Skip to content

Metrics

skforecast.metrics.mean_absolute_scaled_error

mean_absolute_scaled_error(y_true, y_pred, y_train)

Mean Absolute Scaled Error (MASE)

MASE is a scale-independent error metric that measures the accuracy of a forecast. It is the mean absolute error of the forecast divided by the mean absolute error of a naive forecast in the training set. The naive forecast is the one obtained by shifting the time series by one period. If y_train is a list of numpy arrays or pandas Series, it is considered that each element is the true value of the target variable in the training set for each time series. In this case, the naive forecast is calculated for each time series separately.

Parameters:

Name Type Description Default
y_true pandas Series, numpy ndarray

True values of the target variable.

required
y_pred pandas Series, numpy ndarray

Predicted values of the target variable.

required
y_train list, pandas Series, numpy ndarray

True values of the target variable in the training set. If list, it is consider that each element is the true value of the target variable in the training set for each time series.

required

Returns:

Name Type Description
mase float

MASE value.

Source code in skforecast/metrics/metrics.py
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
def mean_absolute_scaled_error(
    y_true: np.ndarray | pd.Series,
    y_pred: np.ndarray | pd.Series,
    y_train: list[float] | np.ndarray | pd.Series,
) -> float:
    """
    Mean Absolute Scaled Error (MASE)

    MASE is a scale-independent error metric that measures the accuracy of
    a forecast. It is the mean absolute error of the forecast divided by the
    mean absolute error of a naive forecast in the training set. The naive
    forecast is the one obtained by shifting the time series by one period.
    If y_train is a list of numpy arrays or pandas Series, it is considered
    that each element is the true value of the target variable in the training
    set for each time series. In this case, the naive forecast is calculated
    for each time series separately.

    Parameters
    ----------
    y_true : pandas Series, numpy ndarray
        True values of the target variable.
    y_pred : pandas Series, numpy ndarray
        Predicted values of the target variable.
    y_train : list, pandas Series, numpy ndarray
        True values of the target variable in the training set. If `list`, it
        is consider that each element is the true value of the target variable
        in the training set for each time series.

    Returns
    -------
    mase : float
        MASE value.

    """

    # NOTE: When using this metric in validation, `y_train` doesn't include
    # the first window_size observations used to create the predictors and/or
    # rolling features.

    if not isinstance(y_true, (pd.Series, np.ndarray)):
        raise TypeError("`y_true` must be a pandas Series or numpy ndarray.")
    if not isinstance(y_pred, (pd.Series, np.ndarray)):
        raise TypeError("`y_pred` must be a pandas Series or numpy ndarray.")
    if not isinstance(y_train, (list, pd.Series, np.ndarray)):
        raise TypeError("`y_train` must be a list, pandas Series or numpy ndarray.")
    if isinstance(y_train, list):
        for x in y_train:
            if not isinstance(x, (pd.Series, np.ndarray)):
                raise TypeError(
                    "When `y_train` is a list, each element must be a pandas Series "
                    "or numpy ndarray."
                )
    if len(y_true) != len(y_pred):
        raise ValueError("`y_true` and `y_pred` must have the same length.")
    if len(y_true) == 0 or len(y_pred) == 0:
        raise ValueError("`y_true` and `y_pred` must have at least one element.")

    if isinstance(y_train, list):
        naive_forecast = np.concatenate([np.diff(x) for x in y_train])
    else:
        naive_forecast = np.diff(y_train)

    mase = np.mean(np.abs(y_true - y_pred)) / np.nanmean(np.abs(naive_forecast))

    return mase

skforecast.metrics.root_mean_squared_scaled_error

root_mean_squared_scaled_error(y_true, y_pred, y_train)

Root Mean Squared Scaled Error (RMSSE)

RMSSE is a scale-independent error metric that measures the accuracy of a forecast. It is the root mean squared error of the forecast divided by the root mean squared error of a naive forecast in the training set. The naive forecast is the one obtained by shifting the time series by one period. If y_train is a list of numpy arrays or pandas Series, it is considered that each element is the true value of the target variable in the training set for each time series. In this case, the naive forecast is calculated for each time series separately.

