model_selection_multiseries
¶
backtesting_forecaster_multiseries(forecaster, series, steps, metric, initial_train_size, fixed_train_size=True, gap=0, skip_folds=None, allow_incomplete_fold=True, levels=None, add_aggregated_metric=True, exog=None, refit=False, interval=None, n_boot=500, random_state=123, in_sample_residuals=True, n_jobs='auto', verbose=False, show_progress=True, suppress_warnings=False)
¶
Backtesting for multi-series and multivariate forecasters.
- If
refit
isFalse
, the model will be trained only once using theinitial_train_size
first observations. - If
refit
isTrue
, the model is trained on each iteration, increasing the training set. - If
refit
is aninteger
, the model will be trained every that number of iterations. - If
forecaster
is already trained andinitial_train_size
isNone
, no initial train will be done and all data will be used to evaluate the model. However, the firstlen(forecaster.last_window)
observations are needed to create the initial predictors, so no predictions are calculated for them.
A copy of the original forecaster is created so that it is not modified during the process.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
forecaster |
(ForecasterAutoregMultiSeries, ForecasterAutoregMultiSeriesCustom, ForecasterAutoregMultiVariate, ForecasterRnn)
|
Forecaster model. |
required |
series |
pandas DataFrame, dict
|
Training time series. |
required |
steps |
int
|
Number of steps to predict. |
required |
metric |
(str, Callable, list)
|
Metric used to quantify the goodness of fit of the model.
|
required |
initial_train_size |
int
|
Number of samples in the initial train split. If |
`None`
|
fixed_train_size |
bool
|
If True, train size doesn't increase but moves by |
`True`
|
gap |
int
|
Number of samples to be excluded after the end of each training set and before the test set. |
`0`
|
skip_folds |
(int, list)
|
If |
`None`
|
allow_incomplete_fold |
bool
|
Last fold is allowed to have a smaller number of samples than the
|
`True`
|
levels |
(str, list)
|
Time series to be predicted. If |
`None`
|
add_aggregated_metric |
bool
|
If
|
`True`
|
exog |
pandas Series, pandas DataFrame, dict
|
Exogenous variables. |
`None`
|
refit |
(bool, int)
|
Whether to re-fit the forecaster in each iteration. If |
`False`
|
interval |
list
|
Confidence of the prediction interval estimated. Sequence of percentiles
to compute, which must be between 0 and 100 inclusive. If |
`None`
|
n_boot |
int
|
Number of bootstrapping iterations used to estimate prediction intervals. |
`500`
|
random_state |
int
|
Sets a seed to the random generator, so that boot intervals are always deterministic. |
`123`
|
in_sample_residuals |
bool
|
If |
`True`
|
n_jobs |
(int, auto)
|
The number of jobs to run in parallel. If |
`'auto'`
|
verbose |
bool
|
Print number of folds and index of training and validation sets used for backtesting. |
`False`
|
show_progress |
bool
|
Whether to show a progress bar. |
`True`
|
suppress_warnings |
bool
|
If |
False
|
Returns:
Name | Type | Description |
---|---|---|
metrics_levels |
pandas DataFrame
|
Value(s) of the metric(s). Index are the levels and columns the metrics. |
backtest_predictions |
pandas DataFrame
|
Value of predictions and their estimated interval if
|
Source code in skforecast\model_selection_multiseries\model_selection_multiseries.py
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 |
|
grid_search_forecaster_multiseries(forecaster, series, param_grid, steps, metric, initial_train_size, aggregate_metric=['weighted_average', 'average', 'pooling'], fixed_train_size=True, gap=0, skip_folds=None, allow_incomplete_fold=True, levels=None, exog=None, lags_grid=None, refit=False, return_best=True, n_jobs='auto', verbose=True, show_progress=True, suppress_warnings=False, output_file=None)
¶
Exhaustive search over specified parameter values for a Forecaster object. Validation is done using multi-series backtesting.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
forecaster |
(ForecasterAutoregMultiSeries, ForecasterAutoregMultiSeriesCustom, ForecasterAutoregMultiVariate)
|
Forecaster model. |
required |
series |
pandas DataFrame, dict
|
Training time series. |
required |
param_grid |
dict
|
Dictionary with parameters names ( |
required |
steps |
int
|
Number of steps to predict. |
required |
metric |
(str, Callable, list)
|
Metric used to quantify the goodness of fit of the model.
