model_selection_statsmodels¶
skforecast.model_selection_statsmodels.backtesting_autoreg_statsmodels(y, lags, initial_train_size, steps, metric, exog=None, verbose=False)Backtesting (validation) of AutoReg model from statsmodels v0.12. The model is
trained only once using the initial_train_size first observations. In each
iteration, a number of steps predictions are evaluated. This evaluation is
much faster than cross-validation since the model is trained only once.
.
y .
skforecast.model_selection_statsmodels.cv_autoreg_statsmodels(y, lags, initial_train_size, steps, metric, exog=None, allow_incomplete_fold=True, verbose=False)a .
.
y .
skforecast.model_selection_statsmodels.backtesting_sarimax_statsmodels(y, initial_train_size, steps, metric, order=(1, 0, 0), seasonal_order=(0, 0, 0, 0), trend=None, alpha=0.05, exog=None, sarimax_kwargs={}, fit_kwargs={'disp': 0}, verbose=False)Backtesting (validation) of SARIMAX model from statsmodels v0.12. The model
is trained only once using the initial_train_size first observations. In each
iteration, a number of steps predictions are evaluated. This evaluation is
much faster than cross-validation since the model is trained only once.
https://www.statsmodels.org/dev/examples/notebooks/generated/statespace_forecasting.html
.
y . s l .
skforecast.model_selection_statsmodels.cv_sarimax_statsmodels(y, initial_train_size, steps, metric, order=(1, 0, 0), seasonal_order=(0, 0, 0, 0), trend=None, alpha=0.05, exog=None, allow_incomplete_fold=True, sarimax_kwargs={}, fit_kwargs={'disp': 0}, verbose=False)a .
.
y . s l .
skforecast.model_selection_statsmodels.grid_search_sarimax_statsmodels(y, param_grid, initial_train_size, steps, metric, exog=None, method='cv', allow_incomplete_fold=True, sarimax_kwargs={}, fit_kwargs={'disp': 0}, verbose=False)Exhaustive search over specified parameter values for a SARIMAX model from
statsmodels v0.12. Validation is done using time series cross-validation or
backtesting.
.