Parameters:

Name Type Description Default
y_true pandas Series, numpy ndarray

True values of the target variable.

required
y_pred pandas Series, numpy ndarray

Predicted values of the target variable.

required
y_train list, pandas Series, numpy ndarray

True values of the target variable in the training set. If list, it is consider that each element is the true value of the target variable in the training set for each time series.

required

Returns:

Name Type Description
rmsse float

RMSSE value.

Source code in skforecast/metrics/metrics.py
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
def root_mean_squared_scaled_error(
    y_true: np.ndarray | pd.Series,
    y_pred: np.ndarray | pd.Series,
    y_train: list[float] | np.ndarray | pd.Series,
) -> float:
    """
    Root Mean Squared Scaled Error (RMSSE)

    RMSSE is a scale-independent error metric that measures the accuracy of
    a forecast. It is the root mean squared error of the forecast divided by
    the root mean squared error of a naive forecast in the training set. The
    naive forecast is the one obtained by shifting the time series by one period.
    If y_train is a list of numpy arrays or pandas Series, it is considered
    that each element is the true value of the target variable in the training
    set for each time series. In this case, the naive forecast is calculated
    for each time series separately.

    Parameters
    ----------
    y_true : pandas Series, numpy ndarray
        True values of the target variable.
    y_pred : pandas Series, numpy ndarray
        Predicted values of the target variable.
    y_train : list, pandas Series, numpy ndarray
        True values of the target variable in the training set. If list, it
        is consider that each element is the true value of the target variable
        in the training set for each time series.

    Returns
    -------
    rmsse : float
        RMSSE value.

    """

    # NOTE: When using this metric in validation, `y_train` doesn't include
    # the first window_size observations used to create the predictors and/or
    # rolling features.

    if not isinstance(y_true, (pd.Series, np.ndarray)):
        raise TypeError("`y_true` must be a pandas Series or numpy ndarray.")
    if not isinstance(y_pred, (pd.Series, np.ndarray)):
        raise TypeError("`y_pred` must be a pandas Series or numpy ndarray.")
    if not isinstance(y_train, (list, pd.Series, np.ndarray)):
        raise TypeError("`y_train` must be a list, pandas Series or numpy ndarray.")
    if isinstance(y_train, list):
        for x in y_train:
            if not isinstance(x, (pd.Series, np.ndarray)):
                raise TypeError(
                    ("When `y_train` is a list, each element must be a pandas Series "
                     "or numpy ndarray.")
                )
    if len(y_true) != len(y_pred):
        raise ValueError("`y_true` and `y_pred` must have the same length.")
    if len(y_true) == 0 or len(y_pred) == 0:
        raise ValueError("`y_true` and `y_pred` must have at least one element.")

    if isinstance(y_train, list):
        naive_forecast = np.concatenate([np.diff(x) for x in y_train])
    else:
        naive_forecast = np.diff(y_train)

    rmsse = np.sqrt(np.mean((y_true - y_pred) ** 2)) / np.sqrt(np.nanmean(naive_forecast ** 2))

    return rmsse

skforecast.metrics.symmetric_mean_absolute_percentage_error

symmetric_mean_absolute_percentage_error(y_true, y_pred)

Compute the Symmetric Mean Absolute Percentage Error (SMAPE).

SMAPE is a relative error metric used to measure the accuracy of forecasts. Unlike MAPE, it is symmetric and prevents division by zero by averaging the absolute values of actual and predicted values.

The result is expressed as a percentage and ranges from 0% (perfect prediction) to 200% (maximum error).

Parameters:

Name Type Description Default
y_true numpy ndarray, pandas Series

True values of the target variable.

required
y_pred numpy ndarray, pandas Series

Predicted values of the target variable.

required

Returns:

Name Type Description
smape float

SMAPE value as a percentage.