|
required |
initial_train_size |
int
|
Number of samples in the initial train split. |
required |
aggregate_metric |
(str, list)
|
Aggregation method/s used to combine the metric/s of all levels (series) when multiple levels are predicted. If list, the first aggregation method is used to select the best parameters.
|
`['weighted_average', 'average', 'pooling']`
|
fixed_train_size |
bool
|
If True, train size doesn't increase but moves by |
`True`
|
gap |
int
|
Number of samples to be excluded after the end of each training set and before the test set. |
`0`
|
skip_folds |
(int, list)
|
If |
`None`
|
allow_incomplete_fold |
bool
|
Last fold is allowed to have a smaller number of samples than the
|
`True`
|
levels |
(str, list)
|
level ( |
`None`
|
exog |
pandas Series, pandas DataFrame, dict
|
Exogenous variables. |
`None`
|
lags_grid |
(list, dict)
|
Lists of lags to try, containing int, lists, numpy ndarray, or range
objects. If |
`None`
|
refit |
(bool, int)
|
Whether to re-fit the forecaster in each iteration. If |
`False`
|
return_best |
bool
|
Refit the |
`True`
|
n_jobs |
(int, auto)
|
The number of jobs to run in parallel. If |
`'auto'`
|
verbose |
bool
|
Print number of folds used for cv or backtesting. |
`True`
|
show_progress |
bool
|
Whether to show a progress bar. |
`True`
|
suppress_warnings |
bool
|
If |
False
|
output_file |
str
|
Specifies the filename or full path where the results should be saved.
The results will be saved in a tab-separated values (TSV) format. If
|
`None`
|
Returns:
Name | Type | Description |
---|---|---|
results |
pandas DataFrame
|
Results for each combination of parameters.
|
Source code in skforecast\model_selection_multiseries\model_selection_multiseries.py
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 |
|
random_search_forecaster_multiseries(forecaster, series, param_distributions, steps, metric, initial_train_size, aggregate_metric=['weighted_average', 'average', 'pooling'], fixed_train_size=True, gap=0, skip_folds=None, allow_incomplete_fold=True, levels=None, exog=None, lags_grid=None, refit=False, n_iter=10, random_state=123, return_best=True, n_jobs='auto', verbose=True, show_progress=True, suppress_warnings=False, output_file=None)
¶
Random search over specified parameter values or distributions for a Forecaster object. Validation is done using multi-series backtesting.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
forecaster |
(ForecasterAutoregMultiSeries, ForecasterAutoregMultiSeriesCustom, ForecasterAutoregMultiVariate)
|
Forecaster model. |
required |
series |
pandas DataFrame, dict
|
Training time series. |
required |
param_distributions |
dict
|
Dictionary with parameters names ( |
required |
steps |
int
|
Number of steps to predict. |
required |
metric |
(str, Callable, list)
|
Metric used to quantify the goodness of fit of the model.
|
required |
initial_train_size |
int
|
Number of samples in the initial train split. |
required |
aggregate_metric |
(str, list)
|
Aggregation method/s used to combine the metric/s of all levels (series) when multiple levels are predicted. If list, the first aggregation method is used to select the best parameters.
