preprocessing
¶
TimeSeriesDifferentiator(order=1)
¶
Bases: BaseEstimator
, TransformerMixin
Transforms a time series into a differentiated time series of order n. It also reverts the differentiation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
order |
int
|
Order of differentiation. |
1
|
Attributes:
Name | Type | Description |
---|---|---|
order |
int
|
Order of differentiation. |
initial_values |
list
|
List with the initial value of the time series after each differentiation. This is used to revert the differentiation. |
last_values |
list
|
List with the last value of the time series after each differentiation. This is used to revert the differentiation of a new window of data. A new window of data is a time series that starts right after the time series used to fit the transformer. |
Source code in skforecast\preprocessing\preprocessing.py
78 79 80 81 82 83 84 85 86 87 88 89 90 |
|
fit(X, y=None)
¶
Fits the transformer. This method only removes the values stored in
self.initial_values
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
numpy ndarray
|
Time series to be differentiated. |
required |
y |
Ignored
|
Not used, present here for API consistency by convention. |
None
|
Returns:
Name | Type | Description |
---|---|---|
self |
TimeSeriesDifferentiator
|
|
Source code in skforecast\preprocessing\preprocessing.py
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
|
transform(X, y=None)
¶
Transforms a time series into a differentiated time series of order n and stores the values needed to revert the differentiation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
numpy ndarray
|
Time series to be differentiated. |
required |
y |
Ignored
|
Not used, present here for API consistency by convention. |
None
|
Returns:
Name | Type | Description |
---|---|---|
X_diff |
numpy ndarray
|
Differentiated time series. The length of the array is the same as
the original time series but the first n= |
Source code in skforecast\preprocessing\preprocessing.py
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
|
inverse_transform(X, y=None)
¶
Reverts the differentiation. To do so, the input array is assumed to be a differentiated time series of order n that starts right after the the time series used to fit the transformer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
numpy ndarray
|
Differentiated time series. |
required |
y |
Ignored
|
Not used, present here for API consistency by convention. |
None
|
Returns:
Name | Type | Description |
---|---|---|
X_diff |
numpy ndarray
|
Reverted differentiated time series. |
Source code in skforecast\preprocessing\preprocessing.py
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
|
inverse_transform_next_window(X, y=None)
¶
Reverts the differentiation. The input array x
is assumed to be a
differentiated time series of order n that starts right after the
the time series used to fit the transformer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
numpy ndarray
|
Differentiated time series. It is assumed o start right after the time series used to fit the transformer. |
required |
y |
Ignored
|
Not used, present here for API consistency by convention. |
None
|
Returns:
Name | Type | Description |
---|---|---|
X_undiff |
numpy ndarray
|
Reverted differentiated time series. |
Source code in skforecast\preprocessing\preprocessing.py
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
|
series_long_to_dict(data, series_id, index, values, freq)
¶
Convert long format series to dictionary.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
DataFrame
|
Long format series. |
required |
series_id |
str
|
Column name with the series identifier. |
required |
index |
str
|
Column name with the time index. |
required |
values |
str
|
Column name with the values. |
required |
freq |
str
|
Frequency of the series. |
required |
Returns:
Name | Type | Description |
---|---|---|
series_dict |
dict
|
Dictionary with the series. |
Source code in skforecast\preprocessing\preprocessing.py
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
|
exog_long_to_dict(data, series_id, index, freq, dropna=False)
¶
Convert long format exogenous variables to dictionary.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
DataFrame
|
Long format exogenous variables. |
required |
series_id |
str
|
Column name with the series identifier. |
required |
index |
str
|
Column name with the time index. |
required |
freq |
str
|
Frequency of the series. |
required |
dropna |
bool
|
If True, drop columns with all values as NaN. This is useful when there are series without some exogenous variables. |
False
|
Returns:
Name | Type | Description |
---|---|---|
exog_dict |
dict
|
Dictionary with the exogenous variables. |
Source code in skforecast\preprocessing\preprocessing.py
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
|