ForecasterAutoregMultiSeriesCustom
¶
ForecasterAutoregMultiSeriesCustom(regressor, fun_predictors, window_size, name_predictors=None, encoding='ordinal_category', transformer_series=None, transformer_exog=None, weight_func=None, series_weights=None, differentiation=None, dropna_from_series=False, fit_kwargs=None, forecaster_id=None)
¶
Bases: ForecasterBase
This class turns any regressor compatible with the scikit-learn API into a recursive autoregressive (multi-step) forecaster for multiple series with a custom function to create predictors.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
regressor |
regressor or pipeline compatible with the scikit-learn API
|
An instance of a regressor or pipeline compatible with the scikit-learn API. |
required |
fun_predictors |
Callable
|
Function that receives a time series as input (numpy ndarray) and returns another numpy ndarray with the predictors. The same function is applied to all series. |
required |
window_size |
int
|
Size of the window needed by |
required |
name_predictors |
list
|
Name of the predictors returned by |
`None`
|
encoding |
str
|
Encoding used to identify the different series.
|
`'ordinal_category'`
|
transformer_series |
(transformer(preprocessor), dict)
|
An instance of a transformer (preprocessor) compatible with the scikit-learn
preprocessing API with methods: fit, transform, fit_transform and
inverse_transform. Transformation is applied to each
|
`None`
|
transformer_exog |
transformer
|
An instance of a transformer (preprocessor) compatible with the scikit-learn
preprocessing API. The transformation is applied to |
`None`
|
weight_func |
(Callable, dict)
|
Function that defines the individual weights for each sample based on the
index. For example, a function that assigns a lower weight to certain dates.
Ignored if
|
`None`
|
series_weights |
dict
|
Weights associated with each series {'series_column_name' : float}. It is only
applied if the
|
`None`
|
differentiation |
int
|
Order of differencing applied to the time series before training the forecaster.
If |
`None`
|
dropna_from_series |
bool
|
Determine whether NaN detected in the training matrices will be dropped.
|
`False`
|
fit_kwargs |
dict
|
Additional arguments to be passed to the |
`None`
|
forecaster_id |
(str, int)
|
Name used as an identifier of the forecaster. |
`None`
|
Attributes:
Name | Type | Description |
---|---|---|
regressor |
regressor or pipeline compatible with the scikit-learn API
|
An instance of a regressor or pipeline compatible with the scikit-learn API. |
fun_predictors |
Callable
|
Function that receives a time series as input (numpy ndarray) and returns another numpy ndarray with the predictors. The same function is applied to all series. |
source_code_fun_predictors |
str
|
Source code of the custom function used to create the predictors. |
name_predictors |
list
|
Name of the predictors returned by |
encoding |
str
|
Encoding used to identify the different series.
|
encoder |
preprocessing
|
Scikit-learn preprocessing encoder used to encode the series. New in version 0.12.0 |
encoding_mapping |
dict
|
Mapping of the encoding used to identify the different series. |
transformer_series |
(transformer(preprocessor), dict)
|
An instance of a transformer (preprocessor) compatible with the scikit-learn
preprocessing API with methods: fit, transform, fit_transform and
inverse_transform. Transformation is applied to each
|
transformer_series_ |
dict
|
Dictionary with the transformer for each series. It is created cloning the
objects in |
transformer_exog |
transformer(preprocessor)
|
An instance of a transformer (preprocessor) compatible with the scikit-learn
preprocessing API. The transformation is applied to |
weight_func |
(Callable, dict)
|
Function that defines the individual weights for each sample based on the
index. For example, a function that assigns a lower weight to certain dates.
