Skip to content

ForecasterAutoregMultiSeriesCustom

ForecasterAutoregMultiSeriesCustom(regressor, fun_predictors, window_size, name_predictors=None, transformer_series=None, transformer_exog=None, weight_func=None, series_weights=None, fit_kwargs=None, forecaster_id=None)

Bases: ForecasterBase

This class turns any regressor compatible with the scikit-learn API into a recursive autoregressive (multi-step) forecaster for multiple series with a custom function to create predictors. New in version 0.7.0

Parameters:

Name Type Description Default
regressor regressor or pipeline compatible with the scikit-learn API

An instance of a regressor or pipeline compatible with the scikit-learn API.

required
fun_predictors Callable

Function that receives a time series as input (numpy ndarray) and returns another numpy ndarray with the predictors. The same function is applied to all series.

required
window_size int

Size of the window needed by fun_predictors to create the predictors.

required
name_predictors list

Name of the predictors returned by fun_predictors. If None, predictors are named using the prefix 'custom_predictor_' where i is the index of the position the predictor has in the returned array of fun_predictors.

`None`
transformer_series transformer(preprocessor), dict

An instance of a transformer (preprocessor) compatible with the scikit-learn preprocessing API with methods: fit, transform, fit_transform and inverse_transform. Transformation is applied to each series before training the forecaster. ColumnTransformers are not allowed since they do not have inverse_transform method.

  • If single transformer: it is cloned and applied to all series.
  • If dict of transformers: a different transformer can be used for each series.
`None`
transformer_exog transformer

An instance of a transformer (preprocessor) compatible with the scikit-learn preprocessing API. The transformation is applied to exog before training the forecaster. inverse_transform is not available when using ColumnTransformers.

`None`
weight_func Callable, dict

Function that defines the individual weights for each sample based on the index. For example, a function that assigns a lower weight to certain dates. Ignored if regressor does not have the argument sample_weight in its fit method. See Notes section for more details on the use of the weights.

  • If single function: it is applied to all series.
  • If dict {'series_column_name' : Callable}: a different function can be used for each series, a weight of 1 is given to all series not present in weight_func.
`None`
series_weights dict

Weights associated with each series {'series_column_name' : float}. It is only applied if the regressor used accepts sample_weight in its fit method. See Notes section for more details on the use of the weights.

  • If a dict is provided, a weight of 1 is given to all series not present in series_weights.
  • If None, all levels have the same weight.
`None`
fit_kwargs dict

Additional arguments to be passed to the fit method of the regressor. New in version 0.8.0

`None`
forecaster_id str, int

Name used as an identifier of the forecaster. New in version 0.7.0

`None`

Attributes:

Name Type Description
regressor regressor or pipeline compatible with the scikit-learn API

An instance of a regressor or pipeline compatible with the scikit-learn API.

fun_predictors Callable

Function that receives a time series as input (numpy ndarray) and returns another numpy ndarray with the predictors. The same function is applied to all series.

source_code_fun_predictors str

Source code of the custom function used to create the predictors.

window_size int

Size of the window needed by fun_predictors to create the predictors.

name_predictors list

Name of the predictors returned by fun_predictors. If None, predictors are named using the prefix 'custom_predictor_' where i is the index of the position the predictor has in the returned array of fun_predictors.

transformer_series transformer(preprocessor), dict

An instance of a transformer (preprocessor) compatible with the scikit-learn preprocessing API with methods: fit, transform, fit_transform and inverse_transform. Transformation is applied to each series before training the forecaster. ColumnTransformers are not allowed since they do not have inverse_transform method.

  • If single transformer: it is cloned and applied to all series.
  • If dict of transformers: a different transformer can be used for each series.
transformer_series_ dict

Dictionary with the transformer for each series. It is created cloning the objects in transformer_series and is used internally to avoid overwriting.

transformer_exog transformer(preprocessor)

An instance of a transformer (preprocessor) compatible with the scikit-learn preprocessing API. The transformation is applied to exog before training the forecaster. inverse_transform is not available when using ColumnTransformers.

weight_func Callable, dict

Function that defines the individual weights for each sample based on the index. For example, a function that assigns a lower weight to certain dates. Ignored if regressor does not have the argument sample_weight in its fit method. See Notes section for more details on the use of the weights.

  • If single function: it is applied to all series.
  • If dict {'series_column_name' : Callable}: a different function can be used for each series, a weight of 1 is given to all series not present in weight_func.
weight_func_ dict

Dictionary with the weight_func for each series. It is created cloning the objects in weight_func and is used internally to avoid overwriting.

source_code_weight_func str, dict

Source code of the custom function(s) used to create weights.

series_weights dict

Weights associated with each series {'series_column_name' : float}. It is only applied if the regressor used accepts sample_weight in its fit method. See Notes section for more details on the use of the weights.

  • If a dict is provided, a weight of 1 is given to all series not present in series_weights.
  • If None, all levels have the same weight.
series_weights_ dict

Weights associated with each series.It is created as a clone of series_weights and is used internally to avoid overwriting.

window_size int

Size of the window needed by fun_predictors to create the predictors.

last_window pandas Series

Last window seen by the forecaster during training. It stores the values needed to predict the next step immediately after the training data.

index_type type

Type of index of the input used in training.

index_freq str

Frequency of Index of the input used in training.

index_values pandas Index

Values of Index of the input used in training.

training_range pandas Index

First and last values of index of the data used during training.

included_exog bool

If the forecaster has been trained using exogenous variable/s.

exog_type type

Type of exogenous variable/s used in training.

exog_dtypes dict

Type of each exogenous variable/s used in training. If transformer_exog is used, the dtypes are calculated after the transformation.

exog_col_names list

Names of columns of exog if exog used in training was a pandas DataFrame.

series_col_names list

Names of the series (levels) used during training.

X_train_col_names list

Names of columns of the matrix created internally for training.

fit_kwargs dict

Additional arguments to be passed to the fit method of the regressor. New in version 0.8.0

in_sample_residuals dict

Residuals of the model when predicting training data. Only stored up to 1000 values in the form {level: residuals}. If transformer_series is not None, residuals are stored in the transformed scale.

out_sample_residuals dict

Residuals of the model when predicting non-training data. Only stored up to 1000 values in the form {level: residuals}. If transformer_series is not None, residuals are assumed to be in the transformed scale. Use set_out_sample_residuals() method to set values.

fitted bool

Tag to identify if the regressor has been fitted (trained).

creation_date str

Date of creation.

fit_date str

Date of last fit.

skforcast_version str

Version of skforecast library used to create the forecaster.

python_version str

Version of python used to create the forecaster.

forecaster_id str, int

Name used as an identifier of the forecaster.

Notes

The weights are used to control the influence that each observation has on the training of the model. ForecasterAutoregMultiseries accepts two types of weights. If the two types of weights are indicated, they are multiplied to create the final weights. The resulting sample_weight cannot have negative values.

