Skip to content

model_selection_multiseries

backtesting_forecaster_multiseries(forecaster, series, steps, metric, initial_train_size, fixed_train_size=True, gap=0, allow_incomplete_fold=True, levels=None, exog=None, refit=False, interval=None, n_boot=500, random_state=123, in_sample_residuals=True, n_jobs='auto', verbose=False, show_progress=True, suppress_warnings=False)

Backtesting for multi-series and multivariate forecasters.

  • If refit is False, the model will be trained only once using the initial_train_size first observations.
  • If refit is True, the model is trained on each iteration, increasing the training set.
  • If refit is an integer, the model will be trained every that number of iterations.
  • If forecaster is already trained and initial_train_size is None, no initial train will be done and all data will be used to evaluate the model. However, the first len(forecaster.last_window) observations are needed to create the initial predictors, so no predictions are calculated for them.

A copy of the original forecaster is created so that it is not modified during the process.

Parameters:

Name Type Description Default
forecaster (ForecasterAutoregMultiSeries, ForecasterAutoregMultiSeriesCustom, ForecasterAutoregMultiVariate, ForecasterRnn)

Forecaster model.

required
series pandas DataFrame, dict

Training time series.

required
steps int

Number of steps to predict.

required
metric (str, Callable, list)

Metric used to quantify the goodness of fit of the model.

  • If string: {'mean_squared_error', 'mean_absolute_error', 'mean_absolute_percentage_error', 'mean_squared_log_error'}
  • If Callable: Function with arguments y_true, y_pred that returns a float.
  • If list: List containing multiple strings and/or Callables.
required
initial_train_size int

Number of samples in the initial train split. If None and forecaster is already trained, no initial train is done and all data is used to evaluate the model. However, the first len(forecaster.last_window) observations are needed to create the initial predictors, so no predictions are calculated for them. This useful to backtest the model on the same data used to train it. None is only allowed when refit is False and forecaster is already trained.

`None`
fixed_train_size bool

If True, train size doesn't increase but moves by steps in each iteration.

`True`
gap int

Number of samples to be excluded after the end of each training set and before the test set.

`0`
allow_incomplete_fold bool

Last fold is allowed to have a smaller number of samples than the test_size. If False, the last fold is excluded.

`True`
levels (str, list)

Time series to be predicted. If None all levels will be predicted.

`None`
exog pandas Series, pandas DataFrame, dict

Exogenous variables.

`None`
refit (bool, int)

Whether to re-fit the forecaster in each iteration. If refit is an integer, the Forecaster will be trained every that number of iterations.

`False`
interval list

Confidence of the prediction interval estimated. Sequence of percentiles to compute, which must be between 0 and 100 inclusive. If None, no intervals are estimated.

`None`
n_boot int

Number of bootstrapping iterations used to estimate prediction intervals.

`500`
random_state int

Sets a seed to the random generator, so that boot intervals are always deterministic.

`123`
in_sample_residuals bool

If True, residuals from the training data are used as proxy of prediction error to create prediction intervals. If False, out_sample_residuals are used if they are already stored inside the forecaster.

`True`
n_jobs (int, auto)

The number of jobs to run in parallel. If -1, then the number of jobs is set to the number of cores. If 'auto', n_jobs is set using the function skforecast.utils.select_n_jobs_backtesting. New in version 0.9.0

`'auto'`
verbose bool

Print number of folds and index of training and validation sets used for backtesting.

`False`
show_progress bool

Whether to show a progress bar.

`True`
suppress_warnings bool

If True, skforecast warnings will be suppressed during the backtesting process. See skforecast.exceptions.warn_skforecast_categories for more information.

False

Returns:

Name Type Description
metrics_levels pandas DataFrame

Value(s) of the metric(s). Index are the levels and columns the metrics.

backtest_predictions pandas DataFrame

Value of predictions and their estimated interval if interval is not None. If there is more than one level, this structure will be repeated for each of them.

  • column pred: predictions.
  • column lower_bound: lower bound of the interval.
  • column upper_bound: upper bound of the interval.
Source code in skforecast\model_selection_multiseries\model_selection_multiseries.py
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
def backtesting_forecaster_multiseries(
    forecaster: object,
    series: Union[pd.DataFrame, dict],
    steps: int,
    metric: Union[str, Callable, list],
    initial_train_size: Optional[int],
    fixed_train_size: bool=True,
    gap: int=0,
    allow_incomplete_fold: bool=True,
    levels: Optional[Union[str, list]]=None,
    exog: Optional[Union[pd.Series, pd.DataFrame, dict]]=None,
    refit: Union[bool, int]=False,
    interval: Optional[list]=None,
    n_boot: int=500,
    random_state: int=123,
    in_sample_residuals: bool=True,
    n_jobs: Union[int, str]='auto',
    verbose: bool=False,
    show_progress: bool=True,
    suppress_warnings: bool=False
) -> Tuple[pd.DataFrame, pd.DataFrame]:
    """
    Backtesting for multi-series and multivariate forecasters.

    - If `refit` is `False`, the model will be trained only once using the 
    `initial_train_size` first observations. 
    - If `refit` is `True`, the model is trained on each iteration, increasing
    the training set. 
    - If `refit` is an `integer`, the model will be trained every that number 
    of iterations.
    - If `forecaster` is already trained and `initial_train_size` is `None`,
    no initial train will be done and all data will be used to evaluate the model.
    However, the first `len(forecaster.last_window)` observations are needed
    to create the initial predictors, so no predictions are calculated for them.

    A copy of the original forecaster is created so that it is not modified during 
    the process.

    Parameters
    ----------
    forecaster : ForecasterAutoregMultiSeries, ForecasterAutoregMultiSeriesCustom, ForecasterAutoregMultiVariate, ForecasterRnn
        Forecaster model.
    series : pandas DataFrame, dict
        Training time series.
    steps : int
        Number of steps to predict.
    metric : str, Callable, list
        Metric used to quantify the goodness of fit of the model.

        - If `string`: {'mean_squared_error', 'mean_absolute_error',
        'mean_absolute_percentage_error', 'mean_squared_log_error'}
        - If `Callable`: Function with arguments y_true, y_pred that returns 
        a float.
        - If `list`: List containing multiple strings and/or Callables.
    initial_train_size : int, default `None`
        Number of samples in the initial train split. If `None` and `forecaster` is 
        already trained, no initial train is done and all data is used to evaluate the 
        model. However, the first `len(forecaster.last_window)` observations are needed 
        to create the initial predictors, so no predictions are calculated for them. 
        This useful to backtest the model on the same data used to train it.
        `None` is only allowed when `refit` is `False` and `forecaster` is already
        trained.
    fixed_train_size : bool, default `True`
        If True, train size doesn't increase but moves by `steps` in each iteration.
    gap : int, default `0`
        Number of samples to be excluded after the end of each training set and 
        before the test set.
    allow_incomplete_fold : bool, default `True`
        Last fold is allowed to have a smaller number of samples than the 
        `test_size`. If `False`, the last fold is excluded.
    levels : str, list, default `None`
        Time series to be predicted. If `None` all levels will be predicted.
    exog : pandas Series, pandas DataFrame, dict, default `None`
        Exogenous variables.
    refit : bool, int, default `False`
        Whether to re-fit the forecaster in each iteration. If `refit` is an 
        integer, the Forecaster will be trained every that number of iterations.
    interval : list, default `None`
        Confidence of the prediction interval estimated. Sequence of percentiles
        to compute, which must be between 0 and 100 inclusive. If `None`, no
        intervals are estimated.
    n_boot : int, default `500`
        Number of bootstrapping iterations used to estimate prediction
        intervals.
    random_state : int, default `123`
        Sets a seed to the random generator, so that boot intervals are always 
        deterministic.
    in_sample_residuals : bool, default `True`
        If `True`, residuals from the training data are used as proxy of prediction 
        error to create prediction intervals. If `False`, out_sample_residuals 
        are used if they are already stored inside the forecaster.
    n_jobs : int, 'auto', default `'auto'`
        The number of jobs to run in parallel. If `-1`, then the number of jobs is 
        set to the number of cores. If 'auto', `n_jobs` is set using the function
        skforecast.utils.select_n_jobs_backtesting.
        **New in version 0.9.0**
    verbose : bool, default `False`
        Print number of folds and index of training and validation sets used 
        for backtesting.
    show_progress : bool, default `True`
        Whether to show a progress bar.
    suppress_warnings: bool, default `False`
        If `True`, skforecast warnings will be suppressed during the backtesting 
        process. See skforecast.exceptions.warn_skforecast_categories for more
        information.