|
`['weighted_average', 'average', 'pooling']`
|
fixed_train_size |
bool
|
If True, train size doesn't increase but moves by |
`True`
|
gap |
int
|
Number of samples to be excluded after the end of each training set and before the test set. |
`0`
|
skip_folds |
(int, list)
|
If |
`None`
|
allow_incomplete_fold |
bool
|
Last fold is allowed to have a smaller number of samples than the
|
`True`
|
levels |
(str, list)
|
level ( |
`None`
|
exog |
pandas Series, pandas DataFrame, dict
|
Exogenous variables. |
`None`
|
lags_grid |
(list, dict)
|
Lists of lags to try, containing int, lists, numpy ndarray, or range
objects. If |
`None`
|
refit |
(bool, int)
|
Whether to re-fit the forecaster in each iteration. If |
`False`
|
n_iter |
int
|
Number of parameter settings that are sampled per lags configuration. n_iter trades off runtime vs quality of the solution. |
`10`
|
random_state |
int
|
Sets a seed to the random sampling for reproducible output. |
`123`
|
return_best |
bool
|
Refit the |
`True`
|
n_jobs |
(int, auto)
|
The number of jobs to run in parallel. If |
`'auto'`
|
verbose |
bool
|
Print number of folds used for cv or backtesting. |
`True`
|
show_progress |
bool
|
Whether to show a progress bar. |
`True`
|
suppress_warnings |
bool
|
If |
False
|
output_file |
str
|
Specifies the filename or full path where the results should be saved.
The results will be saved in a tab-separated values (TSV) format. If
|
`None`
|
Returns:
Name | Type | Description |
---|---|---|
results |
pandas DataFrame
|
Results for each combination of parameters.
|
Source code in skforecast\model_selection_multiseries\model_selection_multiseries.py
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 |
|
bayesian_search_forecaster_multiseries(forecaster, series, search_space, steps, metric, initial_train_size, aggregate_metric=['weighted_average', 'average', 'pooling'], fixed_train_size=True, gap=0, skip_folds=None, allow_incomplete_fold=True, levels=None, exog=None, refit=False, n_trials=10, random_state=123, return_best=True, n_jobs='auto', verbose=True, show_progress=True, suppress_warnings=False, output_file=None, engine='optuna', kwargs_create_study={}, kwargs_study_optimize={})
¶
Bayesian optimization for a Forecaster object using multi-series backtesting and optuna library. New in version 0.12.0
Parameters:
Name | Type | Description | Default |
---|---|---|---|
forecaster |
(ForecasterAutoregMultiSeries, ForecasterAutoregMultiSeriesCustom, ForecasterAutoregMultiVariate)
|
Forecaster model. |
required |
series |
pandas DataFrame, dict
|
Training time series. |
required |
search_space |
Callable
|
Function with argument |
required |
steps |
int
|
Number of steps to predict. |
required |
metric |
(str, Callable, list)
|
Metric used to quantify the goodness of fit of the model.
|
required |
initial_train_size |
int
|
Number of samples in the initial train split. |
required |
aggregate_metric |
(str, list)
|
Aggregation method/s used to combine the metric/s of all levels (series) when multiple levels are predicted. If list, the first aggregation method is used to select the best parameters.
|
`['weighted_average', 'average', 'pooling']`
|
fixed_train_size |
bool
|
If True, train size doesn't increase but moves by |
`True`
|
gap |
int
|
Number of samples to be excluded after the end of each training set and before the test set. |
`0`
|
skip_folds |
(int, list)
|
If |
`None`
|
allow_incomplete_fold |
bool
|
Last fold is allowed to have a smaller number of samples than the
|
`True`
|
levels |
(str, list)
|
level ( |
`None`
|
exog |
pandas Series, pandas DataFrame, dict
|
Exogenous variables. |
`None`
|
refit |
(bool, int)
|
Whether to re-fit the forecaster in each iteration. If |
`False`
|
n_trials |
int
|
Number of parameter settings that are sampled in each lag configuration. |
`10`
|
random_state |
int
|
Sets a seed to the sampling for reproducible output. |
`123`
|
return_best |
bool
|
Refit the |
`True`
|
n_jobs |
(int, auto)
|
The number of jobs to run in parallel. If |
`'auto'`
|
verbose |
bool
|
Print number of folds used for cv or backtesting. |
`True`
|
show_progress |
bool
|
Whether to show a progress bar. |
`True`
|
suppress_warnings |
bool
|
If |
False
|
output_file |
str
|
Specifies the filename or full path where the results should be saved.