Notes

When both y_true and y_pred are zero, the corresponding term is treated as zero to avoid division by zero.

Examples:

import numpy as np
from skforecast.metrics import symmetric_mean_absolute_percentage_error

y_true = np.array([100, 200, 0])
y_pred = np.array([110, 180, 10])
result = symmetric_mean_absolute_percentage_error(y_true, y_pred)
print(f"SMAPE: {result:.2f}%")

# SMAPE: 73.35%
Source code in skforecast/metrics/metrics.py
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
def symmetric_mean_absolute_percentage_error(
    y_true: np.ndarray | pd.Series,
    y_pred: np.ndarray | pd.Series
) -> float:
    """
    Compute the Symmetric Mean Absolute Percentage Error (SMAPE).

    SMAPE is a relative error metric used to measure the accuracy 
    of forecasts. Unlike MAPE, it is symmetric and prevents division 
    by zero by averaging the absolute values of actual and predicted values.

    The result is expressed as a percentage and ranges from 0% 
    (perfect prediction) to 200% (maximum error).

    Parameters
    ----------
    y_true : numpy ndarray, pandas Series
        True values of the target variable.
    y_pred : numpy ndarray, pandas Series
        Predicted values of the target variable.

    Returns
    -------
    smape : float
        SMAPE value as a percentage.

    Notes
    -----
    When both `y_true` and `y_pred` are zero, the corresponding term is treated as zero
    to avoid division by zero.

    Examples
    --------
    ```python
    import numpy as np
    from skforecast.metrics import symmetric_mean_absolute_percentage_error

    y_true = np.array([100, 200, 0])
    y_pred = np.array([110, 180, 10])
    result = symmetric_mean_absolute_percentage_error(y_true, y_pred)
    print(f"SMAPE: {result:.2f}%")

    # SMAPE: 73.35%
    ```

    """

    if not isinstance(y_true, (pd.Series, np.ndarray)):
        raise TypeError("`y_true` must be a pandas Series or numpy ndarray.")
    if not isinstance(y_pred, (pd.Series, np.ndarray)):
        raise TypeError("`y_pred` must be a pandas Series or numpy ndarray.")
    if len(y_true) != len(y_pred):
        raise ValueError("`y_true` and `y_pred` must have the same length.")
    if len(y_true) == 0 or len(y_pred) == 0:
        raise ValueError("`y_true` and `y_pred` must have at least one element.")

    numerator = np.abs(y_true - y_pred)
    denominator = (np.abs(y_true) + np.abs(y_pred)) / 2

    # NOTE: Avoid division by zero
    mask = denominator != 0
    smape_values = np.zeros_like(denominator)
    smape_values[mask] = numerator[mask] / denominator[mask]

    smape = 100 * np.mean(smape_values)

    return smape

skforecast.metrics.add_y_train_argument

add_y_train_argument(func)

Add y_train argument to a function if it is not already present.

Parameters:

Name Type Description Default
func callable

Function to which the argument is added.

required

Returns:

Name Type Description
wrapper callable

Function with y_train argument added.

Source code in skforecast/metrics/metrics.py
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
def add_y_train_argument(func: Callable) -> Callable:
    """
    Add `y_train` argument to a function if it is not already present.

    Parameters
    ----------
    func : callable
        Function to which the argument is added.

    Returns
    -------
    wrapper : callable
        Function with `y_train` argument added.

    """

    sig = inspect.signature(func)

    if "y_train" in sig.parameters:
        return func

    new_params = list(sig.parameters.values()) + [
        inspect.Parameter("y_train", inspect.Parameter.KEYWORD_ONLY, default=None)
    ]
    new_sig = sig.replace(parameters=new_params)

    @wraps(func)
    def wrapper(*args, y_train=None, **kwargs):
        return func(*args, **kwargs)

    wrapper.__signature__ = new_sig

    return wrapper