Examples and Tutorials¶
Practical examples and tutorials to help you understand and apply skforecast.
English¶
Skforecast: time series forecasting with machine learning
Forecasting with gradient boosting: XGBoost, LightGBM and CatBoost
Global Forecasting Models: Multi-series forecasting
Forecasting with Deep Learning
Stacking ensemble of machine learning models to improve forecasting
Modelling time series trend with tree based models
Interpretable forecasting models
Forecasting time series with missing values
Intermittent demand forecasting
Forecasting energy demand with machine learning
Global Forecasting Models: Comparative Analysis of Single and Multi-Series Forecasting Modeling
Mitigating the impact of covid on forecasting models
Forecasting web traffic with machine learning and Python
Bitcoin price prediction with Python
Español¶
Skforecast: forecasting series temporales con machine learning
Forecasting con gradient boosting: XGBoost, LightGBM y CatBoost
Global Forecasting Models: Multi-series forecasting
Modelos de forecasting globales: Análisis comparativo de modelos de una y múltiples series
Modelar series temporales con tendencia utilizando modelos de árboles
Interpretabilidad en modelos de forecasting
Forecasting de series incompletas con valores faltantes
Predicción demanda intermitente
Forecasting de la demanda eléctrica
Forecasting de las visitas a una página web
Reducir el impacto del Covid en modelos de forecasting