Ignored if
|
weight_func_ |
dict
|
Dictionary with the |
source_code_weight_func |
(str, dict)
|
Source code of the custom function(s) used to create weights. |
series_weights |
dict
|
Weights associated with each series {'series_column_name' : float}. It is only
applied if the
|
series_weights_ |
dict
|
Weights associated with each series.It is created as a clone of |
differentiation |
int
|
Order of differencing applied to the time series before training the forecaster. |
differentiator |
TimeSeriesDifferentiator
|
Skforecast object used to differentiate the time series. |
differentiator_ |
dict
|
Dictionary with the |
dropna_from_series |
bool
|
Determine whether NaN detected in the training matrices will be dropped. |
window_size |
int
|
Size of the window needed by |
window_size_diff |
int
|
Size of the window extended by the order of differentiation. When using
differentiation, the |
last_window |
dict
|
Last window of training data for each series. It stores the values
needed to predict the next |
index_type |
type
|
Type of index of the input used in training. |
index_freq |
str
|
Frequency of Index of the input used in training. |
training_range |
dict
|
First and last values of index of the data used during training for each series. |
series_col_names |
list
|
Names of the series (levels) provided by the user during training. |
series_X_train |
list
|
Names of the series (levels) included in the matrix |
X_train_col_names |
list
|
Names of columns of the matrix created internally for training. |
included_exog |
bool
|
If the forecaster has been trained using exogenous variable/s. |
exog_type |
type
|
Type of exogenous variable/s used in training. |
exog_dtypes |
dict
|
Type of each exogenous variable/s used in training. If |
exog_col_names |
list
|
Names of the exogenous variables used during training. |
fit_kwargs |
dict
|
Additional arguments to be passed to the |
in_sample_residuals |
dict
|
Residuals of the model when predicting training data. Only stored up to
1000 values in the form |
out_sample_residuals |
dict
|
Residuals of the model when predicting non-training data. Only stored
up to 1000 values in the form |
fitted |
bool
|
Tag to identify if the regressor has been fitted (trained). |
creation_date |
str
|
Date of creation. |
fit_date |
str
|
Date of last fit. |
skforecast_version |
str
|
Version of skforecast library used to create the forecaster. |
python_version |
str
|
Version of python used to create the forecaster. |
forecaster_id |
(str, int)
|
Name used as an identifier of the forecaster. |
Notes
The weights are used to control the influence that each observation has on the
training of the model. ForecasterAutoregMultiseries
accepts two types of weights.
If the two types of weights are indicated, they are multiplied to create the final
weights. The resulting sample_weight
cannot have negative values.
series_weights
: controls the relative importance of each series. If a series has twice as much weight as the others, the observations of that series influence the training twice as much. The higher the weight of a series relative to the others, the more the model will focus on trying to learn that series.weight_func
: controls the relative importance of each observation according to its index value. For example, a function that assigns a lower weight to certain dates.
Source code in skforecast\ForecasterAutoregMultiSeriesCustom\ForecasterAutoregMultiSeriesCustom.py
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
|
_create_train_X_y_single_series(y, ignore_exog, exog=None)
¶
Create training matrices from univariate time series and exogenous variables. This method does not transform the exog variables.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y |
pandas Series
|
Training time series. |
required |
ignore_exog |
bool
|
If |
required |
exog |
pandas DataFrame
|
Exogenous variable/s included as predictor/s. |
`None`
|
Returns:
Name | Type | Description |
---|---|---|
X_train_predictors |
pandas DataFrame
|
Training values of custom predictors. Shape: (len(y) - self.window_size_diff, ) |
X_train_exog |
pandas DataFrame
|
Training values of exogenous variables. Shape: (len(y) - self.window_size_diff, len(exog.columns)) |
y_train |
pandas Series
|
Values (target) of the time series related to each row of |
Source code in skforecast\ForecasterAutoregMultiSeriesCustom\ForecasterAutoregMultiSeriesCustom.py
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 |
|
_create_train_X_y(series, exog=None, store_last_window=True)
¶
Create training matrices from multiple time series and exogenous
variables. See Notes section for more details depending on the type of
series
and exog
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
series |
pandas DataFrame, dict
|
Training time series. |
required |
exog |
pandas Series, pandas DataFrame, dict
|
Exogenous variable/s included as predictor/s. |
`None`
|
store_last_window |
(bool, list)
|
Whether or not to store the last window of training data.