The results will be saved in a tab-separated values (TSV) format. If
|
`None`
|
engine |
str
|
Bayesian optimization runs through the optuna library. |
`'optuna'`
|
kwargs_create_study |
dict
|
Keyword arguments (key, value mappings) to pass to optuna.create_study(). If default, the direction is set to 'minimize' and a TPESampler(seed=123) sampler is used during optimization. |
`{}`
|
kwargs_study_optimize |
dict
|
Other keyword arguments (key, value mappings) to pass to study.optimize(). |
`{}`
|
Returns:
Name | Type | Description |
---|---|---|
results |
pandas DataFrame
|
Results for each combination of parameters.
|
best_trial |
optuna object
|
The best optimization result returned as a FrozenTrial optuna object. |
Source code in skforecast\model_selection_multiseries\model_selection_multiseries.py
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 |
|
select_features_multiseries(forecaster, selector, series, exog=None, select_only=None, force_inclusion=None, subsample=0.5, random_state=123, verbose=True)
¶
Feature selection using any of the sklearn.feature_selection module selectors
(such as RFECV
, SelectFromModel
, etc.). Two groups of features are
evaluated: autoregressive features and exogenous features. By default, the
selection process is performed on both sets of features at the same time,
so that the most relevant autoregressive and exogenous features are selected.
However, using the select_only
argument, the selection process can focus
only on the autoregressive or exogenous features without taking into account
the other features. Therefore, all other features will remain in the model.
It is also possible to force the inclusion of certain features in the final
list of selected features using the force_inclusion
parameter.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
forecaster |
(ForecasterAutoregMultiSeries, ForecasterAutoregMultiseriesCustom)
|
Forecaster model. |
required |
selector |
object
|
A feature selector from sklearn.feature_selection. |
required |
series |
pandas DataFrame
|
Target time series to which the feature selection will be applied. |
required |
exog |
pandas Series, pandas DataFrame, dict
|
Exogenous variables. |
`None`
|
select_only |
str
|
Decide what type of features to include in the selection process.
|
`None`
|
force_inclusion |
(list, str)
|
Features to force include in the final list of selected features.
|
`None`
|
subsample |
(int, float)
|
Proportion of records to use for feature selection. |
`0.5`
|
random_state |
int
|
Sets a seed for the random subsample so that the subsampling process is always deterministic. |
`123`
|
verbose |
bool
|
Print information about feature selection process. |
`True`
|
Returns:
Name | Type | Description |
---|---|---|
selected_autoreg |
list
|
List of selected autoregressive features. |
selected_exog |
list
|
List of selected exogenous features. |
Source code in skforecast\model_selection_multiseries\model_selection_multiseries.py
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 |
|
backtesting_forecaster_multivariate(forecaster, series, steps, metric, initial_train_size, add_aggregated_metric=True, fixed_train_size=True, gap=0, skip_folds=None, allow_incomplete_fold=True, levels=None, exog=None, refit=False, interval=None, n_boot=500, random_state=123, in_sample_residuals=True, n_jobs='auto', verbose=False, show_progress=True, suppress_warnings=False)
¶
This function is an alias of backtesting_forecaster_multiseries.
Backtesting for multi-series and multivariate forecasters.