  • series_weights : controls the relative importance of each series. If a series has twice as much weight as the others, the observations of that series influence the training twice as much. The higher the weight of a series relative to the others, the more the model will focus on trying to learn that series.
  • weight_func : controls the relative importance of each observation according to its index value. For example, a function that assigns a lower weight to certain dates.
Source code in skforecast\ForecasterAutoregMultiSeriesCustom\ForecasterAutoregMultiSeriesCustom.py
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
def __init__(
    self,
    regressor: object,
    fun_predictors: Callable, 
    window_size: int,
    name_predictors: Optional[list]=None,
    transformer_series: Optional[Union[object, dict]]=None,
    transformer_exog: Optional[object]=None,
    weight_func: Optional[Union[Callable, dict]]=None,
    series_weights: Optional[dict]=None,
    fit_kwargs: Optional[dict]=None,
    forecaster_id: Optional[Union[str, int]]=None
) -> None:

    self.regressor                  = regressor
    self.fun_predictors             = fun_predictors
    self.source_code_fun_predictors = None
    self.window_size                = window_size
    self.name_predictors            = name_predictors
    self.transformer_series         = transformer_series
    self.transformer_series_        = None
    self.transformer_exog           = transformer_exog
    self.weight_func                = weight_func
    self.weight_func_               = None
    self.source_code_weight_func    = None
    self.series_weights             = series_weights
    self.series_weights_            = None
    self.index_type                 = None
    self.index_freq                 = None
    self.index_values               = None
    self.training_range             = None
    self.last_window                = None
    self.included_exog              = False
    self.exog_type                  = None
    self.exog_dtypes                = None
    self.exog_col_names             = None
    self.series_col_names           = None
    self.X_train_col_names          = None
    self.in_sample_residuals        = None
    self.out_sample_residuals       = None
    self.fitted                     = False
    self.creation_date              = pd.Timestamp.today().strftime('%Y-%m-%d %H:%M:%S')
    self.fit_date                   = None
    self.skforcast_version          = skforecast.__version__
    self.python_version             = sys.version.split(" ")[0]
    self.forecaster_id              = forecaster_id

    if not isinstance(window_size, int):
        raise TypeError(
            f"Argument `window_size` must be an int. Got {type(window_size)}."
        )

    if not isinstance(fun_predictors, Callable):
        raise TypeError(
            f"Argument `fun_predictors` must be a Callable. Got {type(fun_predictors)}."
        )

    self.source_code_fun_predictors = inspect.getsource(fun_predictors)

    self.weight_func, self.source_code_weight_func, self.series_weights = initialize_weights(
        forecaster_name = type(self).__name__, 
        regressor       = regressor, 
        weight_func     = weight_func, 
        series_weights  = series_weights
    )

    self.fit_kwargs = check_select_fit_kwargs(
                          regressor  = regressor,
                          fit_kwargs = fit_kwargs
                      )

create_train_X_y(series, exog=None)

Create training matrices from multiple time series and exogenous variables.

Parameters:

Name Type Description Default
series pandas DataFrame

Training time series.

required
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s. Must have the same number of observations as series and their indexes must be aligned.

`None`

Returns:

Name Type Description
X_train pandas DataFrame

Training values (predictors).

y_train pandas Series

Values (target) of the time series related to each row of X_train. Shape: (len(series) - self.max_lag, )

y_index pandas Index

Index of series.

y_train_index pandas Index

Index of y_train.

Source code in skforecast\ForecasterAutoregMultiSeriesCustom\ForecasterAutoregMultiSeriesCustom.py
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
def create_train_X_y(
    self,
    series: pd.DataFrame,
    exog: Optional[Union[pd.Series, pd.DataFrame]]=None
) -> Tuple[pd.DataFrame, pd.Series, pd.Index, pd.Index]:
    """
    Create training matrices from multiple time series and exogenous
    variables.

    Parameters
    ----------
    series : pandas DataFrame
        Training time series.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s. Must have the same
        number of observations as `series` and their indexes must be aligned.

    Returns
    -------
    X_train : pandas DataFrame
        Training values (predictors).
    y_train : pandas Series
        Values (target) of the time series related to each row of `X_train`.
        Shape: (len(series) - self.max_lag, )
    y_index : pandas Index
        Index of `series`.
    y_train_index: pandas Index
        Index of `y_train`.

    """

    if not isinstance(series, pd.DataFrame):
        raise TypeError(f"`series` must be a pandas DataFrame. Got {type(series)}.")

    if len(series) < self.window_size + 1:
        raise ValueError(
            (f"`series` must have as many values as the windows_size needed by "
             f"{self.fun_predictors.__name__}. For this Forecaster the "
             f"minimum length is {self.window_size + 1}")
        )

    series_col_names = list(series.columns)

    if self.transformer_series is None:
        self.transformer_series_ = {serie: None for serie in series_col_names}
    elif not isinstance(self.transformer_series, dict):
        self.transformer_series_ = {serie: clone(self.transformer_series) 
                                    for serie in series_col_names}
    else:
        self.transformer_series_ = {serie: None for serie in series_col_names}
        # Only elements already present in transformer_series_ are updated
        self.transformer_series_.update(
            (k, v) for k, v in deepcopy(self.transformer_series).items() 
            if k in self.transformer_series_
        )
        series_not_in_transformer_series = set(series.columns) - set(self.transformer_series.keys())
        if series_not_in_transformer_series:
                warnings.warn(
                    (f"{series_not_in_transformer_series} not present in `transformer_series`."
                     f" No transformation is applied to these series."),
                     IgnoredArgumentWarning
                )

    if exog is not None:
        if len(exog) != len(series):
            raise ValueError(
                (f"`exog` must have same number of samples as `series`. "
                 f"length `exog`: ({len(exog)}), length `series`: ({len(series)})")
            )
        check_exog(exog=exog, allow_nan=True)
        if isinstance(exog, pd.Series):
            exog = transform_series(
                       series            = exog,
                       transformer       = self.transformer_exog,
                       fit               = True,
                       inverse_transform = False
                   )
        else:
            exog = transform_dataframe(
                       df                = exog,
                       transformer       = self.transformer_exog,
                       fit               = True,
                       inverse_transform = False
                   )

        check_exog(exog=exog, allow_nan=False)
        check_exog_dtypes(exog)
        self.exog_dtypes = get_exog_dtypes(exog=exog)

        _, exog_index = preprocess_exog(exog=exog, return_values=False)
        if not (exog_index[:len(series.index)] == series.index).all():
            raise ValueError(
                ("Different index for `series` and `exog`. They must be equal "
                 "to ensure the correct alignment of values.")
            )

    X_levels = []
    len_series = []

    for i, serie in enumerate(series.columns):

        y = series[serie]
        y_values = y.to_numpy()

        if np.isnan(y_values).all():
            raise ValueError(f"All values of series '{serie}' are NaN.")

        first_no_nan_idx = np.argmax(~np.isnan(y_values))
        y_values = y_values[first_no_nan_idx:]

        if np.isnan(y_values).any():
            raise ValueError(
                (f"'{serie}' Time series has missing values in between or "
                 f"at the end of the time series. When working with series "
                 f"of different lengths, all series must be complete after "
                 f"the first non-null value.")
            )

        y = transform_series(
                series            = y.iloc[first_no_nan_idx:],
                transformer       = self.transformer_series_[serie],
                fit               = True,
                inverse_transform = False
            )

        y_values = y.to_numpy()

