |
bool, default
|
Whether to re-fit the forecaster in each iteration of backtesting. |
False
|
n_iter |
int, default
|
Number of parameter settings that are sampled per lags configuration. n_iter trades off runtime vs quality of the solution. |
10
|
random_state |
int, default
|
Sets a seed to the random sampling for reproducible output. |
123
|
return_best |
bool, default
|
Refit the |
True
|
verbose |
bool, default
|
Print number of folds used for cv or backtesting. |
True
|
Returns:
Name | Type | Description |
---|---|---|
results |
pandas DataFrame
|
Results for each combination of parameters.
|
Source code in skforecast/model_selection_multiseries/model_selection_multiseries.py
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 |
|
backtesting_forecaster_multivariate(forecaster, series, steps, metric, initial_train_size, fixed_train_size=True, gap=0, allow_incomplete_fold=True, levels=None, exog=None, refit=False, interval=None, n_boot=500, random_state=123, in_sample_residuals=True, verbose=False, show_progress=True)
¶
This function is an alias of backtesting_forecaster_multiseries.
Backtesting for multi-series and multivariate forecasters.
If refit
is False, the model is trained only once using the initial_train_size
first observations. If refit
is True, the model is trained in each iteration
increasing the training set. A copy of the original forecaster is created so
it is not modified during the process.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
forecaster |
ForecasterAutoregMultiSeries, ForecasterAutoregMultiSeriesCustom, ForecasterAutoregMultiVariate
|
Forecaster model. |
required |
series |
pandas DataFrame
|
Training time series. |
required |
steps |
int
|
Number of steps to predict. |
required |
metric |
str, Callable, list
|
Metric used to quantify the goodness of fit of the model.
|
required |
initial_train_size |
int, default
|
Number of samples in the initial train split. If |
required |
fixed_train_size |
bool, default
|
If True, train size doesn't increase but moves by |
True
|
gap |
int, default
|
Number of samples to be excluded after the end of each training set and before the test set. |
0
|
allow_incomplete_fold |
bool, default
|
Last fold is allowed to have a smaller number of samples than the
|
True
|
levels |
str, list, default
|
Time series to be predicted. If |
None
|
exog |
pandas Series, pandas DataFrame, default
|
Exogenous variable/s included as predictor/s. Must have the same
number of observations as |
None
|
refit |
bool, default
|
Whether to re-fit the forecaster in each iteration. |
False
|
interval |
list, default
|
Confidence of the prediction interval estimated. Sequence of percentiles
to compute, which must be between 0 and 100 inclusive. If |
None
|
n_boot |
int, default
|
Number of bootstrapping iterations used to estimate prediction intervals. |
500
|
random_state |
int, default
|
Sets a seed to the random generator, so that boot intervals are always deterministic. |
123
|
in_sample_residuals |
bool, default
|
If |
True
|
verbose |
bool, default
|
Print number of folds and index of training and validation sets used for backtesting. |
False
|
show_progress |
bool
|
Whether to show a progress bar. Defaults to True. |
True
|
Returns:
Name | Type | Description |
---|---|---|
metrics_levels |
pandas DataFrame
|
Value(s) of the metric(s). Index are the levels and columns the metrics. |
backtest_predictions |
pandas DataFrame
|
Value of predictions and their estimated interval if
|
Source code in skforecast/model_selection_multiseries/model_selection_multiseries.py
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 |
|
grid_search_forecaster_multivariate(forecaster, series, param_grid, steps, metric, initial_train_size, fixed_train_size=True, gap=0, allow_incomplete_fold=True, levels=None, exog=None, lags_grid=None, refit=False, return_best=True, verbose=True)
¶
This function is an alias of grid_search_forecaster_multiseries.
Exhaustive search over specified parameter values for a Forecaster object. Validation is done using multi-series backtesting.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
forecaster |
ForecasterAutoregMultiSeries, ForecasterAutoregMultiSeriesCustom, ForecasterAutoregMultiVariate
|
Forcaster model. |
required |
series |
pandas DataFrame
|
Training time series. |
required |
param_grid |
dict
|
Dictionary with parameters names ( |
required |
steps |
int
|
Number of steps to predict. |
required |
metric |
str, Callable, list
|
Metric used to quantify the goodness of fit of the model.
|
required |
initial_train_size |
int
|
Number of samples in the initial train split. |
required |
fixed_train_size |
bool, default
|
If True, train size doesn't increase but moves by |
True
|
gap |
int, default
|
Number of samples to be excluded after the end of each training set and before the test set. |
0
|
allow_incomplete_fold |
bool, default
|
Last fold is allowed to have a smaller number of samples than the
|
True
|
levels |
str, list, default
|
level ( |
None
|
exog |
pandas Series, pandas DataFrame, default
|
Exogenous variable/s included as predictor/s. Must have the same
number of observations as |
None
|
lags_grid |
list of int, lists, np.narray or range, default
|
Lists of |
None
|
refit |
bool, default
|
Whether to re-fit the forecaster in each iteration of backtesting. |
False
|
return_best |
bool, default
|
Refit the |
True
|
verbose |
bool, default
|
Print number of folds used for cv or backtesting. |
True
|
Returns:
Name | Type | Description |
---|---|---|
results |
pandas DataFrame
|
Results for each combination of parameters.
|
Source code in skforecast/model_selection_multiseries/model_selection_multiseries.py
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 |
|
random_search_forecaster_multivariate(forecaster, series, param_distributions, steps, metric, initial_train_size, fixed_train_size=True, gap=0, allow_incomplete_fold=True, levels=None, exog=None, lags_grid=None, refit=False, n_iter=10, random_state=123, return_best=True, verbose=True)
¶
This function is an alias of random_search_forecaster_multiseries.
Random search over specified parameter values or distributions for a Forecaster object. Validation is done using multi-series backtesting.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
forecaster |
ForecasterAutoregMultiSeries, ForecasterAutoregMultiSeriesCustom, ForecasterAutoregMultiVariate
|
Forcaster model. |
required |
series |
pandas DataFrame
|
Training time series. |
required |
param_distributions |
dict
|
Dictionary with parameters names ( |
required |
steps |
int
|
Number of steps to predict. |
required |
metric |
str, Callable, list
|
Metric used to quantify the goodness of fit of the model.
|
required |
initial_train_size |
int
|
Number of samples in the initial train split. |
required |
fixed_train_size |
bool, default
|
If True, train size doesn't increase but moves by |
True
|
gap |
int, default
|
Number of samples to be excluded after the end of each training set and before the test set. |
0
|
allow_incomplete_fold |
bool, default
|
Last fold is allowed to have a smaller number of samples than the
|
True
|
levels |
str, list, default
|
level ( |
None
|
exog |
pandas Series, pandas DataFrame, default
|
Exogenous variable/s included as predictor/s. Must have the same
number of observations as |
None
|
lags_grid |
list of int, lists, np.narray or range, default
|
Lists of |
None
|
refit |
bool, default
|
Whether to re-fit the forecaster in each iteration of backtesting. |
False
|
n_iter |
int, default
|
Number of parameter settings that are sampled per lags configuration. n_iter trades off runtime vs quality of the solution. |
10
|
random_state |
int, default
|
Sets a seed to the random sampling for reproducible output. |
123
|
return_best |
bool, default
|
Refit the |
True
|
verbose |
bool, default
|
Print number of folds used for cv or backtesting. |
True
|
Returns:
Name | Type | Description |
---|---|---|
results |
pandas DataFrame
|
Results for each combination of parameters.
|
Source code in skforecast/model_selection_multiseries/model_selection_multiseries.py
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 |
|