    Returns
    -------
    metrics_levels : pandas DataFrame
        Value(s) of the metric(s). Index are the levels and columns the metrics.
    backtest_predictions : pandas DataFrame
        Value of predictions and their estimated interval if `interval` is not `None`.
        If there is more than one level, this structure will be repeated for each of them.

        - column pred: predictions.
        - column lower_bound: lower bound of the interval.
        - column upper_bound: upper bound of the interval.

    """

    multi_series_forecasters = [
        'ForecasterAutoregMultiSeries', 
        'ForecasterAutoregMultiSeriesCustom', 
        'ForecasterAutoregMultiVariate',
        'ForecasterRnn'
    ]

    forecaster_name = type(forecaster).__name__

    if forecaster_name not in multi_series_forecasters:
        raise TypeError(
            (f"`forecaster` must be of type {multi_series_forecasters}, "
             f"for all other types of forecasters use the functions available in "
             f"the `model_selection` module. Got {forecaster_name}")
        )

    check_backtesting_input(
        forecaster            = forecaster,
        steps                 = steps,
        metric                = metric,
        series                = series,
        exog                  = exog,
        initial_train_size    = initial_train_size,
        fixed_train_size      = fixed_train_size,
        gap                   = gap,
        allow_incomplete_fold = allow_incomplete_fold,
        refit                 = refit,
        interval              = interval,
        n_boot                = n_boot,
        random_state          = random_state,
        in_sample_residuals   = in_sample_residuals,
        n_jobs                = n_jobs,
        verbose               = verbose,
        show_progress         = show_progress,
        suppress_warnings     = suppress_warnings
    )

    metrics_levels, backtest_predictions = _backtesting_forecaster_multiseries(
        forecaster            = forecaster,
        series                = series,
        steps                 = steps,
        levels                = levels,
        metric                = metric,
        initial_train_size    = initial_train_size,
        fixed_train_size      = fixed_train_size,
        gap                   = gap,
        allow_incomplete_fold = allow_incomplete_fold,
        exog                  = exog,
        refit                 = refit,
        interval              = interval,
        n_boot                = n_boot,
        random_state          = random_state,
        in_sample_residuals   = in_sample_residuals,
        n_jobs                = n_jobs,
        verbose               = verbose,
        show_progress         = show_progress,
        suppress_warnings     = suppress_warnings
    )

    return metrics_levels, backtest_predictions

grid_search_forecaster_multiseries(forecaster, series, param_grid, steps, metric, initial_train_size, fixed_train_size=True, gap=0, allow_incomplete_fold=True, levels=None, exog=None, lags_grid=None, refit=False, return_best=True, n_jobs='auto', verbose=True, show_progress=True, suppress_warnings=False, output_file=None)

Exhaustive search over specified parameter values for a Forecaster object. Validation is done using multi-series backtesting.

Parameters:

Name Type Description Default
forecaster (ForecasterAutoregMultiSeries, ForecasterAutoregMultiSeriesCustom, ForecasterAutoregMultiVariate)

Forecaster model.

required
series pandas DataFrame, dict

Training time series.

required
param_grid dict

Dictionary with parameters names (str) as keys and lists of parameter settings to try as values.

required
steps int

Number of steps to predict.

required
metric (str, Callable, list)

Metric used to quantify the goodness of fit of the model.

  • If string: {'mean_squared_error', 'mean_absolute_error', 'mean_absolute_percentage_error', 'mean_squared_log_error'}
  • If Callable: Function with arguments y_true, y_pred that returns a float.
  • If list: List containing multiple strings and/or Callables.
required
initial_train_size int

Number of samples in the initial train split.

required
fixed_train_size bool

If True, train size doesn't increase but moves by steps in each iteration.

`True`
gap int

Number of samples to be excluded after the end of each training set and before the test set.

`0`
allow_incomplete_fold bool

Last fold is allowed to have a smaller number of samples than the test_size. If False, the last fold is excluded.

`True`
levels (str, list)

level (str) or levels (list) at which the forecaster is optimized. If None, all levels are taken into account. The resulting metric will be the average of the optimization of all levels.

`None`
exog pandas Series, pandas DataFrame, dict

Exogenous variables.

`None`
lags_grid (list, dict)

Lists of lags to try, containing int, lists, numpy ndarray, or range objects. If dict, the keys are used as labels in the results DataFrame, and the values are used as the lists of lags to try. Ignored if the forecaster is an instance of ForecasterAutoregCustom or ForecasterAutoregMultiSeriesCustom.

`None`
refit (bool, int)

Whether to re-fit the forecaster in each iteration. If refit is an integer, the Forecaster will be trained every that number of iterations.

`False`
return_best bool

Refit the forecaster using the best found parameters on the whole data.

`True`
n_jobs (int, auto)

The number of jobs to run in parallel. If -1, then the number of jobs is set to the number of cores. If 'auto', n_jobs is set using the function skforecast.utils.select_n_jobs_backtesting. New in version 0.9.0

`'auto'`
verbose bool

Print number of folds used for cv or backtesting.

`True`
show_progress bool

Whether to show a progress bar.

`True`
suppress_warnings bool

If True, skforecast warnings will be suppressed during the hyperparameter search. See skforecast.exceptions.warn_skforecast_categories for more information.

False
output_file str

Specifies the filename or full path where the results should be saved. The results will be saved in a tab-separated values (TSV) format. If None, the results will not be saved to a file. New in version 0.12.0

`None`

Returns:

Name Type Description
results pandas DataFrame

Results for each combination of parameters.

  • column levels: levels configuration for each iteration.
  • column lags: lags configuration for each iteration.
  • column lags_label: descriptive label or alias for the lags.
  • column params: parameters configuration for each iteration.
  • column metric: metric value estimated for each iteration. The resulting metric will be the average of the optimization of all levels.
  • additional n columns with param = value.
Source code in skforecast\model_selection_multiseries\model_selection_multiseries.py
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
def grid_search_forecaster_multiseries(
    forecaster: object,
    series: Union[pd.DataFrame, dict],
    param_grid: dict,
    steps: int,
    metric: Union[str, Callable, list],
    initial_train_size: int,
    fixed_train_size: bool=True,
    gap: int=0,
    allow_incomplete_fold: bool=True,
    levels: Optional[Union[str, list]]=None,
    exog: Optional[Union[pd.Series, pd.DataFrame, dict]]=None,
    lags_grid: Optional[Union[list, dict]]=None,
    refit: Union[bool, int]=False,
    return_best: bool=True,
    n_jobs: Union[int, str]='auto',
    verbose: bool=True,
    show_progress: bool=True,
    suppress_warnings: bool=False,
    output_file: Optional[str]=None
) -> pd.DataFrame:
    """
    Exhaustive search over specified parameter values for a Forecaster object.
    Validation is done using multi-series backtesting.

    Parameters
    ----------
    forecaster : ForecasterAutoregMultiSeries, ForecasterAutoregMultiSeriesCustom, ForecasterAutoregMultiVariate
        Forecaster model.
    series : pandas DataFrame, dict
        Training time series.
    param_grid : dict
        Dictionary with parameters names (`str`) as keys and lists of parameter
        settings to try as values.
    steps : int
        Number of steps to predict.
    metric : str, Callable, list
        Metric used to quantify the goodness of fit of the model.

        - If `string`: {'mean_squared_error', 'mean_absolute_error',
        'mean_absolute_percentage_error', 'mean_squared_log_error'}
        - If `Callable`: Function with arguments y_true, y_pred that returns 
        a float.
        - If `list`: List containing multiple strings and/or Callables.
    initial_train_size : int 
        Number of samples in the initial train split.
    fixed_train_size : bool, default `True`
        If True, train size doesn't increase but moves by `steps` in each iteration.
    gap : int, default `0`
        Number of samples to be excluded after the end of each training set and 
        before the test set.
    allow_incomplete_fold : bool, default `True`
        Last fold is allowed to have a smaller number of samples than the 
        `test_size`. If `False`, the last fold is excluded.
    levels : str, list, default `None`
        level (`str`) or levels (`list`) at which the forecaster is optimized. 
        If `None`, all levels are taken into account. The resulting metric will be
        the average of the optimization of all levels.
    exog : pandas Series, pandas DataFrame, dict, default `None`
        Exogenous variables.
    lags_grid : list, dict, default `None`
        Lists of lags to try, containing int, lists, numpy ndarray, or range 
        objects. If `dict`, the keys are used as labels in the `results` 
        DataFrame, and the values are used as the lists of lags to try. Ignored 
        if the forecaster is an instance of `ForecasterAutoregCustom` or 
        `ForecasterAutoregMultiSeriesCustom`.
    refit : bool, int, default `False`
        Whether to re-fit the forecaster in each iteration. If `refit` is an 
        integer, the Forecaster will be trained every that number of iterations.
    return_best : bool, default `True`
        Refit the `forecaster` using the best found parameters on the whole data.
    n_jobs : int, 'auto', default `'auto'`
        The number of jobs to run in parallel. If `-1`, then the number of jobs is 
        set to the number of cores. If 'auto', `n_jobs` is set using the function
        skforecast.utils.select_n_jobs_backtesting.
        **New in version 0.9.0**
    verbose : bool, default `True`
        Print number of folds used for cv or backtesting.
    show_progress : bool, default `True`
        Whether to show a progress bar.
    suppress_warnings: bool, default `False`
        If `True`, skforecast warnings will be suppressed during the hyperparameter 
        search. See skforecast.exceptions.warn_skforecast_categories for more
        information.
    output_file : str, default `None`
        Specifies the filename or full path where the results should be saved. 
        The results will be saved in a tab-separated values (TSV) format. If 
        `None`, the results will not be saved to a file.
        **New in version 0.12.0**

    Returns
    -------
    results : pandas DataFrame
        Results for each combination of parameters.