        X_train_values  = []
        y_train_values  = []

        for j in range(len(y) - self.window_size):

            temp_X_index = np.arange(j, self.window_size + j)
            temp_y_index  = self.window_size + j

            X_train_values.append(self.fun_predictors(y=y_values[temp_X_index]))
            y_train_values.append(y_values[temp_y_index])

        X_train_values = np.vstack(X_train_values)
        y_train_values = np.array(y_train_values)

        if np.isnan(X_train_values).any():
            raise ValueError(
                f"`fun_predictors()` is returning `NaN` values for series '{serie}'."
            )

        if i == 0:
            X_train = X_train_values
            y_train = y_train_values
        else:
            X_train = np.concatenate((X_train, X_train_values), axis=0)
            y_train = np.concatenate((y_train, y_train_values), axis=0)

        X_level = [serie]*len(X_train_values)
        X_levels.extend(X_level)
        len_series.append(len(y_train_values))

    if self.name_predictors is None:
        X_train_col_names = [f"custom_predictor_{i}" 
                             for i in range(X_train.shape[1])]
    else:
        if len(self.name_predictors) != X_train.shape[1]:
            raise ValueError(
                ("The length of provided predictors names (`name_predictors`) do "
                 "not match the number of columns created by `fun_predictors()`.")
            )
        X_train_col_names = self.name_predictors.copy()

    # y_values correspond only to the last series of `series`. Since the columns
    # of X_train are the same for all series, the check is the same.
    expected = self.fun_predictors(y_values[:-1])
    observed = X_train[-1, :]

    if expected.shape != observed.shape or not (expected == observed).all():
        raise ValueError(
            (f"The `window_size` argument ({self.window_size}), declared when "
             f"initializing the forecaster, does not correspond to the window "
             f"used by `fun_predictors()`.")
        )

    X_levels = pd.Series(X_levels)
    X_levels = pd.get_dummies(X_levels, dtype=float)

    X_train = pd.DataFrame(
                  data    = X_train,
                  columns = X_train_col_names
              )

    if exog is not None:
        # The first `self.window_size` positions have to be removed from exog
        # since they are not in X_train. Then Exog is cloned as many times 
        # as there are series, taking into account the length of the series.
        exog_to_train = [exog.iloc[-length:, ] for length in len_series]
        exog_to_train = pd.concat(exog_to_train).reset_index(drop=True)
    else:
        exog_to_train = None

    X_train = pd.concat([X_train, exog_to_train, X_levels], axis=1)
    self.X_train_col_names = X_train.columns.to_list()

    y_train = pd.Series(
                  data = y_train,
                  name = 'y'
              )

    _, y_index = preprocess_y(y=series, return_values=False)

    y_index_numpy = y_index.to_numpy()
    y_train_index = pd.Index(
                        np.concatenate(
                            [y_index_numpy[-length:, ] for length in len_series]
                        )
                    )

    return X_train, y_train, y_index, y_train_index

create_sample_weights(series, X_train, y_train_index)

Crate weights for each observation according to the forecaster's attributes series_weights and weight_func. The resulting weights are product of both types of weights.

Parameters:

Name Type Description Default
series pandas DataFrame

Time series used to create X_train with the method create_train_X_y.

required
X_train pandas DataFrame

Dataframe created with the create_train_X_y method, first return.

required
y_train_index pandas Index

Index created with the create_train_X_y method, fourth return.

required

Returns:

Name Type Description
weights numpy ndarray

Weights to use in fit method.

Source code in skforecast\ForecasterAutoregMultiSeriesCustom\ForecasterAutoregMultiSeriesCustom.py
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
def create_sample_weights(
    self,
    series: pd.DataFrame,
    X_train: pd.DataFrame,
    y_train_index: pd.Index,
)-> np.ndarray:
    """
    Crate weights for each observation according to the forecaster's attributes
    `series_weights` and `weight_func`. The resulting weights are product of both
    types of weights.

    Parameters
    ----------
    series : pandas DataFrame
        Time series used to create `X_train` with the method `create_train_X_y`.
    X_train : pandas DataFrame
        Dataframe created with the `create_train_X_y` method, first return.
    y_train_index : pandas Index
        Index created with the `create_train_X_y` method, fourth return.

    Returns
    -------
    weights : numpy ndarray
        Weights to use in `fit` method.

    """

    weights = None
    weights_samples = None
    weights_series = None

    if self.series_weights is not None:
        # Series not present in series_weights have a weight of 1 in all their samples.
        # Keys in series_weights not present in series are ignored.
        series_not_in_series_weights = set(series.columns) - set(self.series_weights.keys())
        if series_not_in_series_weights:
            warnings.warn(
                (f"{series_not_in_series_weights} not present in `series_weights`."
                 f" A weight of 1 is given to all their samples."),
                IgnoredArgumentWarning
            )
        self.series_weights_ = {col: 1. for col in series.columns}
        self.series_weights_.update((k, v) for k, v in self.series_weights.items() 
                                    if k in self.series_weights_)
        weights_series = [np.repeat(self.series_weights_[serie], sum(X_train[serie])) 
                          for serie in series.columns]
        weights_series = np.concatenate(weights_series)

    if self.weight_func is not None:
        if isinstance(self.weight_func, Callable):
            self.weight_func_ = {col: copy(self.weight_func) 
                                 for col in series.columns}
        else:
            # Series not present in weight_func have a weight of 1 in all their samples
            series_not_in_weight_func = set(series.columns) - set(self.weight_func.keys())
            if series_not_in_weight_func:
                warnings.warn(
                    (f"{series_not_in_weight_func} not present in `weight_func`."
                     f" A weight of 1 is given to all their samples."),
                    IgnoredArgumentWarning
                )
            self.weight_func_ = {col: lambda x: np.ones_like(x, dtype=float) 
                                 for col in series.columns}
            self.weight_func_.update((k, v) for k, v in self.weight_func.items() 
                                     if k in self.weight_func_)

        weights_samples = []
        for key in self.weight_func_.keys():
            idx = y_train_index[X_train[X_train[key] == 1.0].index]
            weights_samples.append(self.weight_func_[key](idx))
        weights_samples = np.concatenate(weights_samples)

    if weights_series is not None:
        weights = weights_series
        if weights_samples is not None:
            weights = weights * weights_samples
    else:
        if weights_samples is not None:
            weights = weights_samples

    if weights is not None:
        if np.isnan(weights).any():
            raise ValueError(
                "The resulting `weights` cannot have NaN values."
            )
        if np.any(weights < 0):
            raise ValueError(
                "The resulting `weights` cannot have negative values."
            )
        if np.sum(weights) == 0:
            raise ValueError(
                ("The resulting `weights` cannot be normalized because "
                 "the sum of the weights is zero.")
            )

    return weights

fit(series, exog=None, store_in_sample_residuals=True)

Training Forecaster.

Additional arguments to be passed to the fit method of the regressor can be added with the fit_kwargs argument when initializing the forecaster.