|
`True`
|
Returns:
Name | Type | Description |
---|---|---|
X_train |
pandas DataFrame
|
Training values (predictors). |
y_train |
pandas Series
|
Values (target) of the time series related to each row of |
series_indexes |
dict
|
Dictionary with the index of each series. |
series_col_names |
list
|
Names of the series (levels) provided by the user during training. |
series_X_train |
list
|
Names of the series (levels) included in the matrix |
exog_col_names |
list
|
Names of the exogenous variables used during training. |
exog_dtypes |
dict
|
Type of each exogenous variable/s used in training. If |
last_window |
dict
|
Last window of training data for each series. It stores the values
needed to predict the next |
Notes
- If
series
is a pandas DataFrame andexog
is a pandas Series or DataFrame, each exog is duplicated for each series. Exog must have the same index asseries
(type, length and frequency). - If
series
is a pandas DataFrame andexog
is a dict of pandas Series or DataFrames. Each key inexog
must be a column inseries
and the values are the exog for each series. Exog must have the same index asseries
(type, length and frequency). - If
series
is a dict of pandas Series,exog
must be a dict of pandas Series or DataFrames. The keys inseries
andexog
must be the same. All series and exog must have a pandas DatetimeIndex with the same frequency.
Source code in skforecast\ForecasterAutoregMultiSeriesCustom\ForecasterAutoregMultiSeriesCustom.py
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 |
|
create_train_X_y(series, exog=None, suppress_warnings=False)
¶
Create training matrices from multiple time series and exogenous
variables. See Notes section for more details depending on the type of
series
and exog
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
series |
pandas DataFrame, dict
|
Training time series. |
required |
exog |
pandas Series, pandas DataFrame, dict
|
Exogenous variable/s included as predictor/s. |
`None`
|
Returns:
Name | Type | Description |
---|---|---|
X_train |
pandas DataFrame
|
Training values (predictors). |
y_train |
pandas Series
|
Values (target) of the time series related to each row of |
suppress_warnings |
bool, default `False`
|
If |
Notes
- If
series
is a pandas DataFrame andexog
is a pandas Series or DataFrame, each exog is duplicated for each series. Exog must have the same index asseries
(type, length and frequency). - If
series
is a pandas DataFrame andexog
is a dict of pandas Series or DataFrames. Each key inexog
must be a column inseries
and the values are the exog for each series. Exog must have the same index asseries
(type, length and frequency). - If
series
is a dict of pandas Series,exog
must be a dict of pandas Series or DataFrames. The keys inseries
andexog
must be the same. All series and exog must have a pandas DatetimeIndex with the same frequency.
Source code in skforecast\ForecasterAutoregMultiSeriesCustom\ForecasterAutoregMultiSeriesCustom.py
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 |
|
create_sample_weights(series_col_names, X_train)
¶
Crate weights for each observation according to the forecaster's attributes
series_weights
and weight_func
. The resulting weights are product of both
types of weights.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
series_col_names |
list
|
Names of the series (levels) used during training. |
required |
X_train |
pandas DataFrame
|
Dataframe created with the |
required |
Returns:
Name | Type | Description |
---|---|---|
weights |
numpy ndarray
|
Weights to use in |
Source code in skforecast\ForecasterAutoregMultiSeriesCustom\ForecasterAutoregMultiSeriesCustom.py
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 |
|
fit(series, exog=None, store_last_window=True, store_in_sample_residuals=True, suppress_warnings=False)
¶
Training Forecaster. See Notes section for more details depending on
the type of series
and exog
.
Additional arguments to be passed to the fit
method of the regressor
can be added with the fit_kwargs
argument when initializing the forecaster.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
series |
pandas DataFrame, dict
|
Training time series. |
required |
exog |
pandas Series, pandas DataFrame, dict
|
Exogenous variable/s included as predictor/s. |
`None`
|
store_last_window |
(bool, list)
|
Whether or not to store the last window of training data.
|
`True`
|
store_in_sample_residuals |
bool
|
If |
`True`
|
suppress_warnings |
bool
|
If |
`False`
|
Returns:
Type | Description |
---|---|
None
|
|
Notes
- If
series
is a pandas DataFrame andexog
is a pandas Series or DataFrame, each exog is duplicated for each series. Exog must have the same index asseries
(type, length and frequency). - If
series
is a pandas DataFrame andexog
is a dict of pandas Series or DataFrames. Each key inexog
must be a column inseries
and the values are the exog for each series. Exog must have the same index asseries
(type, length and frequency). - If
series
is a dict of pandas Series,exog
must be a dict of pandas Series or DataFrames. The keys inseries
andexog
must be the same. All series and exog must have a pandas DatetimeIndex with the same frequency.
