Stacking ensemble machine learning models to improve forecasting¶
In machine learning, stacking is an ensemble technique that combines multiple models to reduce their biases and improve predictive performance. Specifically, the predictions of each model (base models) are stacked and used as input to a final model (metamodel) to compute the prediction.
Stacking is effective because it leverages the strengths of different algorithms and attempts to mitigate their individual weaknesses. By combining multiple models, it can capture complex patterns in the data and improve prediction accuracy.
However, stacking can be computationally expensive and requires careful tuning to avoid overfitting. To this end, it is highly recommended to train the final estimator through cross-validation. In addition, obtaining diverse and well-performing base models is critical to the success of the stacking technique.
With scikit-learn, it is very easy to combine multiple regressors thanks to the StackingRegressor class. The estimators
parameter corresponds to the list of the estimators (base learners) that will be stacked in parallel on the input data. The final_estimator
(metamodel) will use the predictions of the estimators as input.
✎ Note
See Stacking (ensemble) machine learning models to improve forecasting for a more detailed example of stacking models.
Libraries and Data¶
# Data processing
# ==============================================================================
import numpy as np
import pandas as pd
# Modelling and Forecasting
# ==============================================================================
from lightgbm import LGBMRegressor
from sklearn.linear_model import Ridge
from sklearn.ensemble import StackingRegressor
from sklearn.model_selection import KFold
from skforecast.ForecasterAutoreg import ForecasterAutoreg
from skforecast.model_selection import grid_search_forecaster
from skforecast.model_selection import backtesting_forecaster
from skforecast.datasets import fetch_dataset
# Warnings
# ==============================================================================
import warnings
warnings.filterwarnings('ignore')
# Data
# ==============================================================================
data = fetch_dataset(name = 'fuel_consumption')
data = data.loc[:"2019-01-01", ['Gasolinas']]
data = data.rename(columns = {'Gasolinas':'consumption'})
data.index.name = 'date'
data['consumption'] = data['consumption']/100000
data.head(3)
fuel_consumption ---------------- Monthly fuel consumption in Spain from 1969-01-01 to 2022-08-01. Obtained from Corporación de Reservas Estratégicas de Productos Petrolíferos and Corporación de Derecho Público tutelada por el Ministerio para la Transición Ecológica y el Reto Demográfico. https://www.cores.es/es/estadisticas Shape of the dataset: (644, 5)
consumption | |
---|---|
date | |
1969-01-01 | 1.668752 |
1969-02-01 | 1.554668 |
1969-03-01 | 1.849837 |
In addition to the past values of the series (lags), an additional variable indicating the month of the year is added. This variable is included in the model to capture the seasonality of the series.
# Calendar features
# ==============================================================================
data['month_of_year'] = data.index.month
data.head(3)
consumption | month_of_year | |
---|---|---|
date | ||
1969-01-01 | 1.668752 | 1 |
1969-02-01 | 1.554668 | 2 |
1969-03-01 | 1.849837 | 3 |
To facilitate the training of the models, the search for optimal hyperparameters, and the evaluation of their predictive accuracy, the data are divided into three separate sets: training, validation, and test.
# Split train-validation-test
# ==============================================================================
end_train = '2007-12-01 23:59:00'
end_validation = '2012-12-01 23:59:00'
data_train = data.loc[: end_train, :]
data_val = data.loc[end_train:end_validation, :]
data_test = data.loc[end_validation:, :]
print(f"Dates train : {data_train.index.min()} --- {data_train.index.max()} (n={len(data_train)})")
print(f"Dates validacion : {data_val.index.min()} --- {data_val.index.max()} (n={len(data_val)})")
print(f"Dates test : {data_test.index.min()} --- {data_test.index.max()} (n={len(data_test)})")
Dates train : 1969-01-01 00:00:00 --- 2007-12-01 00:00:00 (n=468) Dates validacion : 2008-01-01 00:00:00 --- 2012-12-01 00:00:00 (n=60) Dates test : 2013-01-01 00:00:00 --- 2019-01-01 00:00:00 (n=73)
StackingRegressor¶
With scikit-learn it is very easy to combine multiple regressors thanks to the StackingRegressor class.