Parameters:

Name Type Description Default
series pandas DataFrame

Training time series.

required
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s. Must have the same number of observations as series and their indexes must be aligned so that series[i] is regressed on exog[i].

`None`
store_in_sample_residuals bool

If True, in-sample residuals will be stored in the forecaster object after fitting.

`True`

Returns:

Type Description
None
Source code in skforecast\ForecasterAutoregMultiSeriesCustom\ForecasterAutoregMultiSeriesCustom.py
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
def fit(
    self,
    series: pd.DataFrame,
    exog: Optional[Union[pd.Series, pd.DataFrame]]=None,
    store_in_sample_residuals: bool=True
) -> None:
    """
    Training Forecaster.

    Additional arguments to be passed to the `fit` method of the regressor 
    can be added with the `fit_kwargs` argument when initializing the forecaster.

    Parameters
    ----------
    series : pandas DataFrame
        Training time series.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s. Must have the same
        number of observations as `series` and their indexes must be aligned so
        that series[i] is regressed on exog[i].
    store_in_sample_residuals : bool, default `True`
        If `True`, in-sample residuals will be stored in the forecaster object
        after fitting.

    Returns
    -------
    None

    """

    # Reset values in case the forecaster has already been fitted.
    self.index_type          = None
    self.index_freq          = None
    self.index_values        = None
    self.last_window         = None
    self.included_exog       = False
    self.exog_type           = None
    self.exog_dtypes         = None
    self.exog_col_names      = None
    self.series_col_names    = None
    self.X_train_col_names   = None
    self.in_sample_residuals = None
    self.fitted              = False
    self.training_range      = None

    self.series_col_names = list(series.columns)

    if exog is not None:
        self.included_exog = True
        self.exog_type = type(exog)
        self.exog_col_names = \
             exog.columns.to_list() if isinstance(exog, pd.DataFrame) else [exog.name]

        if len(set(self.exog_col_names) - set(self.series_col_names)) != len(self.exog_col_names):
            raise ValueError(
                (f"`exog` cannot contain a column named the same as one of the "
                 f"series (column names of series).\n"
                 f"    `series` columns : {self.series_col_names}.\n"
                 f"    `exog`   columns : {self.exog_col_names}.")
            )

    X_train, y_train, y_index, y_train_index = self.create_train_X_y(series=series, exog=exog)
    sample_weight = self.create_sample_weights(
                        series        = series,
                        X_train       = X_train,
                        y_train_index = y_train_index,
                    )

    if sample_weight is not None:
        self.regressor.fit(
            X             = X_train,
            y             = y_train,
            sample_weight = sample_weight,
            **self.fit_kwargs
        )
    else:
        self.regressor.fit(X=X_train, y=y_train, **self.fit_kwargs)

    self.fitted = True
    self.fit_date = pd.Timestamp.today().strftime('%Y-%m-%d %H:%M:%S')
    self.training_range = y_index[[0, -1]]
    self.index_type = type(y_index)
    if isinstance(y_index, pd.DatetimeIndex):
        self.index_freq = y_index.freqstr
    else: 
        self.index_freq = y_index.step
    self.index_values = y_index

    in_sample_residuals = {}

    # This is done to save time during fit in functions such as backtesting()
    if store_in_sample_residuals:

        residuals = y_train - self.regressor.predict(X_train)

        for serie in series.columns:
            in_sample_residuals[serie] = residuals.loc[X_train[serie] == 1.].to_numpy()
            if len(in_sample_residuals[serie]) > 1000:
                # Only up to 1000 residuals are stored
                rng = np.random.default_rng(seed=123)
                in_sample_residuals[serie] = rng.choice(
                                                 a       = in_sample_residuals[serie], 
                                                 size    = 1000, 
                                                 replace = False
                                             )
    else:
        for serie in series.columns:
            in_sample_residuals[serie] = np.array([None])

    self.in_sample_residuals = in_sample_residuals

    # The last time window of training data is stored so that predictors in
    # the first iteration of `predict()` can be calculated.
    self.last_window = series.iloc[-self.window_size:].copy()

_recursive_predict(steps, level, last_window, exog=None)

Predict n steps ahead. It is an iterative process in which, each prediction, is used as a predictor for the next step.

Parameters:

Name Type Description Default
steps int

Number of future steps predicted.

required
level str

Time series to be predicted.

required
last_window numpy ndarray

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1).

required
exog numpy ndarray

Exogenous variable/s included as predictor/s.

`None`

Returns:

Name Type Description
predictions numpy ndarray

Predicted values.

Source code in skforecast\ForecasterAutoregMultiSeriesCustom\ForecasterAutoregMultiSeriesCustom.py
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
def _recursive_predict(
    self,
    steps: int,
    level: str,
    last_window: np.ndarray,
    exog: Optional[np.ndarray]=None
) -> np.ndarray:
    """
    Predict n steps ahead. It is an iterative process in which, each prediction,
    is used as a predictor for the next step.

    Parameters
    ----------
    steps : int
        Number of future steps predicted.
    level : str
        Time series to be predicted.
    last_window : numpy ndarray
        Series values used to create the predictors (lags) needed in the 
        first iteration of the prediction (t + 1).
    exog : numpy ndarray, default `None`
        Exogenous variable/s included as predictor/s.

    Returns
    -------
    predictions : numpy ndarray
        Predicted values.

    """

    predictions = np.full(shape=steps, fill_value=np.nan)

    for i in range(steps):
        X = self.fun_predictors(y=last_window).reshape(1, -1)
        if exog is not None:
            X = np.column_stack((X, exog[i, ].reshape(1, -1)))

        levels_dummies = np.zeros(shape=(1, len(self.series_col_names)), dtype=float)
        levels_dummies[0][self.series_col_names.index(level)] = 1.

        X = np.column_stack((X, levels_dummies.reshape(1, -1)))

        with warnings.catch_warnings():
            # Suppress scikit-learn warning: "X does not have valid feature names,
            # but NoOpTransformer was fitted with feature names".
            warnings.simplefilter("ignore")
            prediction = self.regressor.predict(X)
            predictions[i] = prediction.ravel()[0]

        # Update `last_window` values. The first position is discarded and 
        # the new prediction is added at the end.
        last_window = np.append(last_window[1:], prediction)

    return predictions

predict(steps, levels=None, last_window=None, exog=None)

Predict n steps ahead. It is an recursive process in which, each prediction, is used as a predictor for the next step.

Parameters:

Name Type Description Default
steps int

Number of future steps predicted.

required
levels str, list

Time series to be predicted. If None all levels will be predicted.

`None`
last_window pandas DataFrame

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1). If last_window = None, the values stored in self.last_window are used to calculate the initial predictors, and the predictions start right after training data.

`None`
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s.

`None`

Returns:

Name Type Description
predictions pandas DataFrame

Predicted values, one column for each level.