If refit
is False, the model is trained only once using the initial_train_size
first observations. If refit
is True, the model is trained in each iteration
increasing the training set. A copy of the original forecaster is created so
it is not modified during the process.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
forecaster |
(ForecasterAutoregMultiSeries, ForecasterAutoregMultiSeriesCustom, ForecasterAutoregMultiVariate)
|
Forecaster model. |
required |
series |
pandas DataFrame, dict
|
Training time series. |
required |
steps |
int
|
Number of steps to predict. |
required |
metric |
(str, Callable, list)
|
Metric used to quantify the goodness of fit of the model.
|
required |
initial_train_size |
int
|
Number of samples in the initial train split. If |
`None`
|
add_aggregated_metric |
bool
|
If
|
`True`
|
fixed_train_size |
bool
|
If True, train size doesn't increase but moves by |
`True`
|
gap |
int
|
Number of samples to be excluded after the end of each training set and before the test set. |
`0`
|
skip_folds |
(int, list)
|
If |
`None`
|
allow_incomplete_fold |
bool
|
Last fold is allowed to have a smaller number of samples than the
|
`True`
|
levels |
(str, list)
|
Time series to be predicted. If |
`None`
|
exog |
pandas Series, pandas DataFrame, dict
|
Exogenous variables. |
`None`
|
refit |
(bool, int)
|
Whether to re-fit the forecaster in each iteration. If |
`False`
|
interval |
list
|
Confidence of the prediction interval estimated. Sequence of percentiles
to compute, which must be between 0 and 100 inclusive. If |
`None`
|
n_boot |
int
|
Number of bootstrapping iterations used to estimate prediction intervals. |
`500`
|
random_state |
int
|
Sets a seed to the random generator, so that boot intervals are always deterministic. |
`123`
|
in_sample_residuals |
bool
|
If |
`True`
|
n_jobs |
(int, auto)
|
The number of jobs to run in parallel. If |
`'auto'`
|
verbose |
bool
|
Print number of folds and index of training and validation sets used for backtesting. |
`False`
|
show_progress |
bool
|
Whether to show a progress bar. |
`True`
|
suppress_warnings |
bool
|
If |
False
|
Returns:
Name | Type | Description |
---|---|---|
metrics_levels |
pandas DataFrame
|
Value(s) of the metric(s). Index are the levels and columns the metrics. |
backtest_predictions |
pandas DataFrame
|
Value of predictions and their estimated interval if
|
Source code in skforecast\model_selection_multiseries\model_selection_multiseries.py
2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 |
|
grid_search_forecaster_multivariate(forecaster, series, param_grid, steps, metric, initial_train_size, aggregate_metric=['weighted_average', 'average', 'pooling'], fixed_train_size=True, gap=0, skip_folds=None, allow_incomplete_fold=True, levels=None, exog=None, lags_grid=None, refit=False, return_best=True, n_jobs='auto', verbose=True, show_progress=True, suppress_warnings=False, output_file=None)
¶
This function is an alias of grid_search_forecaster_multiseries.
Exhaustive search over specified parameter values for a Forecaster object. Validation is done using multi-series backtesting.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
forecaster |
(ForecasterAutoregMultiSeries, ForecasterAutoregMultiSeriesCustom, ForecasterAutoregMultiVariate)
|
Forecaster model. |
required |
series |
pandas DataFrame, dict
|
Training time series. |
required |
param_grid |
dict
|
Dictionary with parameters names ( |
required |
steps |
int
|
Number of steps to predict. |
required |
metric |
(str, Callable, list)
|
Metric used to quantify the goodness of fit of the model.
|
required |
initial_train_size |
int
|
Number of samples in the initial train split. |
required |
aggregate_metric |
(str, list)
|
Aggregation method/s used to combine the metric/s of all levels (series) when multiple levels are predicted. If list, the first aggregation method is used to select the best parameters.