        - column levels: levels configuration for each iteration.
        - column lags: lags configuration for each iteration.
        - column lags_label: descriptive label or alias for the lags.
        - column params: parameters configuration for each iteration.
        - column metric: metric value estimated for each iteration. The resulting 
        metric will be the average of the optimization of all levels.
        - additional n columns with param = value.

    """

    param_grid = list(ParameterGrid(param_grid))

    results = _evaluate_grid_hyperparameters_multiseries(
                  forecaster            = forecaster,
                  series                = series,
                  param_grid            = param_grid,
                  steps                 = steps,
                  metric                = metric,
                  initial_train_size    = initial_train_size,
                  fixed_train_size      = fixed_train_size,
                  gap                   = gap,
                  allow_incomplete_fold = allow_incomplete_fold,
                  levels                = levels,
                  exog                  = exog,
                  lags_grid             = lags_grid,
                  refit                 = refit,
                  n_jobs                = n_jobs,
                  return_best           = return_best,
                  verbose               = verbose,
                  show_progress         = show_progress,
                  suppress_warnings     = suppress_warnings,
                  output_file           = output_file
              )

    return results

random_search_forecaster_multiseries(forecaster, series, param_distributions, steps, metric, initial_train_size, fixed_train_size=True, gap=0, allow_incomplete_fold=True, levels=None, exog=None, lags_grid=None, refit=False, n_iter=10, random_state=123, return_best=True, n_jobs='auto', verbose=True, show_progress=True, suppress_warnings=False, output_file=None)

Random search over specified parameter values or distributions for a Forecaster object. Validation is done using multi-series backtesting.

Parameters:

Name Type Description Default
forecaster (ForecasterAutoregMultiSeries, ForecasterAutoregMultiSeriesCustom, ForecasterAutoregMultiVariate)

Forecaster model.

required
series pandas DataFrame, dict

Training time series.

required
param_distributions dict

Dictionary with parameters names (str) as keys and distributions or lists of parameters to try.

required
steps int

Number of steps to predict.

required
metric (str, Callable, list)

Metric used to quantify the goodness of fit of the model.

  • If string: {'mean_squared_error', 'mean_absolute_error', 'mean_absolute_percentage_error', 'mean_squared_log_error'}
  • If Callable: Function with arguments y_true, y_pred that returns a float.
  • If list: List containing multiple strings and/or Callables.
required
initial_train_size int

Number of samples in the initial train split.

required
fixed_train_size bool

If True, train size doesn't increase but moves by steps in each iteration.

`True`
gap int

Number of samples to be excluded after the end of each training set and before the test set.

`0`
allow_incomplete_fold bool

Last fold is allowed to have a smaller number of samples than the test_size. If False, the last fold is excluded.

`True`
levels (str, list)

level (str) or levels (list) at which the forecaster is optimized. If None, all levels are taken into account. The resulting metric will be the average of the optimization of all levels.

`None`
exog pandas Series, pandas DataFrame, dict

Exogenous variables.

`None`
lags_grid (list, dict)

Lists of lags to try, containing int, lists, numpy ndarray, or range objects. If dict, the keys are used as labels in the results DataFrame, and the values are used as the lists of lags to try. Ignored if the forecaster is an instance of ForecasterAutoregCustom or ForecasterAutoregMultiSeriesCustom.

`None`
refit (bool, int)

Whether to re-fit the forecaster in each iteration. If refit is an integer, the Forecaster will be trained every that number of iterations.

`False`
n_iter int

Number of parameter settings that are sampled per lags configuration. n_iter trades off runtime vs quality of the solution.

`10`
random_state int

Sets a seed to the random sampling for reproducible output.

`123`
return_best bool

Refit the forecaster using the best found parameters on the whole data.

`True`
n_jobs (int, auto)

The number of jobs to run in parallel. If -1, then the number of jobs is set to the number of cores. If 'auto', n_jobs is set using the function skforecast.utils.select_n_jobs_backtesting. New in version 0.9.0

`'auto'`
verbose bool

Print number of folds used for cv or backtesting.

`True`
show_progress bool

Whether to show a progress bar.

`True`
suppress_warnings bool

If True, skforecast warnings will be suppressed during the hyperparameter search. See skforecast.exceptions.warn_skforecast_categories for more information.

False
output_file str

Specifies the filename or full path where the results should be saved. The results will be saved in a tab-separated values (TSV) format. If None, the results will not be saved to a file. New in version 0.12.0

`None`

Returns:

Name Type Description
results pandas DataFrame

Results for each combination of parameters.

  • column levels: levels configuration for each iteration.
  • column lags: lags configuration for each iteration.
  • column lags_label: descriptive label or alias for the lags.
  • column params: parameters configuration for each iteration.
  • column metric: metric value estimated for each iteration. The resulting metric will be the average of the optimization of all levels.
  • additional n columns with param = value.
Source code in skforecast\model_selection_multiseries\model_selection_multiseries.py
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
def random_search_forecaster_multiseries(
    forecaster: object,
    series: Union[pd.DataFrame, dict],
    param_distributions: dict,
    steps: int,
    metric: Union[str, Callable, list],
    initial_train_size: int,
    fixed_train_size: bool=True,
    gap: int=0,
    allow_incomplete_fold: bool=True,
    levels: Optional[Union[str, list]]=None,
    exog: Optional[Union[pd.Series, pd.DataFrame, dict]]=None,
    lags_grid: Optional[Union[list, dict]]=None,
    refit: Union[bool, int]=False,
    n_iter: int=10,
    random_state: int=123,
    return_best: bool=True,
    n_jobs: Union[int, str]='auto',
    verbose: bool=True,
    show_progress: bool=True,
    suppress_warnings: bool=False,
    output_file: Optional[str]=None
) -> pd.DataFrame:
    """
    Random search over specified parameter values or distributions for a Forecaster 
    object. Validation is done using multi-series backtesting.

    Parameters
    ----------
    forecaster : ForecasterAutoregMultiSeries, ForecasterAutoregMultiSeriesCustom, ForecasterAutoregMultiVariate
        Forecaster model.
    series : pandas DataFrame, dict
        Training time series.
    param_distributions : dict
        Dictionary with parameters names (`str`) as keys and distributions or 
        lists of parameters to try.
    steps : int
        Number of steps to predict.
    metric : str, Callable, list
        Metric used to quantify the goodness of fit of the model.