Source code in skforecast\ForecasterAutoregMultiSeriesCustom\ForecasterAutoregMultiSeriesCustom.py
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
def predict(
    self,
    steps: int,
    levels: Optional[Union[str, list]]=None,
    last_window: Optional[pd.DataFrame]=None,
    exog: Optional[Union[pd.Series, pd.DataFrame]]=None
) -> pd.DataFrame:
    """
    Predict n steps ahead. It is an recursive process in which, each prediction,
    is used as a predictor for the next step.

    Parameters
    ----------
    steps : int
        Number of future steps predicted.
    levels : str, list, default `None`
        Time series to be predicted. If `None` all levels will be predicted.
    last_window : pandas DataFrame, default `None`
        Series values used to create the predictors (lags) needed in the 
        first iteration of the prediction (t + 1).
        If `last_window = None`, the values stored in `self.last_window` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s.

    Returns
    -------
    predictions : pandas DataFrame
        Predicted values, one column for each level.

    """

    if levels is None:
        levels = self.series_col_names
    elif isinstance(levels, str):
        levels = [levels]

    if last_window is None:
        last_window = deepcopy(self.last_window)

    last_window = last_window.iloc[-self.window_size:, ]

    check_predict_input(
        forecaster_name  = type(self).__name__,
        steps            = steps,
        fitted           = self.fitted,
        included_exog    = self.included_exog,
        index_type       = self.index_type,
        index_freq       = self.index_freq,
        window_size      = self.window_size,
        last_window      = last_window,
        exog             = exog,
        exog_type        = self.exog_type,
        exog_col_names   = self.exog_col_names,
        interval         = None,
        max_steps        = None,
        levels           = levels,
        series_col_names = self.series_col_names
    )

    if exog is not None:
        if isinstance(exog, pd.DataFrame):
            exog = transform_dataframe(
                       df                = exog,
                       transformer       = self.transformer_exog,
                       fit               = False,
                       inverse_transform = False
                   )
        else:
            exog = transform_series(
                       series            = exog,
                       transformer       = self.transformer_exog,
                       fit               = False,
                       inverse_transform = False
                   )
        check_exog_dtypes(exog=exog)
        exog_values = exog.to_numpy()[:steps]
    else:
        exog_values = None

    predictions = []

    for level in levels:

        last_window_level = transform_series(
                                series            = last_window[level],
                                transformer       = self.transformer_series_[level],
                                fit               = False,
                                inverse_transform = False
                            )
        last_window_values, last_window_index = preprocess_last_window(
                                                    last_window = last_window_level
                                                )

        preds_level = self._recursive_predict(
                          steps       = steps,
                          level       = level,
                          last_window = copy(last_window_values),
                          exog        = copy(exog_values)
                      )

        preds_level = pd.Series(
                          data  = preds_level,
                          index = expand_index(
                                      index = last_window_index,
                                      steps = steps
                                  ),
                          name = level
                      )

        preds_level = transform_series(
                          series            = preds_level,
                          transformer       = self.transformer_series_[level],
                          fit               = False,
                          inverse_transform = True
                      )

        predictions.append(preds_level)    

    predictions = pd.concat(predictions, axis=1)

    return predictions

predict_bootstrapping(steps, levels=None, last_window=None, exog=None, n_boot=500, random_state=123, in_sample_residuals=True)

Generate multiple forecasting predictions using a bootstrapping process. By sampling from a collection of past observed errors (the residuals), each iteration of bootstrapping generates a different set of predictions. See the Notes section for more information.

Parameters:

Name Type Description Default
steps int

Number of future steps predicted.

required
levels str, list

Time series to be predicted. If None all levels will be predicted.

`None`
last_window pandas DataFrame

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1). If last_window = None, the values stored in self.last_window are used to calculate the initial predictors, and the predictions start right after training data.

`None`
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s.

`None`
n_boot int

Number of bootstrapping iterations used to estimate prediction intervals.

`500`
random_state int

Sets a seed to the random generator, so that boot intervals are always deterministic.

`123`
in_sample_residuals bool

If True, residuals from the training data are used as proxy of prediction error to create prediction intervals. If False, out of sample residuals are used. In the latter case, the user should have calculated and stored the residuals within the forecaster (see set_out_sample_residuals()).

`True`

Returns:

Name Type Description
boot_predictions dict

Predictions generated by bootstrapping for each level. {level: pandas DataFrame, shape (steps, n_boot)}

Notes

More information about prediction intervals in forecasting: https://otexts.com/fpp3/prediction-intervals.html#prediction-intervals-from-bootstrapped-residuals Forecasting: Principles and Practice (3nd ed) Rob J Hyndman and George Athanasopoulos.

Source code in skforecast\ForecasterAutoregMultiSeriesCustom\ForecasterAutoregMultiSeriesCustom.py
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
def predict_bootstrapping(
    self,
    steps: int,
    levels: Optional[Union[str, list]]=None,
    last_window: Optional[pd.DataFrame]=None,
    exog: Optional[Union[pd.Series, pd.DataFrame]]=None,
    n_boot: int=500,
    random_state: int=123,
    in_sample_residuals: bool=True
) -> dict:
    """
    Generate multiple forecasting predictions using a bootstrapping process. 
    By sampling from a collection of past observed errors (the residuals),
    each iteration of bootstrapping generates a different set of predictions. 
    See the Notes section for more information. 

    Parameters
    ----------
    steps : int
        Number of future steps predicted.
    levels : str, list, default `None`
        Time series to be predicted. If `None` all levels will be predicted.
    last_window : pandas DataFrame, default `None`
        Series values used to create the predictors (lags) needed in the 
        first iteration of the prediction (t + 1).
        If `last_window = None`, the values stored in `self.last_window` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s.
    n_boot : int, default `500`
        Number of bootstrapping iterations used to estimate prediction
        intervals.
    random_state : int, default `123`
        Sets a seed to the random generator, so that boot intervals are always 
        deterministic.        
    in_sample_residuals : bool, default `True`
        If `True`, residuals from the training data are used as proxy of
        prediction error to create prediction intervals. If `False`, out of
        sample residuals are used. In the latter case, the user should have
        calculated and stored the residuals within the forecaster (see
        `set_out_sample_residuals()`).

    Returns
    -------
    boot_predictions : dict
        Predictions generated by bootstrapping for each level. 
        {level: pandas DataFrame, shape (steps, n_boot)}

    Notes
    -----
    More information about prediction intervals in forecasting:
    https://otexts.com/fpp3/prediction-intervals.html#prediction-intervals-from-bootstrapped-residuals
    Forecasting: Principles and Practice (3nd ed) Rob J Hyndman and George Athanasopoulos.

