model_selection_statsmodels
¶
skforecast.model_selection_statsmodels.
backtesting_autoreg_statsmodels
(
y
, lags
, initial_train_size
, steps
, metric
, exog=None
, verbose=False
)
Backtesting (validation) of AutoReg
model from statsmodels v0.12. The model is
trained only once using the initial_train_size
first observations. In each
iteration, a number of steps
predictions are evaluated. This evaluation is
much faster than cross-validation since the model is trained only once.
.
y .
skforecast.model_selection_statsmodels.
cv_autoreg_statsmodels
(
y
, lags
, initial_train_size
, steps
, metric
, exog=None
, allow_incomplete_fold=True
, verbose=False
)
a .
.
y .
skforecast.model_selection_statsmodels.
backtesting_sarimax_statsmodels
(
y
, initial_train_size
, steps
, metric
, order=(1, 0, 0)
, seasonal_order=(0, 0, 0, 0)
, trend=None
, alpha=0.05
, exog=None
, sarimax_kwargs={}
, fit_kwargs={'disp': 0}
, verbose=False
)
Backtesting (validation) of SARIMAX
model from statsmodels v0.12. The model
is trained only once using the initial_train_size
first observations. In each
iteration, a number of steps
predictions are evaluated. This evaluation is
much faster than cross-validation since the model is trained only once.
https://www.statsmodels.org/dev/examples/notebooks/generated/statespace_forecasting.html
.
y . s l .
skforecast.model_selection_statsmodels.
cv_sarimax_statsmodels
(
y
, initial_train_size
, steps
, metric
, order=(1, 0, 0)
, seasonal_order=(0, 0, 0, 0)
, trend=None
, alpha=0.05
, exog=None
, allow_incomplete_fold=True
, sarimax_kwargs={}
, fit_kwargs={'disp': 0}
, verbose=False
)
a .
.
y . s l .
skforecast.model_selection_statsmodels.
grid_search_sarimax_statsmodels
(
y
, param_grid
, initial_train_size
, steps
, metric
, exog=None
, method='cv'
, allow_incomplete_fold=True
, sarimax_kwargs={}
, fit_kwargs={'disp': 0}
, verbose=False
)
Exhaustive search over specified parameter values for a SARIMAX
model from
statsmodels v0.12. Validation is done using time series cross-validation or
backtesting.
.