Source code in skforecast\ForecasterAutoregMultiSeriesCustom\ForecasterAutoregMultiSeriesCustom.py
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 |
|
_create_predict_inputs(steps, levels=None, last_window=None, exog=None, predict_boot=False, in_sample_residuals=True)
¶
Create inputs needed for the first iteration of the prediction process. Since it is a recursive process, last window is updated at each iteration of the prediction process.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
steps |
int
|
Number of future steps predicted. |
required |
levels |
(str, list)
|
Time series to be predicted. If |
`None`
|
last_window |
pandas DataFrame
|
Series values used to create the predictors (lags) needed in the
first iteration of the prediction (t + 1).
If |
`None`
|
exog |
pandas Series, pandas DataFrame
|
Exogenous variable/s included as predictor/s. |
`None`
|
predict_boot |
bool
|
If |
`False`
|
in_sample_residuals |
bool
|
If |
`True`
|
Returns:
Name | Type | Description |
---|---|---|
last_window_values_dict |
dict
|
Predictors for each series in the form |
exog_values_dict |
dict
|
Exogenous variable/s included as predictor/s for each series in
the form |
levels |
list
|
Names of the series (levels) to be predicted. |
prediction_index |
pandas Index
|
Index of the predictions. |
residuals |
(dict, None)
|
Residuals used to generate bootstrapping predictions for each level
in the form |
Source code in skforecast\ForecasterAutoregMultiSeriesCustom\ForecasterAutoregMultiSeriesCustom.py
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 |
|
_recursive_predict(steps, level, last_window, exog=None)
¶
Predict n steps ahead. It is an iterative process in which, each prediction, is used as a predictor for the next step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
steps |
int
|
Number of future steps predicted. |
required |
level |
str
|
Time series to be predicted. |
required |
last_window |
numpy ndarray
|
Series values used to create the predictors needed in the first iteration of the prediction (t + 1). |
required |
exog |
numpy ndarray
|
Exogenous variable/s included as predictor/s. |
`None`
|
Returns:
Name | Type | Description |
---|---|---|
predictions |
numpy ndarray
|
Predicted values. |
Source code in skforecast\ForecasterAutoregMultiSeriesCustom\ForecasterAutoregMultiSeriesCustom.py
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 |
|
create_predict_X(steps, levels=None, last_window=None, exog=None, suppress_warnings=False)
¶
Create the predictors needed to predict steps
ahead. As it is a recursive
process, the predictors are created at each iteration of the prediction
process.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
steps |
int
|
Number of future steps predicted. |
required |
levels |
(str, list)
|
Time series to be predicted. If |
`None`
|
last_window |
pandas DataFrame
|
Series values used to create the predictors (lags) needed in the
first iteration of the prediction (t + 1).
If |
`None`
|
exog |
pandas Series, pandas DataFrame
|
Exogenous variable/s included as predictor/s. |
`None`
|
suppress_warnings |
bool
|
If |
`False`
|
Returns:
Name | Type | Description |
---|---|---|
X_predict_dict |
dict
|
Dict in the form |
Source code in skforecast\ForecasterAutoregMultiSeriesCustom\ForecasterAutoregMultiSeriesCustom.py
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 |
|
predict(steps, levels=None, last_window=None, exog=None, suppress_warnings=False)
¶
Predict n steps ahead. It is an recursive process in which, each prediction, is used as a predictor for the next step. Only levels whose last window ends at the same datetime index can be predicted together.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
steps |
int
|
Number of future steps predicted. |
required |
levels |
(str, list)
|
Time series to be predicted. If |
`None`
|
last_window |
pandas DataFrame
|
Series values used to create the predictors needed in the
first iteration of the prediction (t + 1).
If |
`None`
|
exog |
pandas Series, pandas DataFrame, dict
|
Exogenous variable/s included as predictor/s. |
`None`
|
suppress_warnings |
bool
|
If |
`False`
|
Returns:
Name | Type | Description |
---|---|---|
predictions |
pandas DataFrame
|
Predicted values, one column for each level. |
Source code in skforecast\ForecasterAutoregMultiSeriesCustom\ForecasterAutoregMultiSeriesCustom.py
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 |
|
predict_bootstrapping(steps, levels=None, last_window=None, exog=None, n_boot=500, random_state=123, in_sample_residuals=True, suppress_warnings=False)
¶
Generate multiple forecasting predictions using a bootstrapping process. By sampling from a collection of past observed errors (the residuals), each iteration of bootstrapping generates a different set of predictions. Only levels whose last window ends at the same datetime index can be predicted together. See the Notes section for more information.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
steps |
int
|
Number of future steps predicted. |
required |
levels |
(str, list)
|
Time series to be predicted. If |
`None`
|
last_window |
pandas DataFrame
|
Series values used to create the predictors needed in the
first iteration of the prediction (t + 1).