    """

    if levels is None:
        levels = self.series_col_names
    elif isinstance(levels, str):
        levels = [levels]

    if in_sample_residuals:
        if not set(levels).issubset(set(self.in_sample_residuals.keys())):
            raise ValueError(
                (f"Not `forecaster.in_sample_residuals` for levels: "
                 f"{set(levels) - set(self.in_sample_residuals.keys())}.")
            )
        residuals_levels = self.in_sample_residuals
    else:
        if self.out_sample_residuals is None:
            raise ValueError(
                ("`forecaster.out_sample_residuals` is `None`. Use "
                 "`in_sample_residuals=True` or method "
                 "`set_out_sample_residuals()` before `predict_interval()`, "
                 "`predict_bootstrapping()` or `predict_dist()`.")
            )
        else:
            if not set(levels).issubset(set(self.out_sample_residuals.keys())):
                raise ValueError(
                    (f"Not `forecaster.out_sample_residuals` for levels: "
                     f"{set(levels) - set(self.out_sample_residuals.keys())}. "
                     f"Use method `set_out_sample_residuals()`.")
                )
        residuals_levels = self.out_sample_residuals

    check_residuals = (
        "forecaster.in_sample_residuals" if in_sample_residuals
         else "forecaster.out_sample_residuals"
    )
    for level in levels:
        if residuals_levels[level] is None:
            raise ValueError(
                (f"forecaster residuals for level '{level}' are `None`. "
                 f"Check `{check_residuals}`.")
            )
        elif (residuals_levels[level] == None).any():
            raise ValueError(
                (f"forecaster residuals for level '{level}' contains `None` "
                 f"values. Check `{check_residuals}`.")
            )

    if last_window is None:
        last_window = deepcopy(self.last_window)

    last_window = last_window.iloc[-self.window_size:, ]

    check_predict_input(
        forecaster_name  = type(self).__name__,
        steps            = steps,
        fitted           = self.fitted,
        included_exog    = self.included_exog,
        index_type       = self.index_type,
        index_freq       = self.index_freq,
        window_size      = self.window_size,
        last_window      = last_window,
        last_window_exog = None,
        exog             = exog,
        exog_type        = self.exog_type,
        exog_col_names   = self.exog_col_names,
        interval         = None,
        alpha            = None,
        max_steps        = None,
        levels           = levels,
        series_col_names = self.series_col_names
    )

    if exog is not None:
        if isinstance(exog, pd.DataFrame):
            exog = transform_dataframe(
                       df                = exog,
                       transformer       = self.transformer_exog,
                       fit               = False,
                       inverse_transform = False
                   )
        else:
            exog = transform_series(
                       series            = exog,
                       transformer       = self.transformer_exog,
                       fit               = False,
                       inverse_transform = False
                   )

        exog_values = exog.to_numpy()[:steps]
    else:
        exog_values = None

    boot_predictions = {}

    for level in levels:

        last_window_level = transform_series(
                                series            = last_window[level],
                                transformer       = self.transformer_series_[level],
                                fit               = False,
                                inverse_transform = False
                            )
        last_window_values, last_window_index = preprocess_last_window(
                                                    last_window = last_window_level
                                                )

        level_boot_predictions = np.full(
                                     shape      = (steps, n_boot),
                                     fill_value = np.nan,
                                     dtype      = float
                                 )
        rng = np.random.default_rng(seed=random_state)
        seeds = rng.integers(low=0, high=10000, size=n_boot)

        residuals = residuals_levels[level]

        for i in range(n_boot):
            # In each bootstraping iteration the initial last_window and exog 
            # need to be restored.
            last_window_boot = last_window_values.copy()
            exog_boot = exog_values.copy() if exog is not None else None

            rng = np.random.default_rng(seed=seeds[i])
            sample_residuals = rng.choice(
                                   a       = residuals,
                                   size    = steps,
                                   replace = True
                               )

            for step in range(steps):

                prediction = self._recursive_predict(
                                 steps       = 1,
                                 level       = level,
                                 last_window = last_window_boot,
                                 exog        = exog_boot 
                             )

                prediction_with_residual = prediction + sample_residuals[step]
                level_boot_predictions[step, i] = prediction_with_residual

                last_window_boot = np.append(
                                       last_window_boot[1:],
                                       prediction_with_residual
                                   )
                if exog is not None:
                    exog_boot = exog_boot[1:]

        level_boot_predictions = pd.DataFrame(
                                     data    = level_boot_predictions,
                                     index   = expand_index(last_window_index, steps=steps),
                                     columns = [f"pred_boot_{i}" for i in range(n_boot)]
                                 )

        if self.transformer_series_[level]:
            for col in level_boot_predictions.columns:
                level_boot_predictions[col] = transform_series(
                                                  series            = level_boot_predictions[col],
                                                  transformer       = self.transformer_series_[level],
                                                  fit               = False,
                                                  inverse_transform = True
                                              )

        boot_predictions[level] = level_boot_predictions

    return boot_predictions

predict_interval(steps, levels=None, last_window=None, exog=None, interval=[5, 95], n_boot=500, random_state=123, in_sample_residuals=True)

Iterative process in which, each prediction, is used as a predictor for the next step and bootstrapping is used to estimate prediction intervals. Both predictions and intervals are returned.

Parameters:

Name Type Description Default
steps int

Number of future steps predicted.

required
levels str, list

Time series to be predicted. If None all levels will be predicted.

`None`
last_window pandas DataFrame

Series values used to create the predictors (lags) needed in the first iteration of the prediction (t + 1). If last_window = None, the values stored inself.last_window are used to calculate the initial predictors, and the predictions start right after training data.

`None`
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s.

`None`
interval list

Confidence of the prediction interval estimated. Sequence of percentiles to compute, which must be between 0 and 100 inclusive. For example, interval of 95% should be as interval = [2.5, 97.5].

`[5, 95]`
n_boot int

Number of bootstrapping iterations used to estimate prediction intervals.

`500`
random_state int

Sets a seed to the random generator, so that boot intervals are always deterministic.

`123`
in_sample_residuals bool

If True, residuals from the training data are used as proxy of prediction error to create prediction intervals. If False, out of sample residuals are used. In the latter case, the user should have calculated and stored the residuals within the forecaster (see set_out_sample_residuals()).

`True`

Returns:

Name Type Description
predictions pandas DataFrame

Values predicted by the forecaster and their estimated interval.

  • level: predictions.
  • level_lower_bound: lower bound of the interval.
  • level_upper_bound: upper bound of the interval.
Notes

More information about prediction intervals in forecasting: https://otexts.com/fpp2/prediction-intervals.html Forecasting: Principles and Practice (2nd ed) Rob J Hyndman and George Athanasopoulos.

Source code in skforecast\ForecasterAutoregMultiSeriesCustom\ForecasterAutoregMultiSeriesCustom.py
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
def predict_interval(
    self,
    steps: int,
    levels: Optional[Union[str, list]]=None,
    last_window: Optional[pd.DataFrame]=None,
    exog: Optional[Union[pd.Series, pd.DataFrame]]=None,
    interval: list=[5, 95],
    n_boot: int=500,
    random_state: int=123,
    in_sample_residuals: bool=True
) -> pd.DataFrame:
    """
    Iterative process in which, each prediction, is used as a predictor
    for the next step and bootstrapping is used to estimate prediction
    intervals. Both predictions and intervals are returned.