        - If `string`: {'mean_squared_error', 'mean_absolute_error',
        'mean_absolute_percentage_error', 'mean_squared_log_error'}
        - If `Callable`: Function with arguments y_true, y_pred that returns 
        a float.
        - If `list`: List containing multiple strings and/or Callables.
    initial_train_size : int 
        Number of samples in the initial train split.
    fixed_train_size : bool, default `True`
        If True, train size doesn't increase but moves by `steps` in each iteration.
    gap : int, default `0`
        Number of samples to be excluded after the end of each training set and 
        before the test set.
    allow_incomplete_fold : bool, default `True`
        Last fold is allowed to have a smaller number of samples than the 
        `test_size`. If `False`, the last fold is excluded.
    levels : str, list, default `None`
        level (`str`) or levels (`list`) at which the forecaster is optimized. 
        If `None`, all levels are taken into account. The resulting metric will be
        the average of the optimization of all levels.
    exog : pandas Series, pandas DataFrame, dict, default `None`
        Exogenous variables.
    lags_grid : list, dict, default `None`
        Lists of lags to try, containing int, lists, numpy ndarray, or range 
        objects. If `dict`, the keys are used as labels in the `results` 
        DataFrame, and the values are used as the lists of lags to try. Ignored 
        if the forecaster is an instance of `ForecasterAutoregCustom` or 
        `ForecasterAutoregMultiSeriesCustom`.
    refit : bool, int, default `False`
        Whether to re-fit the forecaster in each iteration. If `refit` is an 
        integer, the Forecaster will be trained every that number of iterations.
    n_iter : int, default `10`
        Number of parameter settings that are sampled per lags configuration. 
        n_iter trades off runtime vs quality of the solution.
    random_state : int, default `123`
        Sets a seed to the random sampling for reproducible output.
    return_best : bool, default `True`
        Refit the `forecaster` using the best found parameters on the whole data.
    n_jobs : int, 'auto', default `'auto'`
        The number of jobs to run in parallel. If `-1`, then the number of jobs is 
        set to the number of cores. If 'auto', `n_jobs` is set using the function
        skforecast.utils.select_n_jobs_backtesting.
        **New in version 0.9.0**
    verbose : bool, default `True`
        Print number of folds used for cv or backtesting.
    show_progress : bool, default `True`
        Whether to show a progress bar.
    suppress_warnings: bool, default `False`
        If `True`, skforecast warnings will be suppressed during the hyperparameter 
        search. See skforecast.exceptions.warn_skforecast_categories for more
        information.
    output_file : str, default `None`
        Specifies the filename or full path where the results should be saved. 
        The results will be saved in a tab-separated values (TSV) format. If 
        `None`, the results will not be saved to a file.
        **New in version 0.12.0**

    Returns
    -------
    results : pandas DataFrame
        Results for each combination of parameters.

        - column levels: levels configuration for each iteration.
        - column lags: lags configuration for each iteration.
        - column lags_label: descriptive label or alias for the lags.
        - column params: parameters configuration for each iteration.
        - column metric: metric value estimated for each iteration. The resulting 
        metric will be the average of the optimization of all levels.
        - additional n columns with param = value.

    """

    param_grid = list(ParameterSampler(param_distributions, n_iter=n_iter, 
                                       random_state=random_state))

    results = _evaluate_grid_hyperparameters_multiseries(
                  forecaster            = forecaster,
                  series                = series,
                  param_grid            = param_grid,
                  steps                 = steps,
                  metric                = metric,
                  initial_train_size    = initial_train_size,
                  fixed_train_size      = fixed_train_size,
                  gap                   = gap,
                  allow_incomplete_fold = allow_incomplete_fold,
                  levels                = levels,
                  exog                  = exog,
                  lags_grid             = lags_grid,
                  refit                 = refit,
                  return_best           = return_best,
                  n_jobs                = n_jobs,
                  verbose               = verbose,
                  show_progress         = show_progress,
                  suppress_warnings     = suppress_warnings,
                 output_file            = output_file
              )

    return results

bayesian_search_forecaster_multiseries(forecaster, series, search_space, steps, metric, initial_train_size, fixed_train_size=True, gap=0, allow_incomplete_fold=True, levels=None, exog=None, lags_grid='deprecated', refit=False, n_trials=10, random_state=123, return_best=True, n_jobs='auto', verbose=True, show_progress=True, suppress_warnings=False, output_file=None, engine='optuna', kwargs_create_study={}, kwargs_study_optimize={})

Bayesian optimization for a Forecaster object using multi-series backtesting and optuna library. New in version 0.12.0

Parameters:

Name Type Description Default
forecaster (ForecasterAutoregMultiSeries, ForecasterAutoregMultiSeriesCustom, ForecasterAutoregMultiVariate)

Forecaster model.

required
series pandas DataFrame, dict

Training time series.

required
search_space Callable

Function with argument trial which returns a dictionary with parameters names (str) as keys and Trial object from optuna (trial.suggest_float, trial.suggest_int, trial.suggest_categorical) as values.

required
steps int

Number of steps to predict.

required
metric (str, Callable, list)

Metric used to quantify the goodness of fit of the model.

  • If string: {'mean_squared_error', 'mean_absolute_error', 'mean_absolute_percentage_error', 'mean_squared_log_error'}
  • If Callable: Function with arguments y_true, y_pred that returns a float.
  • If list: List containing multiple strings and/or Callables.
required
initial_train_size int

Number of samples in the initial train split.

required
fixed_train_size bool

If True, train size doesn't increase but moves by steps in each iteration.

`True`
gap int

Number of samples to be excluded after the end of each training set and before the test set.

`0`
allow_incomplete_fold bool

Last fold is allowed to have a smaller number of samples than the test_size. If False, the last fold is excluded.

`True`
levels (str, list)

level (str) or levels (list) at which the forecaster is optimized. If None, all levels are taken into account. The resulting metric will be the average of the optimization of all levels.

`None`
exog pandas Series, pandas DataFrame, dict

Exogenous variables.

`None`
lags_grid deprecated

Deprecated since version 0.12.0 and will be removed in 0.13.0. Use search_space to define the candidate values for the lags. This allows the lags to be optimized along with the other hyperparameters of the regressor in the bayesian search.

'deprecated'
refit (bool, int)

Whether to re-fit the forecaster in each iteration. If refit is an integer, the Forecaster will be trained every that number of iterations.

`False`
n_trials int

Number of parameter settings that are sampled in each lag configuration.

`10`
random_state int

Sets a seed to the sampling for reproducible output.

`123`
return_best bool

Refit the forecaster using the best found parameters on the whole data.

`True`
n_jobs (int, auto)

The number of jobs to run in parallel. If -1, then the number of jobs is set to the number of cores. If 'auto', n_jobs is set using the function skforecast.utils.select_n_jobs_backtesting.

`'auto'`
verbose bool

Print number of folds used for cv or backtesting.

`True`
show_progress bool

Whether to show a progress bar.

`True`
suppress_warnings bool

If True, skforecast warnings will be suppressed during the hyperparameter search. See skforecast.exceptions.warn_skforecast_categories for more information.

False
output_file str

Specifies the filename or full path where the results should be saved. The results will be saved in a tab-separated values (TSV) format. If None, the results will not be saved to a file. New in version 0.12.0

`None`
engine str

Bayesian optimization runs through the optuna library.

`'optuna'`
kwargs_create_study dict

Keyword arguments (key, value mappings) to pass to optuna.create_study(). If default, the direction is set to 'minimize' and a TPESampler(seed=123) sampler is used during optimization.

`{}`
kwargs_study_optimize dict

Other keyword arguments (key, value mappings) to pass to study.optimize().

`{}`

Returns:

Name Type Description
results pandas DataFrame

Results for each combination of parameters.

  • column levels: levels configuration for each iteration.
  • column lags: lags configuration for each iteration.
  • column params: parameters configuration for each iteration.
  • column metric: metric value estimated for each iteration. The resulting metric will be the average of the optimization of all levels.
  • additional n columns with param = value.
best_trial optuna object

The best optimization result returned as a FrozenTrial optuna object.

Source code in skforecast\model_selection_multiseries\model_selection_multiseries.py
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
def bayesian_search_forecaster_multiseries(
    forecaster: object,
    series: Union[pd.DataFrame, dict],
    search_space: Callable,
    steps: int,
    metric: Union[str, Callable, list],
    initial_train_size: int,
    fixed_train_size: bool=True,
    gap: int=0,
    allow_incomplete_fold: bool=True,
    levels: Optional[Union[str, list]]=None,
    exog: Optional[Union[pd.Series, pd.DataFrame, dict]]=None,
    lags_grid: Any='deprecated',
    refit: Union[bool, int]=False,
    n_trials: int=10,
    random_state: int=123,
    return_best: bool=True,
    n_jobs: Union[int, str]='auto',
    verbose: bool=True,
    show_progress: bool=True,
    suppress_warnings: bool=False,
    output_file: Optional[str]=None,
    engine: str='optuna',
    kwargs_create_study: dict={},
    kwargs_study_optimize: dict={}
) -> Tuple[pd.DataFrame, object]:
    """
    Bayesian optimization for a Forecaster object using multi-series backtesting 
    and optuna library.
    **New in version 0.12.0**

    Parameters
    ----------
    forecaster : ForecasterAutoregMultiSeries, ForecasterAutoregMultiSeriesCustom, ForecasterAutoregMultiVariate
        Forecaster model.
    series : pandas DataFrame, dict
        Training time series.
    search_space : Callable
        Function with argument `trial` which returns a dictionary with parameters names 
        (`str`) as keys and Trial object from optuna (trial.suggest_float, 
        trial.suggest_int, trial.suggest_categorical) as values.
    steps : int
        Number of steps to predict.
    metric : str, Callable, list
        Metric used to quantify the goodness of fit of the model.