If |
`None`
|
exog |
pandas Series, pandas DataFrame, dict
|
Exogenous variable/s included as predictor/s. |
`None`
|
n_boot |
int
|
Number of bootstrapping iterations used to estimate predictions. |
`500`
|
random_state |
int
|
Sets a seed to the random generator, so that boot predictions are always deterministic. |
`123`
|
in_sample_residuals |
bool
|
If |
`True`
|
suppress_warnings |
bool
|
If |
`False`
|
Returns:
Name | Type | Description |
---|---|---|
boot_predictions |
dict
|
Predictions generated by bootstrapping for each level. |
Notes
More information about prediction intervals in forecasting: https://otexts.com/fpp3/prediction-intervals.html#prediction-intervals-from-bootstrapped-residuals Forecasting: Principles and Practice (3nd ed) Rob J Hyndman and George Athanasopoulos.
Source code in skforecast\ForecasterAutoregMultiSeriesCustom\ForecasterAutoregMultiSeriesCustom.py
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 |
|
predict_interval(steps, levels=None, last_window=None, exog=None, interval=[5, 95], n_boot=500, random_state=123, in_sample_residuals=True, suppress_warnings=False)
¶
Iterative process in which, each prediction, is used as a predictor for the next step and bootstrapping is used to estimate prediction intervals. Both predictions and intervals are returned.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
steps |
int
|
Number of future steps predicted. |
required |
levels |
(str, list)
|
Time series to be predicted. If |
`None`
|
last_window |
pandas DataFrame
|
Series values used to create the predictors needed in the
first iteration of the prediction (t + 1).
If |
`None`
|
exog |
pandas Series, pandas DataFrame, dict
|
Exogenous variable/s included as predictor/s. |
`None`
|
interval |
list
|
Confidence of the prediction interval estimated. Sequence of
percentiles to compute, which must be between 0 and 100 inclusive.
For example, interval of 95% should be as |
`[5, 95]`
|
n_boot |
int
|
Number of bootstrapping iterations used to estimate prediction intervals. |
`500`
|
random_state |
int
|
Sets a seed to the random generator, so that boot predictions are always deterministic. |
`123`
|
in_sample_residuals |
bool
|
If |
`True`
|
suppress_warnings |
bool
|
If |
`False`
|
Returns:
Name | Type | Description |
---|---|---|
predictions |
pandas DataFrame
|
Values predicted by the forecaster and their estimated interval.
|
Notes
More information about prediction intervals in forecasting: https://otexts.com/fpp2/prediction-intervals.html Forecasting: Principles and Practice (2nd ed) Rob J Hyndman and George Athanasopoulos.
Source code in skforecast\ForecasterAutoregMultiSeriesCustom\ForecasterAutoregMultiSeriesCustom.py
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 |
|
predict_quantiles(steps, levels=None, last_window=None, exog=None, quantiles=[0.05, 0.5, 0.95], n_boot=500, random_state=123, in_sample_residuals=True, suppress_warnings=False)
¶
Calculate the specified quantiles for each step. After generating multiple forecasting predictions through a bootstrapping process, each quantile is calculated for each step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
steps |
int
|
Number of future steps predicted. |
required |
levels |
(str, list)
|
Time series to be predicted. If |
`None`
|
last_window |
pandas DataFrame
|
Series values used to create the predictors needed in the
first iteration of the prediction (t + 1).
