Direct multi-step forecaster¶
ForecasterAutoreg
and ForecasterAutoregCustom
models follow a recursive prediction strategy in which each new prediction builds on the previous one. An alternative is to train a model for each step that has to be predicted. This strategy, commonly known as direct multistep forecasting, is computationally more expensive than the recursive since it requires training several models. However, in some scenarios, it achieves better results. This type of model can be obtained with the ForecasterAutoregMultiOutput
class and can also include one or multiple exogenous variables.
To train a ForecasterAutoregMultiOutput
a different training matrix is created for each model.
Libraries¶
# Libraries
# ==============================================================================
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from skforecast.ForecasterAutoregMultiOutput import ForecasterAutoregMultiOutput
from sklearn.linear_model import Ridge
from sklearn.metrics import mean_squared_error
Data¶
# Download data
# ==============================================================================
url = ('https://raw.githubusercontent.com/JoaquinAmatRodrigo/skforecast/master/data/h2o.csv')
data = pd.read_csv(url, sep=',', header=0, names=['y', 'datetime'])
# Data preprocessing
# ==============================================================================
data['datetime'] = pd.to_datetime(data['datetime'], format='%Y/%m/%d')
data = data.set_index('datetime')
data = data.asfreq('MS')
data = data['y']
data = data.sort_index()
# Split train-test
# ==============================================================================
steps = 36
data_train = data[:-steps]
data_test = data[-steps:]
# Plot
# ==============================================================================
fig, ax=plt.subplots(figsize=(9, 4))
data_train.plot(ax=ax, label='train')
data_test.plot(ax=ax, label='test')
ax.legend();
Train forecaster¶
# Create and fit forecaster
# ==============================================================================
forecaster = ForecasterAutoregMultiOutput(
regressor = Ridge(),
steps = 36,
lags = 15
)
forecaster.fit(y=data_train)
forecaster
============================ ForecasterAutoregMultiOutput ============================ Regressor: Ridge() Lags: [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15] Window size: 15 Maximum steps predicted: 36 Included exogenous: False Type of exogenous variable: None Exogenous variables names: None Training range: [Timestamp('1991-07-01 00:00:00'), Timestamp('2005-06-01 00:00:00')] Training index type: DatetimeIndex Training index frequency: MS Regressor parameters: {'alpha': 1.0, 'copy_X': True, 'fit_intercept': True, 'max_iter': None, 'normalize': 'deprecated', 'positive': False, 'random_state': None, 'solver': 'auto', 'tol': 0.001} Creation date: 2022-03-11 23:45:07 Last fit date: 2022-03-11 23:45:07 Skforecast version: 0.4.3
Prediction¶
# Predict
# ==============================================================================
steps = 36
predictions = forecaster.predict(steps=steps)
predictions.head(3)
2005-07-01 0.952051 2005-08-01 1.004145 2005-09-01 1.114590 Freq: MS, Name: pred, dtype: float64
# Plot predictions
# ==============================================================================
fig, ax=plt.subplots(figsize=(9, 4))
data_train.plot(ax=ax, label='train')
data_test.plot(ax=ax, label='test')
predictions.plot(ax=ax, label='predictions')
ax.legend();
# Prediction error
# ==============================================================================
error_mse = mean_squared_error(
y_true = data_test,
y_pred = predictions
)
print(f"Test error (mse): {error_mse}")
Test error (mse): 0.008419597278831951
Feature importance¶
Since ForecasterAutoregMultiOutput
fits one model per step, it is necessary to specify from which model retrieves its feature importance.
forecaster.get_feature_importance(step=1)
feature | importance | |
---|---|---|
0 | lag_1 | 0.139299 |
1 | lag_2 | 0.051089 |
2 | lag_3 | 0.044192 |
3 | lag_4 | -0.019868 |
4 | lag_5 | -0.017935 |
5 | lag_6 | -0.013233 |
6 | lag_7 | -0.021063 |
7 | lag_8 | -0.012591 |
8 | lag_9 | 0.011918 |
9 | lag_10 | 0.020511 |
10 | lag_11 | 0.154030 |
11 | lag_12 | 0.551652 |
12 | lag_13 | 0.057513 |
13 | lag_14 | -0.071071 |
14 | lag_15 | -0.035237 |
Extract training matrix¶
Two steps are needed. One to create the whole training matrix and a second one to subset the data needed for each model (step).
X, y = forecaster.create_train_X_y(data_train)
# X and y to train model for step 1
X_1, y_1 = forecaster.filter_train_X_y_for_step(
step = 1,
X_train = X,
y_train = y,
)
X_1.head(4)
lag_1 | lag_2 | lag_3 | lag_4 | lag_5 | lag_6 | lag_7 | lag_8 | lag_9 | lag_10 | lag_11 | lag_12 | lag_13 | lag_14 | lag_15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
datetime | |||||||||||||||
1995-09-01 | 0.534761 | 0.475463 | 0.483389 | 0.410534 | 0.361801 | 0.379808 | 0.351348 | 0.336220 | 0.660119 | 0.602652 | 0.502369 | 0.492543 | 0.432159 | 0.400906 | 0.429795 |
1995-10-01 | 0.568606 | 0.534761 | 0.475463 | 0.483389 | 0.410534 | 0.361801 | 0.379808 | 0.351348 | 0.336220 | 0.660119 | 0.602652 | 0.502369 | 0.492543 | 0.432159 | 0.400906 |
1995-11-01 | 0.595223 | 0.568606 | 0.534761 | 0.475463 | 0.483389 | 0.410534 | 0.361801 | 0.379808 | 0.351348 | 0.336220 | 0.660119 | 0.602652 | 0.502369 | 0.492543 | 0.432159 |
1995-12-01 | 0.771258 | 0.595223 | 0.568606 | 0.534761 | 0.475463 | 0.483389 | 0.410534 | 0.361801 | 0.379808 | 0.351348 | 0.336220 | 0.660119 | 0.602652 | 0.502369 | 0.492543 |
y_1.head(4)
datetime 1995-09-01 0.595223 1995-10-01 0.771258 1995-11-01 0.751503 1995-12-01 0.387554 Freq: MS, Name: y_step_1, dtype: float64
%%html
<style>
.jupyter-wrapper .jp-CodeCell .jp-Cell-inputWrapper .jp-InputPrompt {display: none;}
</style>