        - If `string`: {'mean_squared_error', 'mean_absolute_error',
        'mean_absolute_percentage_error', 'mean_squared_log_error'}
        - If `Callable`: Function with arguments y_true, y_pred that returns 
        a float.
        - If `list`: List containing multiple strings and/or Callables.
    initial_train_size : int 
        Number of samples in the initial train split.
    fixed_train_size : bool, default `True`
        If True, train size doesn't increase but moves by `steps` in each iteration.
    gap : int, default `0`
        Number of samples to be excluded after the end of each training set and 
        before the test set.
    allow_incomplete_fold : bool, default `True`
        Last fold is allowed to have a smaller number of samples than the 
        `test_size`. If `False`, the last fold is excluded.
    levels : str, list, default `None`
        level (`str`) or levels (`list`) at which the forecaster is optimized. 
        If `None`, all levels are taken into account. The resulting metric will be
        the average of the optimization of all levels.
    exog : pandas Series, pandas DataFrame, dict, default `None`
        Exogenous variables.
    lags_grid : deprecated
        **Deprecated since version 0.12.0 and will be removed in 0.13.0.** Use
        `search_space` to define the candidate values for the lags. This allows 
        the lags to be optimized along with the other hyperparameters of the 
        regressor in the bayesian search.
    refit : bool, int, default `False`
        Whether to re-fit the forecaster in each iteration. If `refit` is an 
        integer, the Forecaster will be trained every that number of iterations.
    n_trials : int, default `10`
        Number of parameter settings that are sampled in each lag configuration.
    random_state : int, default `123`
        Sets a seed to the sampling for reproducible output.
    return_best : bool, default `True`
        Refit the `forecaster` using the best found parameters on the whole data.
    n_jobs : int, 'auto', default `'auto'`
        The number of jobs to run in parallel. If `-1`, then the number of jobs is 
        set to the number of cores. If 'auto', `n_jobs` is set using the function
        skforecast.utils.select_n_jobs_backtesting.
    verbose : bool, default `True`
        Print number of folds used for cv or backtesting.
    show_progress : bool, default `True`
        Whether to show a progress bar.
    suppress_warnings: bool, default `False`
        If `True`, skforecast warnings will be suppressed during the hyperparameter
        search. See skforecast.exceptions.warn_skforecast_categories for more
        information.
    output_file : str, default `None`
        Specifies the filename or full path where the results should be saved. 
        The results will be saved in a tab-separated values (TSV) format. If 
        `None`, the results will not be saved to a file.
        **New in version 0.12.0**
    engine : str, default `'optuna'`
        Bayesian optimization runs through the optuna library.
    kwargs_create_study : dict, default `{}`
        Keyword arguments (key, value mappings) to pass to optuna.create_study().
        If default, the direction is set to 'minimize' and a TPESampler(seed=123) 
        sampler is used during optimization.
    kwargs_study_optimize : dict, default `{}`
        Other keyword arguments (key, value mappings) to pass to study.optimize().

    Returns
    -------
    results : pandas DataFrame
        Results for each combination of parameters.

        - column levels: levels configuration for each iteration.
        - column lags: lags configuration for each iteration.
        - column params: parameters configuration for each iteration.
        - column metric: metric value estimated for each iteration. The resulting 
        metric will be the average of the optimization of all levels.
        - additional n columns with param = value.
    best_trial : optuna object
        The best optimization result returned as a FrozenTrial optuna object.

    """

    if return_best and exog is not None and (len(exog) != len(series)):
        raise ValueError(
            (f"`exog` must have same number of samples as `series`. "
             f"length `exog`: ({len(exog)}), length `series`: ({len(series)})")
        )

    if lags_grid != 'deprecated':
        warnings.warn(
            ("The 'lags_grid' argument is deprecated and will be removed in a future version. "
             "Use the 'search_space' argument to define the candidate values for the lags. "
             "Example: {'lags' : trial.suggest_categorical('lags', [3, 5])}")
        )
        lags_grid = 'deprecated'

    if engine not in ['optuna']:
        raise ValueError(
            f"`engine` only allows 'optuna', got {engine}."
        )

    results, best_trial = _bayesian_search_optuna_multiseries(
                              forecaster            = forecaster,
                              series                = series,
                              exog                  = exog,
                              levels                = levels, 
                              search_space          = search_space,
                              steps                 = steps,
                              metric                = metric,
                              refit                 = refit,
                              initial_train_size    = initial_train_size,
                              fixed_train_size      = fixed_train_size,
                              gap                   = gap,
                              allow_incomplete_fold = allow_incomplete_fold,
                              n_trials              = n_trials,
                              random_state          = random_state,
                              return_best           = return_best,
                              n_jobs                = n_jobs,
                              verbose               = verbose,
                              show_progress         = show_progress,
                              suppress_warnings     = suppress_warnings,
                              output_file           = output_file,
                              kwargs_create_study   = kwargs_create_study,
                              kwargs_study_optimize = kwargs_study_optimize
                          )

    return results, best_trial

select_features_multiseries(forecaster, selector, series, exog=None, select_only=None, force_inclusion=None, subsample=0.5, random_state=123, verbose=True)

Feature selection using any of the sklearn.feature_selection module selectors (such as RFECV, SelectFromModel, etc.). Two groups of features are evaluated: autoregressive features and exogenous features. By default, the selection process is performed on both sets of features at the same time, so that the most relevant autoregressive and exogenous features are selected. However, using the select_only argument, the selection process can focus only on the autoregressive or exogenous features without taking into account the other features. Therefore, all other features will remain in the model. It is also possible to force the inclusion of certain features in the final list of selected features using the force_inclusion parameter.

Parameters:

Name Type Description Default
forecaster (ForecasterAutoregMultiSeries, ForecasterAutoregMultiseriesCustom)

Forecaster model.

required
selector object

A feature selector from sklearn.feature_selection.

required
series pandas DataFrame

Target time series to which the feature selection will be applied.

required
exog pandas Series, pandas DataFrame, dict

Exogenous variables.

`None`
select_only str

Decide what type of features to include in the selection process.

  • If 'autoreg', only autoregressive features (lags or custom predictors) are evaluated by the selector. All exogenous features are included in the output (selected_exog).
  • If 'exog', only exogenous features are evaluated without the presence of autoregressive features. All autoregressive features are included in the output (selected_autoreg).
  • If None, all features are evaluated by the selector.
`None`
force_inclusion (list, str)

Features to force include in the final list of selected features.

  • If list, list of feature names to force include.
  • If str, regular expression to identify features to force include. For example, if force_inclusion="^sun_", all features that begin with "sun_" will be included in the final list of selected features.
`None`
subsample (int, float)

Proportion of records to use for feature selection.

`0.5`
random_state int

Sets a seed for the random subsample so that the subsampling process is always deterministic.

`123`
verbose bool

Print information about feature selection process.

`True`

Returns:

Name Type Description
selected_autoreg list

List of selected autoregressive features.

selected_exog list

List of selected exogenous features.

Source code in skforecast\model_selection_multiseries\model_selection_multiseries.py
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
def select_features_multiseries(
    forecaster: object,
    selector: object,
    series: Union[pd.DataFrame, dict],
    exog: Optional[Union[pd.Series, pd.DataFrame, dict]]=None,
    select_only: Optional[str]=None,
    force_inclusion: Optional[Union[list, str]]=None,
    subsample: Union[int, float]=0.5,
    random_state: int=123,
    verbose: bool=True,
) -> Union[list, list]:
    """
    Feature selection using any of the sklearn.feature_selection module selectors 
    (such as `RFECV`, `SelectFromModel`, etc.). Two groups of features are
    evaluated: autoregressive features and exogenous features. By default, the 
    selection process is performed on both sets of features at the same time, 
    so that the most relevant autoregressive and exogenous features are selected. 
    However, using the `select_only` argument, the selection process can focus 
    only on the autoregressive or exogenous features without taking into account 
    the other features. Therefore, all other features will remain in the model. 
    It is also possible to force the inclusion of certain features in the final 
    list of selected features using the `force_inclusion` parameter.

    Parameters
    ----------
    forecaster : ForecasterAutoregMultiSeries, ForecasterAutoregMultiseriesCustom
        Forecaster model.
    selector : object
        A feature selector from sklearn.feature_selection.
    series : pandas DataFrame
        Target time series to which the feature selection will be applied.
    exog : pandas Series, pandas DataFrame, dict, default `None`
        Exogenous variables.
    select_only : str, default `None`
        Decide what type of features to include in the selection process. 

        - If `'autoreg'`, only autoregressive features (lags or custom 
        predictors) are evaluated by the selector. All exogenous features are 
        included in the output (`selected_exog`).
        - If `'exog'`, only exogenous features are evaluated without the presence
        of autoregressive features. All autoregressive features are included 
        in the output (`selected_autoreg`).
        - If `None`, all features are evaluated by the selector.
    force_inclusion : list, str, default `None`
        Features to force include in the final list of selected features.

