Releases¶
All notable changes to this project will be documented in this file.
[0.4.2] - [Unreleased]¶
Added¶
- Increased verbosity of function
backtesting_forecaster().
Changed¶
-
Function
backtesting_forecaster()do not modify the original forecaster. -
Removed argument
set_out_sample_residualsin functionbacktesting_forecaster(). -
Function
model_selection.time_series_spliterrenamed tomodel_selection.time_series_splitter
Fixed¶
- Methods
get_coefandget_feature_importanceofForecasterAutoregMultiOutputclass return proper feature names.
[0.4.1] - [2021-12-13]¶
Added¶
Changed¶
Fixed¶
fitandpredicttransform pandas series and dataframes to numpy arrays if regressor is XGBoost.
[0.4.0] - [2021-12-10]¶
Version 0.4 has undergone a huge code refactoring. Main changes are related to input-output formats (only pandas series and dataframes are allowed although internally numpy arrays are used for performance) and model validation methods (unified into backtesting with and without refit).
Added¶
ForecasterBaseas parent class
Changed¶
-
Argument
ymust be pandas Series. Numpy ndarrays are not allowed anymore. -
Argument
exogmust be pandas Series or pandas DataFrame. Numpy ndarrays are not allowed anymore. -
Output of
predictis a pandas Series with index according to the steps predicted. -
Scikitlearn pipelines are allowed as regressors.
-
backtesting_forecasterandbacktesting_forecaster_intervalshave been combined in a single function.- It is possible to backtest forecasters already trained.
ForecasterAutoregMultiOutputallows incomplete folds.- It is possible to update
out_sample_residualswith backtesting residuals.
-
cv_forecasterhas the option to updateout_sample_residualswith backtesting residuals. -
backtesting_sarimax_statsmodelsandcv_sarimax_statsmodelshave been combined in a single function. -
gridsearch_forecasteruse backtesting as validation strategy with the option of refit. -
Extended information when printing
Forecasterobject. -
All static methods for checking and preprocessing inputs moved to module utils.
-
Remove deprecated class
ForecasterCustom.
[0.3.0] - [2021-09-01]¶
Added¶
- New module model_selection_statsmodels to cross-validate, backtesting and grid search AutoReg and SARIMAX models from statsmodels library:
backtesting_autoreg_statsmodelscv_autoreg_statsmodelsbacktesting_sarimax_statsmodelscv_sarimax_statsmodelsgrid_search_sarimax_statsmodels
Changed¶
cv_forecasterreturns cross-validation metrics and cross-validation predictions.- Added an extra column for each parameter in the dataframe returned by
grid_search_forecaster. - statsmodels 0.12.2 added to requirements
Fixed¶
[0.2.0] - [2021-08-26]¶
Added¶
-
Multiple exogenous variables can be passed as pandas DataFrame.
-
Documentation at https://joaquinamatrodrigo.github.io/skforecast/
-
New unit test
-
Increased typing
Changed¶
- New implementation of
ForecasterAutoregMultiOutput. The training process in the new version creates a different X_train for each step. See Direct multi-step forecasting for more details. Old versión can be acces withskforecast.deprecated.ForecasterAutoregMultiOutput.
Fixed¶
[0.1.9] - 2121-07-27¶
Added¶
-
Logging total number of models to fit in
grid_search_forecaster. -
Class
ForecasterAutoregCustom. -
Method
create_train_X_yto facilitate access to the training data matrix created fromyandexog.
Changed¶
-
New implementation of
ForecasterAutoregMultiOutput. The training process in the new version creates a different X_train for each step. See Direct multi-step forecasting for more details. Old versión can be acces withskforecast.deprecated.ForecasterAutoregMultiOutput. -
Class
ForecasterCustomhas been renamed toForecasterAutoregCustom. However,ForecasterCustomwill still remain to keep backward compatibility. -
Argument
metricincv_forecaster,backtesting_forecaster,grid_search_forecasterandbacktesting_forecaster_intervalschanged from 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_mean_absolute_percentage_error' to 'mean_squared_error', 'mean_absolute_error', 'mean_absolute_percentage_error'. -
Check if argument
metricincv_forecaster,backtesting_forecaster,grid_search_forecasterandbacktesting_forecaster_intervalsis one of 'mean_squared_error', 'mean_absolute_error', 'mean_absolute_percentage_error'. -
time_series_spliterdoesn't include the remaining observations in the last complete fold but in a new one whenallow_incomplete_fold=True. Take in consideration that incomplete folds with few observations could overestimate or underestimate the validation metric.
Fixed¶
- Update lags of
ForecasterAutoregMultiOutputaftergrid_search_forecaster.
[0.1.8.1] - 2021-05-17¶
Added¶
set_out_sample_residualsmethod to store or update out of sample residuals used bypredict_interval.
Changed¶
-
backtesting_forecaster_intervalsandbacktesting_forecasterprint number of steps per fold. -
Only stored up to 1000 residuals.
-
Improved verbose in
backtesting_forecaster_intervals.
Fixed¶
-
Warning of inclompleted folds when using
backtesting_forecastwith aForecasterAutoregMultiOutput. -
ForecasterAutoregMultiOutput.predictallow exog data longer than needed (steps). -
backtesting_forecastprints correctly the number of folds when remainder observations are cero. -
Removed named argument X in
self.regressor.predict(X)to allow using XGBoost regressor. -
Values stored in
self.last_windowwhen trainingForecasterAutoregMultiOutput.
[0.1.8] - 2021-04-02¶
Added¶
- Class
ForecasterAutoregMultiOutput.py: forecaster with direct multi-step predictions. - Method
ForecasterCustom.predict_intervalandForecasterAutoreg.predict_interval: estimate prediction interval using bootstrapping. skforecast.model_selection.backtesting_forecaster_intervalsperform backtesting and return prediction intervals.
Changed¶
Fixed¶
[0.1.7] - 2021-03-19¶
Added¶
- Class
ForecasterCustom: same functionalities asForecasterAutoregbut allows custom definition of predictors.
Changed¶
grid_search forecasteradapted to work with objectsForecasterCustomin addition toForecasterAutoreg.
Fixed¶
[0.1.6] - 2021-03-14¶
Added¶
- Method
get_feature_importancestoskforecast.ForecasterAutoreg. - Added backtesting strategy in
grid_search_forecaster. - Added
backtesting_forecasttoskforecast.model_selection.
Changed¶
- Method
create_lagsreturn a matrix where the order of columns match the ascending order of lags. For example, column 0 contains the values of the minimum lag used as predictor. - Renamed argument
Xtolast_windowin methodpredict. - Renamed
ts_cv_forecastertocv_forecaster.
Fixed¶
[0.1.4] - 2021-02-15¶
Added¶
- Method
get_coeftoskforecast.ForecasterAutoreg.