    Parameters
    ----------
    steps : int
        Number of future steps predicted.
    levels : str, list, default `None`
        Time series to be predicted. If `None` all levels will be predicted.  
    last_window : pandas DataFrame, default `None`
        Series values used to create the predictors (lags) needed in the 
        first iteration of the prediction (t + 1).
        If `last_window = None`, the values stored in` self.last_window` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s.
    interval : list, default `[5, 95]`
        Confidence of the prediction interval estimated. Sequence of 
        percentiles to compute, which must be between 0 and 100 inclusive. 
        For example, interval of 95% should be as `interval = [2.5, 97.5]`.
    n_boot : int, default `500`
        Number of bootstrapping iterations used to estimate prediction
        intervals.
    random_state : int, default `123`
        Sets a seed to the random generator, so that boot intervals are always 
        deterministic.
    in_sample_residuals : bool, default `True`
        If `True`, residuals from the training data are used as proxy of
        prediction error to create prediction intervals. If `False`, out of
        sample residuals are used. In the latter case, the user should have
        calculated and stored the residuals within the forecaster (see
        `set_out_sample_residuals()`).

    Returns
    -------
    predictions : pandas DataFrame
        Values predicted by the forecaster and their estimated interval.

            - level: predictions.
            - level_lower_bound: lower bound of the interval.
            - level_upper_bound: upper bound of the interval.

    Notes
    -----
    More information about prediction intervals in forecasting:
    https://otexts.com/fpp2/prediction-intervals.html
    Forecasting: Principles and Practice (2nd ed) Rob J Hyndman and
    George Athanasopoulos.

    """

    if levels is None:
        levels = self.series_col_names
    elif isinstance(levels, str):
        levels = [levels]

    check_interval(interval=interval)

    preds = self.predict(
                steps       = steps,
                levels      = levels,
                last_window = last_window,
                exog        = exog
            )

    boot_predictions = self.predict_bootstrapping(
                           steps               = steps,
                           levels              = levels,
                           last_window         = last_window,
                           exog                = exog,
                           n_boot              = n_boot,
                           random_state        = random_state,
                           in_sample_residuals = in_sample_residuals
                       )

    interval = np.array(interval)/100
    predictions = []

    for level in levels:
        preds_interval = boot_predictions[level].quantile(q=interval, axis=1).transpose()
        preds_interval.columns = [f'{level}_lower_bound', f'{level}_upper_bound']
        predictions.append(preds[level])
        predictions.append(preds_interval)

    predictions = pd.concat(predictions, axis=1)

    return predictions

predict_dist(steps, distribution, levels=None, last_window=None, exog=None, n_boot=500, random_state=123, in_sample_residuals=True)

Fit a given probability distribution for each step. After generating multiple forecasting predictions through a bootstrapping process, each step is fitted to the given distribution.

Parameters:

Name Type Description Default
steps int

Number of future steps predicted.

required
distribution Object

A distribution object from scipy.stats. For example scipy.stats.norm.

required
levels str, list

Time series to be predicted. If None all levels will be predicted.

`None`
last_window pandas DataFrame

Values of the series used to create the predictors needed in the first re of prediction (t + 1). If last_window = None, the values stored inself.last_window are used to calculate the initial predictors, and the predictions start right after training data.

`None`
exog pandas Series, pandas DataFrame

Exogenous variable/s included as predictor/s.

`None`
n_boot int

Number of bootstrapping iterations used to estimate prediction intervals.

`500`
random_state int

Sets a seed to the random generator, so that boot intervals are always deterministic.

`123`
in_sample_residuals bool

If True, residuals from the training data are used as proxy of prediction error to create prediction intervals. If False, out of sample residuals are used. In the latter case, the user should have calculated and stored the residuals within the forecaster (see set_out_sample_residuals()).

`True`

Returns:

Name Type Description
predictions pandas DataFrame

Distribution parameters estimated for each step and level.

Source code in skforecast\ForecasterAutoregMultiSeriesCustom\ForecasterAutoregMultiSeriesCustom.py
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
def predict_dist(
    self,
    steps: int,
    distribution: object,
    levels: Optional[Union[str, list]]=None,
    last_window: Optional[pd.DataFrame]=None,
    exog: Optional[Union[pd.Series, pd.DataFrame]]=None,
    n_boot: int=500,
    random_state: int=123,
    in_sample_residuals: bool=True
) -> pd.DataFrame:
    """
    Fit a given probability distribution for each step. After generating 
    multiple forecasting predictions through a bootstrapping process, each 
    step is fitted to the given distribution.

    Parameters
    ----------
    steps : int
        Number of future steps predicted.
    distribution : Object
        A distribution object from scipy.stats. For example scipy.stats.norm.
    levels : str, list, default `None`
        Time series to be predicted. If `None` all levels will be predicted.  
    last_window : pandas DataFrame, default `None`
        Values of the series used to create the predictors needed in the first
        re of prediction (t + 1).
        If `last_window = None`, the values stored in` self.last_window` are
        used to calculate the initial predictors, and the predictions start
        right after training data.
    exog : pandas Series, pandas DataFrame, default `None`
        Exogenous variable/s included as predictor/s.
    n_boot : int, default `500`
        Number of bootstrapping iterations used to estimate prediction
        intervals.
    random_state : int, default `123`
        Sets a seed to the random generator, so that boot intervals are always 
        deterministic.
    in_sample_residuals : bool, default `True`
        If `True`, residuals from the training data are used as proxy of
        prediction error to create prediction intervals. If `False`, out of
        sample residuals are used. In the latter case, the user should have
        calculated and stored the residuals within the forecaster (see
        `set_out_sample_residuals()`).

    Returns
    -------
    predictions : pandas DataFrame
        Distribution parameters estimated for each step and level.

    """

    if levels is None:
        levels = self.series_col_names
    elif isinstance(levels, str):
        levels = [levels]

    boot_samples = self.predict_bootstrapping(
                       steps               = steps,
                       levels              = levels,
                       last_window         = last_window,
                       exog                = exog,
                       n_boot              = n_boot,
                       random_state        = random_state,
                       in_sample_residuals = in_sample_residuals
                   )

    param_names = [p for p in inspect.signature(distribution._pdf).parameters if not p=='x'] + ["loc","scale"]
    predictions = []

    for level in levels:
        param_values = np.apply_along_axis(lambda x: distribution.fit(x), axis=1, arr=boot_samples[level])
        level_param_names = [f'{level}_{p}' for p in param_names]

        pred_level = pd.DataFrame(
                         data    = param_values,
                         columns = level_param_names,
                         index   = boot_samples[level].index
                     )

        predictions.append(pred_level)

    predictions = pd.concat(predictions, axis=1)

    return predictions

set_params(params)

Set new values to the parameters of the scikit learn model stored in the forecaster.

Parameters:

Name Type Description Default
params dict

Parameters values.

required

Returns:

Type Description
None
Source code in skforecast\ForecasterAutoregMultiSeriesCustom\ForecasterAutoregMultiSeriesCustom.py
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
def set_params(
    self, 
    params: dict
) -> None:
    """
    Set new values to the parameters of the scikit learn model stored in the
    forecaster.

    Parameters
    ----------
    params : dict
        Parameters values.

    Returns
    -------
    None

    """

    self.regressor = clone(self.regressor)
    self.regressor.set_params(**params)

set_fit_kwargs(fit_kwargs)

Set new values for the additional keyword arguments passed to the fit method of the regressor.