        - If `list`, list of feature names to force include.
        - If `str`, regular expression to identify features to force include. 
        For example, if `force_inclusion="^sun_"`, all features that begin 
        with "sun_" will be included in the final list of selected features.
    subsample : int, float, default `0.5`
        Proportion of records to use for feature selection.
    random_state : int, default `123`
        Sets a seed for the random subsample so that the subsampling process 
        is always deterministic.
    verbose : bool, default `True`
        Print information about feature selection process.

    Returns
    -------
    selected_autoreg : list
        List of selected autoregressive features.
    selected_exog : list
        List of selected exogenous features.

    """

    valid_forecasters = [
        'ForecasterAutoregMultiSeries',
        'ForecasterAutoregMultiSeriesCustom',
    ]

    if type(forecaster).__name__ not in valid_forecasters:
        raise TypeError(
            f"`forecaster` must be one of the following classes: {valid_forecasters}."
        )

    if select_only not in ['autoreg', 'exog', None]:
        raise ValueError(
            "`select_only` must be one of the following values: 'autoreg', 'exog', None."
        )

    if subsample <= 0 or subsample > 1:
        raise ValueError(
            "`subsample` must be a number greater than 0 and less than or equal to 1."
        )

    forecaster = deepcopy(forecaster)
    forecaster.fitted = False
    output = forecaster._create_train_X_y(series=series, exog=exog)
    X_train = output[0]
    y_train = output[1]
    series_col_names = output[3]

    if forecaster.encoding == 'onehot':
        encoding_cols = series_col_names
    else:
        encoding_cols = ['_level_skforecast']

    if hasattr(forecaster, 'lags'):
        autoreg_cols = [f"lag_{lag}" for lag in forecaster.lags]
    else:
        if forecaster.name_predictors is not None:
            autoreg_cols = forecaster.name_predictors
        else:
            autoreg_cols = [
                col
                for col in X_train.columns
                if re.match(r'^custom_predictor_\d+', col)
            ]
    exog_cols = [
        col
        for col in X_train.columns
        if col not in autoreg_cols and col not in encoding_cols
    ]

    forced_autoreg = []
    forced_exog = []
    if force_inclusion is not None:
        if isinstance(force_inclusion, list):
            forced_autoreg = [col for col in force_inclusion if col in autoreg_cols]
            forced_exog = [col for col in force_inclusion if col in exog_cols]
        elif isinstance(force_inclusion, str):
            forced_autoreg = [col for col in autoreg_cols if re.match(force_inclusion, col)]
            forced_exog = [col for col in exog_cols if re.match(force_inclusion, col)]

    if select_only == 'autoreg':
        X_train = X_train.drop(columns=exog_cols + encoding_cols)
    elif select_only == 'exog':
        X_train = X_train.drop(columns=autoreg_cols + encoding_cols)
    else:
        X_train = X_train.drop(columns=encoding_cols)

    if isinstance(subsample, float):
        subsample = int(len(X_train)*subsample)

    rng = np.random.default_rng(seed=random_state)
    sample = rng.choice(X_train.index, size=subsample, replace=False)
    X_train_sample = X_train.loc[sample, :]
    y_train_sample = y_train.loc[sample]
    selector.fit(X_train_sample, y_train_sample)
    selected_features = selector.get_feature_names_out()

    if select_only == 'exog':
        selected_autoreg = autoreg_cols
    else:
        selected_autoreg = [
            feature
            for feature in selected_features
            if feature in autoreg_cols
        ]

    if select_only == 'autoreg':
        selected_exog = exog_cols
    else:
        selected_exog = [
            feature
            for feature in selected_features
            if feature in exog_cols
        ]

    if force_inclusion is not None: 
        if select_only != 'autoreg':
            forced_exog_not_selected = set(forced_exog) - set(selected_features)
            selected_exog.extend(forced_exog_not_selected)
            selected_exog.sort(key=exog_cols.index)
        if select_only != 'exog':
            forced_autoreg_not_selected = set(forced_autoreg) - set(selected_features)
            selected_autoreg.extend(forced_autoreg_not_selected)
            selected_autoreg.sort(key=autoreg_cols.index)

    if len(selected_autoreg) == 0:
        warnings.warn(
            ("No autoregressive features have been selected. Since a Forecaster "
             "cannot be created without them, be sure to include at least one "
             "using the `force_inclusion` parameter.")
        )
    else:
        if hasattr(forecaster, 'lags'):
            selected_autoreg = [int(feature.replace('lag_', '')) 
                                for feature in selected_autoreg] 

    if verbose:
        print(f"Recursive feature elimination ({selector.__class__.__name__})")
        print("--------------------------------" + "-"*len(selector.__class__.__name__))
        print(f"Total number of records available: {X_train.shape[0]}")
        print(f"Total number of records used for feature selection: {X_train_sample.shape[0]}")
        print(f"Number of features available: {len(autoreg_cols) + len(exog_cols)}") 
        print(f"    Autoreg (n={len(autoreg_cols)})")
        print(f"    Exog    (n={len(exog_cols)})")
        print(f"Number of features selected: {len(selected_features)}")
        print(f"    Autoreg (n={len(selected_autoreg)}) : {selected_autoreg}")
        print(f"    Exog    (n={len(selected_exog)}) : {selected_exog}")

    return selected_autoreg, selected_exog

backtesting_forecaster_multivariate(forecaster, series, steps, metric, initial_train_size, fixed_train_size=True, gap=0, allow_incomplete_fold=True, levels=None, exog=None, refit=False, interval=None, n_boot=500, random_state=123, in_sample_residuals=True, n_jobs='auto', verbose=False, show_progress=True, suppress_warnings=False)

This function is an alias of backtesting_forecaster_multiseries.

Backtesting for multi-series and multivariate forecasters.

If refit is False, the model is trained only once using the initial_train_size first observations. If refit is True, the model is trained in each iteration increasing the training set. A copy of the original forecaster is created so it is not modified during the process.

Parameters:

Name Type Description Default
forecaster (ForecasterAutoregMultiSeries, ForecasterAutoregMultiSeriesCustom, ForecasterAutoregMultiVariate)

Forecaster model.

required
series pandas DataFrame, dict

Training time series.

required
steps int

Number of steps to predict.

required
metric (str, Callable, list)

Metric used to quantify the goodness of fit of the model.

  • If string: {'mean_squared_error', 'mean_absolute_error', 'mean_absolute_percentage_error', 'mean_squared_log_error'}
  • If Callable: Function with arguments y_true, y_pred that returns a float.
  • If list: List containing multiple strings and/or Callables.
required
initial_train_size int

Number of samples in the initial train split. If None and forecaster is already trained, no initial train is done and all data is used to evaluate the model. However, the first len(forecaster.last_window) observations are needed to create the initial predictors, so no predictions are calculated for them. This useful to backtest the model on the same data used to train it. None is only allowed when refit is False and forecaster is already trained.

`None`
fixed_train_size bool

If True, train size doesn't increase but moves by steps in each iteration.

`True`
gap int

Number of samples to be excluded after the end of each training set and before the test set.

`0`
allow_incomplete_fold bool

Last fold is allowed to have a smaller number of samples than the test_size. If False, the last fold is excluded.

`True`
levels (str, list)

Time series to be predicted. If None all levels will be predicted.

`None`
exog pandas Series, pandas DataFrame, dict

Exogenous variables.

`None`
refit (bool, int)

Whether to re-fit the forecaster in each iteration. If refit is an integer, the Forecaster will be trained every that number of iterations.

`False`
interval list

Confidence of the prediction interval estimated. Sequence of percentiles to compute, which must be between 0 and 100 inclusive. If None, no intervals are estimated.

`None`
n_boot int

Number of bootstrapping iterations used to estimate prediction intervals.

`500`
random_state int

Sets a seed to the random generator, so that boot intervals are always deterministic.

`123`
in_sample_residuals bool

If True, residuals from the training data are used as proxy of prediction error to create prediction intervals. If False, out_sample_residuals are used if they are already stored inside the forecaster.

`True`
n_jobs (int, auto)

The number of jobs to run in parallel. If -1, then the number of jobs is set to the number of cores. If 'auto', n_jobs is set using the function skforecast.utils.select_n_jobs_backtesting. New in version 0.9.0

`'auto'`
verbose bool

Print number of folds and index of training and validation sets used for backtesting.

`False`
show_progress bool

Whether to show a progress bar.

`True`
suppress_warnings bool

If True, skforecast warnings will be suppressed during the backtesting process. See skforecast.exceptions.warn_skforecast_categories for more information.