If |
`None`
|
exog |
pandas Series, pandas DataFrame, dict
|
Exogenous variable/s included as predictor/s. |
`None`
|
quantiles |
list
|
Sequence of quantiles to compute, which must be between 0 and 1
inclusive. For example, quantiles of 0.05, 0.5 and 0.95 should be as
|
`[0.05, 0.5, 0.95]`
|
n_boot |
int
|
Number of bootstrapping iterations used to estimate quantiles. |
`500`
|
random_state |
int
|
Sets a seed to the random generator, so that boot quantiles are always deterministic. |
`123`
|
in_sample_residuals |
bool
|
If |
`True`
|
suppress_warnings |
bool
|
If |
`False`
|
Returns:
Name | Type | Description |
---|---|---|
predictions |
pandas DataFrame
|
Quantiles predicted by the forecaster. |
Notes
More information about prediction intervals in forecasting: https://otexts.com/fpp2/prediction-intervals.html Forecasting: Principles and Practice (2nd ed) Rob J Hyndman and George Athanasopoulos.
Source code in skforecast\ForecasterAutoregMultiSeriesCustom\ForecasterAutoregMultiSeriesCustom.py
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 |
|
predict_dist(steps, distribution, levels=None, last_window=None, exog=None, n_boot=500, random_state=123, in_sample_residuals=True, suppress_warnings=False)
¶
Fit a given probability distribution for each step. After generating multiple forecasting predictions through a bootstrapping process, each step is fitted to the given distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
steps |
int
|
Number of future steps predicted. |
required |
distribution |
Object
|
A distribution object from scipy.stats. For example scipy.stats.norm. |
required |
levels |
(str, list)
|
Time series to be predicted. If |
`None`
|
last_window |
pandas DataFrame
|
Series values used to create the predictors needed in the
first iteration of the prediction (t + 1).
If |
`None`
|
exog |
pandas Series, pandas DataFrame, dict
|
Exogenous variable/s included as predictor/s. |
`None`
|
n_boot |
int
|
Number of bootstrapping iterations used to estimate predictions. |
`500`
|
random_state |
int
|
Sets a seed to the random generator, so that boot predictions are always deterministic. |
`123`
|
in_sample_residuals |
bool
|
If |
`True`
|
suppress_warnings |
bool
|
If |
`False`
|
Returns:
Name | Type | Description |
---|---|---|
predictions |
pandas DataFrame
|
Distribution parameters estimated for each step and level. |
Source code in skforecast\ForecasterAutoregMultiSeriesCustom\ForecasterAutoregMultiSeriesCustom.py
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 |
|
set_params(params)
¶
Set new values to the parameters of the scikit learn model stored in the forecaster.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
params |
dict
|
Parameters values. |
required |
Returns:
Type | Description |
---|---|
None
|
|
Source code in skforecast\ForecasterAutoregMultiSeriesCustom\ForecasterAutoregMultiSeriesCustom.py
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 |
|
set_fit_kwargs(fit_kwargs)
¶
Set new values for the additional keyword arguments passed to the fit
method of the regressor.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
fit_kwargs |
dict
|
Dict of the form {"argument": new_value}. |
required |
Returns:
Type | Description |
---|---|
None
|
|
Source code in skforecast\ForecasterAutoregMultiSeriesCustom\ForecasterAutoregMultiSeriesCustom.py
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 |
|
set_out_sample_residuals(residuals, append=True, transform=True, random_state=123)
¶
Set new values to the attribute out_sample_residuals
. Out of sample
residuals are meant to be calculated using observations that did not
participate in the training process.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
residuals |
dict
|
Dictionary of numpy ndarrays with the residuals of each level in the
form {level: residuals}. If len(residuals) > 1000, only a random
sample of 1000 values are stored. Keys must be the same as |
required |
append |
bool
|
If |
`True`
|
transform |
bool
|
If |
`True`
|
random_state |
int
|
Sets a seed to the random sampling for reproducible output. |
`123`
|
Returns:
Type | Description |
---|---|
None
|
|
Source code in skforecast\ForecasterAutoregMultiSeriesCustom\ForecasterAutoregMultiSeriesCustom.py
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 |
|
get_feature_importances(sort_importance=True)
¶
Return feature importances of the regressor stored in the
forecaster. Only valid when regressor stores internally the feature
importances in the attribute feature_importances_
or coef_
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sort_importance |
bool
|
If |
True
|
Returns:
Name | Type | Description |
---|---|---|
feature_importances |
pandas DataFrame
|
Feature importances associated with each predictor. |
Source code in skforecast\ForecasterAutoregMultiSeriesCustom\ForecasterAutoregMultiSeriesCustom.py
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 |
|