The estimators
parameter corresponds to the list of the estimators (base learners) that will be stacked in parallel on the input data. It should be specified as a list of names and estimators. The final_estimator
(metamodel) will use the predictions of the estimators as input.
# Create stacking regressor
# ==============================================================================
params_ridge = {'alpha': 0.001}
params_lgbm = {'learning_rate': 0.1, 'max_depth': 5, 'n_estimators': 500, 'verbose': -1}
estimators = [
('ridge', Ridge(**params_ridge)),
('lgbm', LGBMRegressor(random_state=42, **params_lgbm)),
]
stacking_regressor = StackingRegressor(
estimators = estimators,
final_estimator = Ridge(),
cv = KFold(n_splits=5, shuffle=False)
)
stacking_regressor
StackingRegressor(cv=KFold(n_splits=5, random_state=None, shuffle=False), estimators=[('ridge', Ridge(alpha=0.001)), ('lgbm', LGBMRegressor(max_depth=5, n_estimators=500, random_state=42, verbose=-1))], final_estimator=Ridge())In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
StackingRegressor(cv=KFold(n_splits=5, random_state=None, shuffle=False), estimators=[('ridge', Ridge(alpha=0.001)), ('lgbm', LGBMRegressor(max_depth=5, n_estimators=500, random_state=42, verbose=-1))], final_estimator=Ridge())
Ridge(alpha=0.001)
LGBMRegressor(max_depth=5, n_estimators=500, random_state=42, verbose=-1)
Ridge()
# Create forecaster
# ==============================================================================
forecaster = ForecasterAutoreg(
regressor = stacking_regressor,
lags = 12 # Last 12 months used as predictors
)
# Backtesting on test data
# ==============================================================================
metric, predictions = backtesting_forecaster(
forecaster = forecaster,
y = data['consumption'],
exog = data['month_of_year'],
initial_train_size = len(data.loc[:end_validation]),
fixed_train_size = False,
steps = 12, # Forecast horizon
refit = False,
metric = 'mean_squared_error',
n_jobs = 'auto',
verbose = False
)
metric
0%| | 0/7 [00:00<?, ?it/s]
mean_squared_error | |
---|---|
0 | 0.053776 |
Hiperparameters search of StackingRegressor¶
When using StackingRegressor
, the hyperparameters of each regressor must be preceded by the name of the regressor followed by two underscores. For example, the alpha
hyperparameter of the ridge regressor must be specified as ridge__alpha
. The hyperparameter of the final estimator must be specified with the prefix final_estimator__
.
# Grid search of hyperparameters and lags
# ==============================================================================
param_grid = {
'ridge__alpha': [0.1, 1, 10],
'lgbm__n_estimators': [100, 500],
'lgbm__max_depth': [3, 5, 10],
'lgbm__learning_rate': [0.01, 0.1],
'final_estimator__alpha': [0.1, 1]
}
# Lags used as predictors
lags_grid = [24]
results_grid = grid_search_forecaster(
forecaster = forecaster,
y = data['consumption'],
exog = data['month_of_year'],
param_grid = param_grid,
lags_grid = lags_grid,
steps = 36,
refit = False,
metric = 'mean_squared_error',
initial_train_size = len(data.loc[:end_train]),
fixed_train_size = False,
return_best = True,
n_jobs = 'auto',
verbose = False
)
results_grid.head()
Number of models compared: 72.