False

Returns:

Name Type Description
metrics_levels pandas DataFrame

Value(s) of the metric(s). Index are the levels and columns the metrics.

backtest_predictions pandas DataFrame

Value of predictions and their estimated interval if interval is not None. If there is more than one level, this structure will be repeated for each of them.

  • column pred: predictions.
  • column lower_bound: lower bound of the interval.
  • column upper_bound: upper bound of the interval.
Source code in skforecast\model_selection_multiseries\model_selection_multiseries.py
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
def backtesting_forecaster_multivariate(
    forecaster: object,
    series: Union[pd.DataFrame, dict],
    steps: int,
    metric: Union[str, Callable, list],
    initial_train_size: Optional[int],
    fixed_train_size: bool=True,
    gap: int=0,
    allow_incomplete_fold: bool=True,
    levels: Optional[Union[str, list]]=None,
    exog: Optional[Union[pd.Series, pd.DataFrame, dict]]=None,
    refit: Union[bool, int]=False,
    interval: Optional[list]=None,
    n_boot: int=500,
    random_state: int=123,
    in_sample_residuals: bool=True,
    n_jobs: Union[int, str]='auto',
    verbose: bool=False,
    show_progress: bool=True,
    suppress_warnings: bool=False
) -> Tuple[pd.DataFrame, pd.DataFrame]:
    """
    This function is an alias of backtesting_forecaster_multiseries.

    Backtesting for multi-series and multivariate forecasters.

    If `refit` is False, the model is trained only once using the `initial_train_size`
    first observations. If `refit` is True, the model is trained in each iteration
    increasing the training set. A copy of the original forecaster is created so 
    it is not modified during the process.

    Parameters
    ----------
    forecaster : ForecasterAutoregMultiSeries, ForecasterAutoregMultiSeriesCustom, ForecasterAutoregMultiVariate
        Forecaster model.
    series : pandas DataFrame, dict
        Training time series.
    steps : int
        Number of steps to predict.
    metric : str, Callable, list
        Metric used to quantify the goodness of fit of the model.

        - If `string`: {'mean_squared_error', 'mean_absolute_error',
        'mean_absolute_percentage_error', 'mean_squared_log_error'}
        - If `Callable`: Function with arguments y_true, y_pred that returns 
        a float.
        - If `list`: List containing multiple strings and/or Callables.
    initial_train_size : int, default `None`
        Number of samples in the initial train split. If `None` and `forecaster` is 
        already trained, no initial train is done and all data is used to evaluate the 
        model. However, the first `len(forecaster.last_window)` observations are needed 
        to create the initial predictors, so no predictions are calculated for them. 
        This useful to backtest the model on the same data used to train it.
        `None` is only allowed when `refit` is `False` and `forecaster` is already
        trained.
    fixed_train_size : bool, default `True`
        If True, train size doesn't increase but moves by `steps` in each iteration.
    gap : int, default `0`
        Number of samples to be excluded after the end of each training set and 
        before the test set.
    allow_incomplete_fold : bool, default `True`
        Last fold is allowed to have a smaller number of samples than the 
        `test_size`. If `False`, the last fold is excluded.
    levels : str, list, default `None`
        Time series to be predicted. If `None` all levels will be predicted.
    exog : pandas Series, pandas DataFrame, dict, default `None`
        Exogenous variables.
    refit : bool, int, default `False`
        Whether to re-fit the forecaster in each iteration. If `refit` is an 
        integer, the Forecaster will be trained every that number of iterations.
    interval : list, default `None`
        Confidence of the prediction interval estimated. Sequence of percentiles
        to compute, which must be between 0 and 100 inclusive. If `None`, no
        intervals are estimated.
    n_boot : int, default `500`
        Number of bootstrapping iterations used to estimate prediction
        intervals.
    random_state : int, default `123`
        Sets a seed to the random generator, so that boot intervals are always 
        deterministic.
    in_sample_residuals : bool, default `True`
        If `True`, residuals from the training data are used as proxy of prediction 
        error to create prediction intervals.  If `False`, out_sample_residuals 
        are used if they are already stored inside the forecaster.
    n_jobs : int, 'auto', default `'auto'`
        The number of jobs to run in parallel. If `-1`, then the number of jobs is 
        set to the number of cores. If 'auto', `n_jobs` is set using the function
        skforecast.utils.select_n_jobs_backtesting.
        **New in version 0.9.0** 
    verbose : bool, default `False`
        Print number of folds and index of training and validation sets used 
        for backtesting.
    show_progress : bool, default `True`
        Whether to show a progress bar.
    suppress_warnings: bool, default `False`
        If `True`, skforecast warnings will be suppressed during the backtesting 
        process. See skforecast.exceptions.warn_skforecast_categories for more
        information.

    Returns
    -------
    metrics_levels : pandas DataFrame
        Value(s) of the metric(s). Index are the levels and columns the metrics.
    backtest_predictions : pandas DataFrame
        Value of predictions and their estimated interval if `interval` is not `None`.
        If there is more than one level, this structure will be repeated for each of them.

        - column pred: predictions.
        - column lower_bound: lower bound of the interval.
        - column upper_bound: upper bound of the interval.

    """

    metrics_levels, backtest_predictions = backtesting_forecaster_multiseries(
        forecaster            = forecaster,
        series                = series,
        steps                 = steps,
        metric                = metric,
        initial_train_size    = initial_train_size,
        fixed_train_size      = fixed_train_size,
        gap                   = gap,
        allow_incomplete_fold = allow_incomplete_fold,
        levels                = levels,
        exog                  = exog,
        refit                 = refit,
        interval              = interval,
        n_boot                = n_boot,
        random_state          = random_state,
        in_sample_residuals   = in_sample_residuals,
        n_jobs                = n_jobs,
        verbose               = verbose,
        show_progress         = show_progress,
        suppress_warnings     = suppress_warnings
    )

    return metrics_levels, backtest_predictions

grid_search_forecaster_multivariate(forecaster, series, param_grid, steps, metric, initial_train_size, fixed_train_size=True, gap=0, allow_incomplete_fold=True, levels=None, exog=None, lags_grid=None, refit=False, return_best=True, n_jobs='auto', verbose=True, show_progress=True, suppress_warnings=False, output_file=None)

This function is an alias of grid_search_forecaster_multiseries.

Exhaustive search over specified parameter values for a Forecaster object. Validation is done using multi-series backtesting.

Parameters:

Name Type Description Default
forecaster (ForecasterAutoregMultiSeries, ForecasterAutoregMultiSeriesCustom, ForecasterAutoregMultiVariate)

Forecaster model.

required
series pandas DataFrame, dict

Training time series.

required
param_grid dict

Dictionary with parameters names (str) as keys and lists of parameter settings to try as values.

required
steps int

Number of steps to predict.

required
metric (str, Callable, list)

Metric used to quantify the goodness of fit of the model.

  • If string: {'mean_squared_error', 'mean_absolute_error', 'mean_absolute_percentage_error', 'mean_squared_log_error'}
  • If Callable: Function with arguments y_true, y_pred that returns a float.
  • If list: List containing multiple strings and/or Callables.
required
initial_train_size int

Number of samples in the initial train split.

required
fixed_train_size bool

If True, train size doesn't increase but moves by steps in each iteration.

`True`
gap int

Number of samples to be excluded after the end of each training set and before the test set.

`0`
allow_incomplete_fold bool

Last fold is allowed to have a smaller number of samples than the test_size. If False, the last fold is excluded.

`True`
levels (str, list)

level (str) or levels (list) at which the forecaster is optimized. If None, all levels are taken into account. The resulting metric will be the average of the optimization of all levels.

`None`
exog pandas Series, pandas DataFrame, dict

Exogenous variables.

`None`
lags_grid (list, dict)

Lists of lags to try, containing int, lists, numpy ndarray, or range objects. If dict, the keys are used as labels in the results DataFrame, and the values are used as the lists of lags to try. Ignored if the forecaster is an instance of ForecasterAutoregCustom or ForecasterAutoregMultiSeriesCustom.

`None`
refit (bool, int)

Whether to re-fit the forecaster in each iteration. If refit is an integer, the Forecaster will be trained every that number of iterations.

`False`
return_best bool

Refit the forecaster using the best found parameters on the whole data.

`True`
n_jobs (int, auto)

The number of jobs to run in parallel. If -1, then the number of jobs is set to the number of cores. If 'auto', n_jobs is set using the function skforecast.utils.select_n_jobs_backtesting. New in version 0.9.0

`'auto'`
verbose bool

Print number of folds used for cv or backtesting.

`True`
show_progress bool

Whether to show a progress bar.