|
`['weighted_average', 'average', 'pooling']`
|
fixed_train_size |
bool
|
If True, train size doesn't increase but moves by |
`True`
|
gap |
int
|
Number of samples to be excluded after the end of each training set and before the test set. |
`0`
|
skip_folds |
(int, list)
|
If |
`None`
|
allow_incomplete_fold |
bool
|
Last fold is allowed to have a smaller number of samples than the
|
`True`
|
levels |
(str, list)
|
level ( |
`None`
|
exog |
pandas Series, pandas DataFrame, dict
|
Exogenous variables. |
`None`
|
lags_grid |
(list, dict)
|
Lists of lags to try, containing int, lists, numpy ndarray, or range
objects. If |
`None`
|
refit |
(bool, int)
|
Whether to re-fit the forecaster in each iteration. If |
`False`
|
return_best |
bool
|
Refit the |
`True`
|
n_jobs |
(int, auto)
|
The number of jobs to run in parallel. If |
`'auto'`
|
verbose |
bool
|
Print number of folds used for cv or backtesting. |
`True`
|
show_progress |
bool
|
Whether to show a progress bar. |
`True`
|
suppress_warnings |
bool
|
If |
False
|
output_file |
str
|
Specifies the filename or full path where the results should be saved.
The results will be saved in a tab-separated values (TSV) format. If
|
`None`
|
Returns:
Name | Type | Description |
---|---|---|
results |
pandas DataFrame
|
Results for each combination of parameters.
|
Source code in skforecast\model_selection_multiseries\model_selection_multiseries.py
2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 |
|
random_search_forecaster_multivariate(forecaster, series, param_distributions, steps, metric, initial_train_size, aggregate_metric=['weighted_average', 'average', 'pooling'], fixed_train_size=True, gap=0, skip_folds=None, allow_incomplete_fold=True, levels=None, exog=None, lags_grid=None, refit=False, n_iter=10, random_state=123, return_best=True, n_jobs='auto', verbose=True, show_progress=True, suppress_warnings=False, output_file=None)
¶
This function is an alias of random_search_forecaster_multiseries.
Random search over specified parameter values or distributions for a Forecaster object. Validation is done using multi-series backtesting.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
forecaster |
(ForecasterAutoregMultiSeries, ForecasterAutoregMultiSeriesCustom, ForecasterAutoregMultiVariate)
|
Forecaster model. |
required |
series |
pandas DataFrame, dict
|
Training time series. |
required |
param_distributions |
dict
|
Dictionary with parameters names ( |
required |
steps |
int
|
Number of steps to predict. |
required |
metric |
(str, Callable, list)
|
Metric used to quantify the goodness of fit of the model.
|
required |
initial_train_size |
int
|
Number of samples in the initial train split. |
required |
aggregate_metric |
(str, list)
|
Aggregation method/s used to combine the metric/s of all levels (series) when multiple levels are predicted. If list, the first aggregation method is used to select the best parameters.
|
`['weighted_average', 'average', 'pooling']`
|
fixed_train_size |
bool
|
If True, train size doesn't increase but moves by |
`True`
|
gap |
int
|
Number of samples to be excluded after the end of each training set and before the test set. |
`0`
|
skip_folds |
(int, list)
|
If |
`None`
|
allow_incomplete_fold |
bool
|
Last fold is allowed to have a smaller number of samples than the
|
`True`
|
levels |
(str, list)
|
level ( |
`None`
|
exog |
pandas Series, pandas DataFrame, dict
|
Exogenous variables. |
`None`
|
lags_grid |
(list, dict)
|
Lists of lags to try, containing int, lists, numpy ndarray, or range
objects. If |
`None`
|
refit |
(bool, int)
|
Whether to re-fit the forecaster in each iteration. If |
`False`
|
n_iter |
int
|
Number of parameter settings that are sampled per lags configuration. n_iter trades off runtime vs quality of the solution. |
`10`
|
random_state |
int
|
Sets a seed to the random sampling for reproducible output. |
`123`
|
return_best |
bool
|
Refit the |
`True`
|
n_jobs |
(int, auto)
|
The number of jobs to run in parallel. If |
`'auto'`
|
verbose |
bool
|
Print number of folds used for cv or backtesting. |
`True`
|
show_progress |
bool
|
Whether to show a progress bar. |
`True`
|
suppress_warnings |
bool
|
If |
False
|
output_file |
str
|
Specifies the filename or full path where the results should be saved.