Parameters:

Name Type Description Default
fit_kwargs dict

Dict of the form {"argument": new_value}.

required

Returns:

Type Description
None
Source code in skforecast\ForecasterAutoregMultiSeriesCustom\ForecasterAutoregMultiSeriesCustom.py
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
def set_fit_kwargs(
    self, 
    fit_kwargs: dict
) -> None:
    """
    Set new values for the additional keyword arguments passed to the `fit` 
    method of the regressor.

    Parameters
    ----------
    fit_kwargs : dict
        Dict of the form {"argument": new_value}.

    Returns
    -------
    None

    """

    self.fit_kwargs = check_select_fit_kwargs(self.regressor, fit_kwargs=fit_kwargs)

set_out_sample_residuals(residuals, append=True, transform=True, random_state=123)

Set new values to the attribute out_sample_residuals. Out of sample residuals are meant to be calculated using observations that did not participate in the training process.

Parameters:

Name Type Description Default
residuals dict

Dictionary of numpy ndarrays with the residuals of each level in the form {level: residuals}. If len(residuals) > 1000, only a random sample of 1000 values are stored. Keys must be the same as levels.

required
append bool

If True, new residuals are added to the once already stored in the attribute out_sample_residuals. Once the limit of 1000 values is reached, no more values are appended. If False, out_sample_residuals is overwritten with the new residuals.

`True`
transform bool

If True, new residuals are transformed using self.transformer_series.

`True`
random_state int

Sets a seed to the random sampling for reproducible output.

`123`

Returns:

Type Description
None
Source code in skforecast\ForecasterAutoregMultiSeriesCustom\ForecasterAutoregMultiSeriesCustom.py
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
def set_out_sample_residuals(
    self, 
    residuals: dict,
    append: bool=True,
    transform: bool=True,
    random_state: int=123
)-> None:
    """
    Set new values to the attribute `out_sample_residuals`. Out of sample
    residuals are meant to be calculated using observations that did not
    participate in the training process.

    Parameters
    ----------
    residuals : dict
        Dictionary of numpy ndarrays with the residuals of each level in the
        form {level: residuals}. If len(residuals) > 1000, only a random 
        sample of 1000 values are stored. Keys must be the same as `levels`.
    append : bool, default `True`
        If `True`, new residuals are added to the once already stored in the
        attribute `out_sample_residuals`. Once the limit of 1000 values is
        reached, no more values are appended. If False, `out_sample_residuals`
        is overwritten with the new residuals.
    transform : bool, default `True`
        If `True`, new residuals are transformed using self.transformer_series.
    random_state : int, default `123`
        Sets a seed to the random sampling for reproducible output.

    Returns
    -------
    None

    """

    if not isinstance(residuals, dict) or not all(isinstance(x, np.ndarray) for x in residuals.values()):
        raise TypeError(
            (f"`residuals` argument must be a dict of numpy ndarrays in the form "
             "`{level: residuals}`. " 
             f"Got {type(residuals)}.")
        )

    if not self.fitted:
        raise sklearn.exceptions.NotFittedError(
            ("This forecaster is not fitted yet. Call `fit` with appropriate "
             "arguments before using `set_out_sample_residuals()`.")
        )

    if self.out_sample_residuals is None:
        self.out_sample_residuals = {level: None for level in self.series_col_names}

    if not set(self.out_sample_residuals.keys()).issubset(set(residuals.keys())):
        warnings.warn(
            (f"""
            Only residuals of levels 
            {set(self.out_sample_residuals.keys()).intersection(set(residuals.keys()))} 
            are updated.
            """), IgnoredArgumentWarning
        )

    residuals = {key: value 
                 for key, value in residuals.items() 
                 if key in self.out_sample_residuals.keys()}

    for level, value in residuals.items():

        residuals_level = value

        if not transform and self.transformer_series_[level] is not None:
            warnings.warn(
                ("Argument `transform` is set to `False` but forecaster was "
                f"trained using a transformer {self.transformer_series_[level]} "
                f"for level {level}. Ensure that the new residuals are "
                 "already transformed or set `transform=True`.")
            )

        if transform and self.transformer_series_ and self.transformer_series_[level]:
            warnings.warn(
                ("Residuals will be transformed using the same transformer used "
                f"when training the forecaster for level {level} : "
                f"({self.transformer_series_[level]}). Ensure that the new "
                 "residuals are on the same scale as the original time series.")
            )
            residuals_level = transform_series(
                                  series            = pd.Series(residuals_level, name='residuals'),
                                  transformer       = self.transformer_series_[level],
                                  fit               = False,
                                  inverse_transform = False
                              ).to_numpy()

        if len(residuals_level) > 1000:
            rng = np.random.default_rng(seed=random_state)
            residuals_level = rng.choice(a=residuals_level, size=1000, replace=False)

        if append and self.out_sample_residuals[level] is not None:
            free_space = max(0, 1000 - len(self.out_sample_residuals[level]))
            if len(residuals_level) < free_space:
                residuals_level = np.hstack((
                                        self.out_sample_residuals[level],
                                        residuals_level
                                    ))
            else:
                residuals_level = np.hstack((
                                        self.out_sample_residuals[level],
                                        residuals_level[:free_space]
                                    ))

        self.out_sample_residuals[level] = residuals_level

get_feature_importances()

Return feature importances of the regressor stored in the forecaster. Only valid when regressor stores internally the feature importances in the attribute feature_importances_ or coef_.

Parameters:

Name Type Description Default
self required

Returns:

Name Type Description
feature_importances pandas DataFrame

Feature importances associated with each predictor.

Source code in skforecast\ForecasterAutoregMultiSeriesCustom\ForecasterAutoregMultiSeriesCustom.py
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
def get_feature_importances(
    self
) -> pd.DataFrame:
    """
    Return feature importances of the regressor stored in the
    forecaster. Only valid when regressor stores internally the feature
    importances in the attribute `feature_importances_` or `coef_`.

    Parameters
    ----------
    self

    Returns
    -------
    feature_importances : pandas DataFrame
        Feature importances associated with each predictor.

    """

    if not self.fitted:
        raise sklearn.exceptions.NotFittedError(
            ("This forecaster is not fitted yet. Call `fit` with appropriate "
             "arguments before using `get_feature_importances()`.")
        )

    if isinstance(self.regressor, sklearn.pipeline.Pipeline):
        estimator = self.regressor[-1]
    else:
        estimator = self.regressor

    if hasattr(estimator, 'feature_importances_'):
        feature_importances = estimator.feature_importances_
    elif hasattr(estimator, 'coef_'):
        feature_importances = estimator.coef_
    else:
        warnings.warn(
            (f"Impossible to access feature importances for regressor of type "
             f"{type(estimator)}. This method is only valid when the "
             f"regressor stores internally the feature importances in the "
             f"attribute `feature_importances_` or `coef_`.")
        )
        feature_importances = None

    if feature_importances is not None:
        feature_importances = pd.DataFrame({
                                  'feature': self.X_train_col_names,
                                  'importance': feature_importances
                              })

    return feature_importances