lags grid: 0%| | 0/1 [00:00<?, ?it/s]
params grid: 0%| | 0/72 [00:00<?, ?it/s]
`Forecaster` refitted using the best-found lags and parameters, and the whole data set: Lags: [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24] Parameters: {'final_estimator__alpha': 1, 'lgbm__learning_rate': 0.01, 'lgbm__max_depth': 3, 'lgbm__n_estimators': 100, 'ridge__alpha': 0.1} Backtesting metric: 0.5080664092557889
lags | lags_label | params | mean_squared_error | final_estimator__alpha | lgbm__learning_rate | lgbm__max_depth | lgbm__n_estimators | ridge__alpha | |
---|---|---|---|---|---|---|---|---|---|
36 | [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14... | [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14... | {'final_estimator__alpha': 1, 'lgbm__learning_... | 0.508066 | 1.0 | 0.01 | 3.0 | 100.0 | 0.1 |
37 | [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14... | [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14... | {'final_estimator__alpha': 1, 'lgbm__learning_... | 0.519290 | 1.0 | 0.01 | 3.0 | 100.0 | 1.0 |
42 | [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14... | [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14... | {'final_estimator__alpha': 1, 'lgbm__learning_... | 0.531137 | 1.0 | 0.01 | 5.0 | 100.0 | 0.1 |
48 | [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14... | [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14... | {'final_estimator__alpha': 1, 'lgbm__learning_... | 0.532003 | 1.0 | 0.01 | 10.0 | 100.0 | 0.1 |
69 | [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14... | [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14... | {'final_estimator__alpha': 1, 'lgbm__learning_... | 0.535757 | 1.0 | 0.10 | 10.0 | 500.0 | 0.1 |
Once the best hyperparameters have been determined for each regressor in the ensemble, the test error is computed through back-testing.
# Backtesting on test data
# ==============================================================================
metric, predictions = backtesting_forecaster(
forecaster = forecaster,
y = data['consumption'],
exog = data['month_of_year'],
initial_train_size = len(data.loc[:end_validation]),
fixed_train_size = False,
steps = 12, # Forecast horizon
refit = False,
metric = 'mean_squared_error',
n_jobs = 'auto',
verbose = False
)
metric
0%| | 0/7 [00:00<?, ?it/s]
mean_squared_error | |
---|---|
0 | 0.013506 |
Feature importance in StackingRegressor¶
When a regressor of type StackingRegressor
is used as a regressor in a predictor, its get_feature_importances
method will not work. This is because objects of type StackingRegressor
do not have either the feature_importances
or coef_
attribute. Instead, it is necessary to inspect each of the regressors that are part of the stacking.
# Feature importances for each regressor in the stacking
# ==============================================================================
if forecaster.regressor.__class__.__name__ == 'StackingRegressor':
importancia_pred = []
for regressor in forecaster.regressor.estimators_:
try:
importancia = pd.DataFrame(
data = {
'feature': forecaster.regressor.feature_names_in_,
f'importance_{type(regressor).__name__}': regressor.coef_,
f'importance_abs_{type(regressor).__name__}': np.abs(regressor.coef_)
}
).set_index('feature')
except:
importancia = pd.DataFrame(
data = {
'feature': forecaster.regressor.feature_names_in_,
f'importance_{type(regressor).__name__}': regressor.feature_importances_,
f'importance_abs_{type(regressor).__name__}': np.abs(regressor.feature_importances_)
}
).set_index('feature')
importancia_pred.append(importancia)
importancia_pred = pd.concat(importancia_pred, axis=1)
else:
importancia_pred = forecaster.get_feature_importances()
importancia_pred['importance_abs'] = importancia_pred['importance'].abs()
importancia_pred = importancia_pred.sort_values(by='importance_abs', ascending=False)
importancia_pred.head(5)
importance_Ridge | importance_abs_Ridge | importance_LGBMRegressor | importance_abs_LGBMRegressor | |
---|---|---|---|---|
feature | ||||
lag_1 | 0.020984 | 0.020984 | 59 | 59 |
lag_2 | 0.216998 | 0.216998 | 1 | 1 |
lag_3 | 0.188519 | 0.188519 | 0 | 0 |
lag_4 | 0.200916 | 0.200916 | 0 | 0 |
lag_5 | 0.106734 | 0.106734 | 0 | 0 |