The results will be saved in a tab-separated values (TSV) format. If
|
`None`
|
Returns:
Name | Type | Description |
---|---|---|
results |
pandas DataFrame
|
Results for each combination of parameters.
|
Source code in skforecast\model_selection_multiseries\model_selection_multiseries.py
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 |
|
bayesian_search_forecaster_multivariate(forecaster, series, search_space, steps, metric, initial_train_size, aggregate_metric=['weighted_average', 'average', 'pooling'], fixed_train_size=True, gap=0, skip_folds=None, allow_incomplete_fold=True, levels=None, exog=None, refit=False, n_trials=10, random_state=123, return_best=True, n_jobs='auto', verbose=True, show_progress=True, suppress_warnings=False, output_file=None, engine='optuna', kwargs_create_study={}, kwargs_study_optimize={})
¶
This function is an alias of bayesian_search_forecaster_multiseries.
Bayesian optimization for a Forecaster object using multi-series backtesting and optuna library. New in version 0.12.0
Parameters:
Name | Type | Description | Default |
---|---|---|---|
forecaster |
(ForecasterAutoregMultiSeries, ForecasterAutoregMultiSeriesCustom, ForecasterAutoregMultiVariate)
|
Forecaster model. |
required |
series |
pandas DataFrame, dict
|
Training time series. |
required |
search_space |
Callable
|
Function with argument |
required |
steps |
int
|
Number of steps to predict. |
required |
metric |
(str, Callable, list)
|
Metric used to quantify the goodness of fit of the model.
|
required |
initial_train_size |
int
|
Number of samples in the initial train split. |
required |
aggregate_metric |
(str, list)
|
Aggregation method/s used to combine the metric/s of all levels (series) when multiple levels are predicted. If list, the first aggregation method is used to select the best parameters.
|
`['weighted_average', 'average', 'pooling']`
|
fixed_train_size |
bool
|
If True, train size doesn't increase but moves by |
`True`
|
gap |
int
|
Number of samples to be excluded after the end of each training set and before the test set. |
`0`
|
skip_folds |
(int, list)
|
If |
`None`
|
allow_incomplete_fold |
bool
|
Last fold is allowed to have a smaller number of samples than the
|
`True`
|
levels |
(str, list)
|
level ( |
`None`
|
exog |
pandas Series, pandas DataFrame, dict
|
Exogenous variables. |
`None`
|
refit |
(bool, int)
|
Whether to re-fit the forecaster in each iteration. If |
`False`
|
n_trials |
int
|
Number of parameter settings that are sampled in each lag configuration. |
`10`
|
random_state |
int
|
Sets a seed to the sampling for reproducible output. |
`123`
|
return_best |
bool
|
Refit the |
`True`
|
n_jobs |
(int, auto)
|
The number of jobs to run in parallel. If |
`'auto'`
|
verbose |
bool
|
Print number of folds used for cv or backtesting. |
`True`
|
show_progress |
bool
|
Whether to show a progress bar. |
`True`
|
suppress_warnings |
bool
|
If |
False
|
output_file |
str
|
Specifies the filename or full path where the results should be saved.
The results will be saved in a tab-separated values (TSV) format. If
|
`None`
|
engine |
str
|
Bayesian optimization runs through the optuna library. |
`'optuna'`
|
kwargs_create_study |
dict
|
Keyword arguments (key, value mappings) to pass to optuna.create_study(). If default, the direction is set to 'minimize' and a TPESampler(seed=123) sampler is used during optimization. |
`{}`
|
kwargs_study_optimize |
dict
|
Other keyword arguments (key, value mappings) to pass to study.optimize(). |
`{}`
|
Returns:
Name | Type | Description |
---|---|---|
results |
pandas DataFrame
|
Results for each combination of parameters.
|
best_trial |
optuna object
|
The best optimization result returned as a FrozenTrial optuna object. |
Source code in skforecast\model_selection_multiseries\model_selection_multiseries.py
2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 |
|