Custom predictors for recursive multi-step forecasting¶
It may be interesting to include additional features of the time series besides the lags. For example, the moving average of the n last values can be used to capture the trend of the series.
The ForecasterAutoregCustom
class is very similar to the ForecasterAutoreg
class described in the previous section, but the user defines the function used to create the predictors.
Libraries¶
In [1]:
Copied!
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from skforecast.ForecasterAutoregCustom import ForecasterAutoregCustom
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from skforecast.ForecasterAutoregCustom import ForecasterAutoregCustom
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error
Data¶
In [2]:
Copied!
# Download data
# ==============================================================================
url = ('https://raw.githubusercontent.com/JoaquinAmatRodrigo/skforecast/master/data/h2o.csv')
data = pd.read_csv(url, sep=',', header=0, names=['y', 'datetime'])
# Data preprocessing
# ==============================================================================
data['datetime'] = pd.to_datetime(data['datetime'], format='%Y/%m/%d')
data = data.set_index('datetime')
data = data.asfreq('MS')
data = data['y']
data = data.sort_index()
# Split train-test
# ==============================================================================
steps = 36
data_train = data[:-steps]
data_test = data[-steps:]
# Plot
# ==============================================================================
fig, ax=plt.subplots(figsize=(9, 4))
data_train.plot(ax=ax, label='train')
data_test.plot(ax=ax, label='test')
ax.legend();
# Download data
# ==============================================================================
url = ('https://raw.githubusercontent.com/JoaquinAmatRodrigo/skforecast/master/data/h2o.csv')
data = pd.read_csv(url, sep=',', header=0, names=['y', 'datetime'])
# Data preprocessing
# ==============================================================================
data['datetime'] = pd.to_datetime(data['datetime'], format='%Y/%m/%d')
data = data.set_index('datetime')
data = data.asfreq('MS')
data = data['y']
data = data.sort_index()
# Split train-test
# ==============================================================================
steps = 36
data_train = data[:-steps]
data_test = data[-steps:]
# Plot
# ==============================================================================
fig, ax=plt.subplots(figsize=(9, 4))
data_train.plot(ax=ax, label='train')
data_test.plot(ax=ax, label='test')
ax.legend();
Train forecaster¶
In [3]:
Copied!
# Custom function to create predictors
# ==============================================================================
def create_predictors(y):
"""
Create first 10 lags of a time series.
Calculate moving average with window 20.
"""
lags = y[-1:-11:-1]
mean = np.mean(y[-20:])
predictors = np.hstack([lags, mean])
return predictors
# Custom function to create predictors
# ==============================================================================
def create_predictors(y):
"""
Create first 10 lags of a time series.
Calculate moving average with window 20.
"""
lags = y[-1:-11:-1]
mean = np.mean(y[-20:])
predictors = np.hstack([lags, mean])
return predictors
In [4]:
Copied!
# Create and fit forecaster
# ==============================================================================
forecaster = ForecasterAutoregCustom(
regressor = RandomForestRegressor(random_state=123),
fun_predictors = create_predictors,
window_size = 20
)
forecaster.fit(y=data_train)
forecaster
# Create and fit forecaster
# ==============================================================================
forecaster = ForecasterAutoregCustom(
regressor = RandomForestRegressor(random_state=123),
fun_predictors = create_predictors,
window_size = 20
)
forecaster.fit(y=data_train)
forecaster
Out[4]:
======================= ForecasterAutoregCustom ======================= Regressor: RandomForestRegressor(random_state=123) Predictors created with function: create_predictors Transformer for y: None Transformer for exog: None Window size: 20 Weight function included: False Exogenous included: False Type of exogenous variable: None Exogenous variables names: None Training range: [Timestamp('1991-07-01 00:00:00'), Timestamp('2005-06-01 00:00:00')] Training index type: DatetimeIndex Training index frequency: MS Regressor parameters: {'bootstrap': True, 'ccp_alpha': 0.0, 'criterion': 'squared_error', 'max_depth': None, 'max_features': 1.0, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 123, 'verbose': 0, 'warm_start': False} Creation date: 2022-11-29 15:47:08 Last fit date: 2022-11-29 15:47:08 Skforecast version: 0.6.0 Python version: 3.9.13
Prediction¶
In [5]:
Copied!
