Metrics
¶
skforecast.metrics.mean_absolute_scaled_error ¶
mean_absolute_scaled_error(y_true, y_pred, y_train)
Mean Absolute Scaled Error (MASE)
MASE is a scale-independent error metric that measures the accuracy of a forecast. It is the mean absolute error of the forecast divided by the mean absolute error of a naive forecast in the training set. The naive forecast is the one obtained by shifting the time series by one period. If y_train is a list of numpy arrays or pandas Series, it is considered that each element is the true value of the target variable in the training set for each time series. In this case, the naive forecast is calculated for each time series separately.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_true
|
pandas Series, numpy ndarray
|
True values of the target variable. |
required |
y_pred
|
pandas Series, numpy ndarray
|
Predicted values of the target variable. |
required |
y_train
|
list, pandas Series, numpy ndarray
|
True values of the target variable in the training set. If |
required |
Returns:
Name | Type | Description |
---|---|---|
mase |
float
|
MASE value. |
Source code in skforecast/metrics/metrics.py
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
|
skforecast.metrics.root_mean_squared_scaled_error ¶
root_mean_squared_scaled_error(y_true, y_pred, y_train)
Root Mean Squared Scaled Error (RMSSE)
RMSSE is a scale-independent error metric that measures the accuracy of a forecast. It is the root mean squared error of the forecast divided by the root mean squared error of a naive forecast in the training set. The naive forecast is the one obtained by shifting the time series by one period. If y_train is a list of numpy arrays or pandas Series, it is considered that each element is the true value of the target variable in the training set for each time series. In this case, the naive forecast is calculated for each time series separately.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_true
|
pandas Series, numpy ndarray
|
True values of the target variable. |
required |
y_pred
|
pandas Series, numpy ndarray
|
Predicted values of the target variable. |
required |
y_train
|
list, pandas Series, numpy ndarray
|
True values of the target variable in the training set. If list, it is consider that each element is the true value of the target variable in the training set for each time series. |
required |
Returns:
Name | Type | Description |
---|---|---|
rmsse |
float
|
RMSSE value. |
Source code in skforecast/metrics/metrics.py
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
|
skforecast.metrics.symmetric_mean_absolute_percentage_error ¶
symmetric_mean_absolute_percentage_error(y_true, y_pred)
Compute the Symmetric Mean Absolute Percentage Error (SMAPE).
SMAPE is a relative error metric used to measure the accuracy of forecasts. Unlike MAPE, it is symmetric and prevents division by zero by averaging the absolute values of actual and predicted values.
The result is expressed as a percentage and ranges from 0% (perfect prediction) to 200% (maximum error).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_true
|
numpy ndarray, pandas Series
|
True values of the target variable. |
required |
y_pred
|
numpy ndarray, pandas Series
|
Predicted values of the target variable. |
required |
Returns:
Name | Type | Description |
---|---|---|
smape |
float
|
SMAPE value as a percentage. |
Notes
When both y_true
and y_pred
are zero, the corresponding term is treated as zero
to avoid division by zero.
Examples:
import numpy as np
from skforecast.metrics import symmetric_mean_absolute_percentage_error
y_true = np.array([100, 200, 0])
y_pred = np.array([110, 180, 10])
result = symmetric_mean_absolute_percentage_error(y_true, y_pred)
print(f"SMAPE: {result:.2f}%")
# SMAPE: 73.35%
Source code in skforecast/metrics/metrics.py
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 |
|
skforecast.metrics.add_y_train_argument ¶
add_y_train_argument(func)
Add y_train
argument to a function if it is not already present.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
func
|
callable
|
Function to which the argument is added. |
required |
Returns:
Name | Type | Description |
---|---|---|
wrapper |
callable
|
Function with |
Source code in skforecast/metrics/metrics.py
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
|