# Predict
# ==============================================================================
steps = 36
predictions = forecaster.predict(steps=steps)
predictions.head(3)
# Predict
# ==============================================================================
steps = 36
predictions = forecaster.predict(steps=steps)
predictions.head(3)
Out[5]:
2005-07-01 0.926598 2005-08-01 0.948202 2005-09-01 1.020947 Freq: MS, Name: pred, dtype: float64
In [6]:
Copied!
# Plot predictions
# ==============================================================================
fig, ax=plt.subplots(figsize=(9, 4))
data_train.plot(ax=ax, label='train')
data_test.plot(ax=ax, label='test')
predictions.plot(ax=ax, label='predictions')
ax.legend();
# Plot predictions
# ==============================================================================
fig, ax=plt.subplots(figsize=(9, 4))
data_train.plot(ax=ax, label='train')
data_test.plot(ax=ax, label='test')
predictions.plot(ax=ax, label='predictions')
ax.legend();
In [7]:
Copied!
# Prediction error
# ==============================================================================
error_mse = mean_squared_error(
y_true = data_test,
y_pred = predictions
)
print(f"Test error (mse): {error_mse}")
# Prediction error
# ==============================================================================
error_mse = mean_squared_error(
y_true = data_test,
y_pred = predictions
)
print(f"Test error (mse): {error_mse}")
Test error (mse): 0.04487765885818191
Feature importance¶
In [8]:
Copied!
forecaster.get_feature_importance()
forecaster.get_feature_importance()
Out[8]:
feature | importance | |
---|---|---|
0 | custom_predictor_0 | 0.539720 |
1 | custom_predictor_1 | 0.119097 |
2 | custom_predictor_2 | 0.046404 |
3 | custom_predictor_3 | 0.024165 |
4 | custom_predictor_4 | 0.030567 |
5 | custom_predictor_5 | 0.015139 |
6 | custom_predictor_6 | 0.042883 |
7 | custom_predictor_7 | 0.012742 |
8 | custom_predictor_8 | 0.018938 |
9 | custom_predictor_9 | 0.108639 |
10 | custom_predictor_10 | 0.041707 |
Extract training matrix¶
In [9]:
Copied!
X, y = forecaster.create_train_X_y(data_train)
X.head()
X, y = forecaster.create_train_X_y(data_train)
X.head()
Out[9]:
custom_predictor_0 | custom_predictor_1 | custom_predictor_2 | custom_predictor_3 | custom_predictor_4 | custom_predictor_5 | custom_predictor_6 | custom_predictor_7 | custom_predictor_8 | custom_predictor_9 | custom_predictor_10 | |
---|---|---|---|---|---|---|---|---|---|---|---|
datetime | |||||||||||
1993-03-01 | 0.387554 | 0.751503 | 0.771258 | 0.595223 | 0.568606 | 0.534761 | 0.475463 | 0.483389 | 0.410534 | 0.361801 | 0.496401 |
1993-04-01 | 0.427283 | 0.387554 | 0.751503 | 0.771258 | 0.595223 | 0.568606 | 0.534761 | 0.475463 | 0.483389 | 0.410534 | 0.496275 |
1993-05-01 | 0.413890 | 0.427283 | 0.387554 | 0.751503 | 0.771258 | 0.595223 | 0.568606 | 0.534761 | 0.475463 | 0.483389 | 0.496924 |
1993-06-01 | 0.428859 | 0.413890 | 0.427283 | 0.387554 | 0.751503 | 0.771258 | 0.595223 | 0.568606 | 0.534761 | 0.475463 | 0.496759 |
1993-07-01 | 0.470126 | 0.428859 | 0.413890 | 0.427283 | 0.387554 | 0.751503 | 0.771258 | 0.595223 | 0.568606 | 0.534761 | 0.495638 |
In [10]:
Copied!
y.head()
y.head()
Out[10]:
datetime 1993-03-01 0.427283 1993-04-01 0.413890 1993-05-01 0.428859 1993-06-01 0.470126 1993-07-01 0.509210 Freq: MS, Name: y, dtype: float64
In [11]:
Copied!
%%html
<style>
.jupyter-wrapper .jp-CodeCell .jp-Cell-inputWrapper .jp-InputPrompt {display: none;}
</style>
%%html