`True`
suppress_warnings bool

If True, skforecast warnings will be suppressed during the hyperparameter search. See skforecast.exceptions.warn_skforecast_categories for more information.

False
output_file str

Specifies the filename or full path where the results should be saved. The results will be saved in a tab-separated values (TSV) format. If None, the results will not be saved to a file. New in version 0.12.0

`None`

Returns:

Name Type Description
results pandas DataFrame

Results for each combination of parameters.

  • column levels: levels configuration for each iteration.
  • column lags: lags configuration for each iteration.
  • column lags_label: descriptive label or alias for the lags.
  • column params: parameters configuration for each iteration.
  • column metric: metric value estimated for each iteration. The resulting metric will be the average of the optimization of all levels.
  • additional n columns with param = value.
Source code in skforecast\model_selection_multiseries\model_selection_multiseries.py
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
def grid_search_forecaster_multivariate(
    forecaster: object,
    series: Union[pd.DataFrame, dict],
    param_grid: dict,
    steps: int,
    metric: Union[str, Callable, list],
    initial_train_size: int,
    fixed_train_size: bool=True,
    gap: int=0,
    allow_incomplete_fold: bool=True,
    levels: Optional[Union[str, list]]=None,
    exog: Optional[Union[pd.Series, pd.DataFrame, dict]]=None,
    lags_grid: Optional[Union[list, dict]]=None,
    refit: Union[bool, int]=False,
    return_best: bool=True,
    n_jobs: Union[int, str]='auto',
    verbose: bool=True,
    show_progress: bool=True,
    suppress_warnings: bool=False,
    output_file: Optional[str]=None
) -> pd.DataFrame:
    """
    This function is an alias of grid_search_forecaster_multiseries.

    Exhaustive search over specified parameter values for a Forecaster object.
    Validation is done using multi-series backtesting.

    Parameters
    ----------
    forecaster : ForecasterAutoregMultiSeries, ForecasterAutoregMultiSeriesCustom, ForecasterAutoregMultiVariate
        Forecaster model.
    series : pandas DataFrame, dict
        Training time series.
    param_grid : dict
        Dictionary with parameters names (`str`) as keys and lists of parameter
        settings to try as values.
    steps : int
        Number of steps to predict.
    metric : str, Callable, list
        Metric used to quantify the goodness of fit of the model.

        - If `string`: {'mean_squared_error', 'mean_absolute_error',
        'mean_absolute_percentage_error', 'mean_squared_log_error'}
        - If `Callable`: Function with arguments y_true, y_pred that returns 
        a float.
        - If `list`: List containing multiple strings and/or Callables.
    initial_train_size : int 
        Number of samples in the initial train split.
    fixed_train_size : bool, default `True`
        If True, train size doesn't increase but moves by `steps` in each iteration.
    gap : int, default `0`
        Number of samples to be excluded after the end of each training set and 
        before the test set.
    allow_incomplete_fold : bool, default `True`
        Last fold is allowed to have a smaller number of samples than the 
        `test_size`. If `False`, the last fold is excluded.
    levels : str, list, default `None`
        level (`str`) or levels (`list`) at which the forecaster is optimized. 
        If `None`, all levels are taken into account. The resulting metric will be
        the average of the optimization of all levels.
    exog : pandas Series, pandas DataFrame, dict, default `None`
        Exogenous variables.
    lags_grid : list, dict, default `None`
        Lists of lags to try, containing int, lists, numpy ndarray, or range 
        objects. If `dict`, the keys are used as labels in the `results` 
        DataFrame, and the values are used as the lists of lags to try. Ignored 
        if the forecaster is an instance of `ForecasterAutoregCustom` or 
        `ForecasterAutoregMultiSeriesCustom`.
    refit : bool, int, default `False`
        Whether to re-fit the forecaster in each iteration. If `refit` is an 
        integer, the Forecaster will be trained every that number of iterations.
    return_best : bool, default `True`
        Refit the `forecaster` using the best found parameters on the whole data.
    n_jobs : int, 'auto', default `'auto'`
        The number of jobs to run in parallel. If `-1`, then the number of jobs is 
        set to the number of cores. If 'auto', `n_jobs` is set using the function
        skforecast.utils.select_n_jobs_backtesting.
        **New in version 0.9.0**
    verbose : bool, default `True`
        Print number of folds used for cv or backtesting.
    show_progress : bool, default `True`
        Whether to show a progress bar.
    suppress_warnings: bool, default `False`
        If `True`, skforecast warnings will be suppressed during the hyperparameter 
        search. See skforecast.exceptions.warn_skforecast_categories for more
        information.
    output_file : str, default `None`
        Specifies the filename or full path where the results should be saved. 
        The results will be saved in a tab-separated values (TSV) format. If 
        `None`, the results will not be saved to a file.
        **New in version 0.12.0**

    Returns
    -------
    results : pandas DataFrame
        Results for each combination of parameters.

        - column levels: levels configuration for each iteration.
        - column lags: lags configuration for each iteration.
        - column lags_label: descriptive label or alias for the lags.
        - column params: parameters configuration for each iteration.
        - column metric: metric value estimated for each iteration. The resulting 
        metric will be the average of the optimization of all levels.
        - additional n columns with param = value.

    """

    results = grid_search_forecaster_multiseries(
        forecaster            = forecaster,
        series                = series,
        param_grid            = param_grid,
        steps                 = steps,
        metric                = metric,
        initial_train_size    = initial_train_size,
        fixed_train_size      = fixed_train_size,
        gap                   = gap,
        allow_incomplete_fold = allow_incomplete_fold,
        levels                = levels,
        exog                  = exog,
        lags_grid             = lags_grid,
        refit                 = refit,
        return_best           = return_best,
        n_jobs                = n_jobs,
        verbose               = verbose,
        show_progress         = show_progress,
        suppress_warnings     = suppress_warnings,
        output_file           = output_file
    )

    return results

random_search_forecaster_multivariate(forecaster, series, param_distributions, steps, metric, initial_train_size, fixed_train_size=True, gap=0, allow_incomplete_fold=True, levels=None, exog=None, lags_grid=None, refit=False, n_iter=10, random_state=123, return_best=True, n_jobs='auto', verbose=True, show_progress=True, suppress_warnings=False, output_file=None)

This function is an alias of random_search_forecaster_multiseries.

Random search over specified parameter values or distributions for a Forecaster object. Validation is done using multi-series backtesting.

Parameters:

Name Type Description Default
forecaster (ForecasterAutoregMultiSeries, ForecasterAutoregMultiSeriesCustom, ForecasterAutoregMultiVariate)

Forecaster model.

required
series pandas DataFrame, dict

Training time series.

required
param_distributions dict

Dictionary with parameters names (str) as keys and distributions or lists of parameters to try.

required
steps int

Number of steps to predict.

required
metric (str, Callable, list)

Metric used to quantify the goodness of fit of the model.

  • If string: {'mean_squared_error', 'mean_absolute_error', 'mean_absolute_percentage_error', 'mean_squared_log_error'}
  • If Callable: Function with arguments y_true, y_pred that returns a float.
  • If list: List containing multiple strings and/or Callables.
required
initial_train_size int

Number of samples in the initial train split.

required
fixed_train_size bool

If True, train size doesn't increase but moves by steps in each iteration.

`True`
gap int

Number of samples to be excluded after the end of each training set and before the test set.

`0`
allow_incomplete_fold bool

Last fold is allowed to have a smaller number of samples than the test_size. If False, the last fold is excluded.

`True`
levels (str, list)

level (str) or levels (list) at which the forecaster is optimized. If None, all levels are taken into account. The resulting metric will be the average of the optimization of all levels.

`None`
exog pandas Series, pandas DataFrame, dict

Exogenous variables.

`None`
lags_grid (list, dict)

Lists of lags to try, containing int, lists, numpy ndarray, or range objects. If dict, the keys are used as labels in the results DataFrame, and the values are used as the lists of lags to try. Ignored if the forecaster is an instance of ForecasterAutoregCustom or ForecasterAutoregMultiSeriesCustom.

`None`
refit (bool, int)

Whether to re-fit the forecaster in each iteration. If refit is an integer, the Forecaster will be trained every that number of iterations.

`False`
n_iter int

Number of parameter settings that are sampled per lags configuration. n_iter trades off runtime vs quality of the solution.

`10`
random_state int

Sets a seed to the random sampling for reproducible output.

`123`
return_best bool

Refit the forecaster using the best found parameters on the whole data.

`True`
n_jobs (int, auto)

The number of jobs to run in parallel. If -1, then the number of jobs is set to the number of cores. If 'auto', n_jobs is set using the function skforecast.utils.select_n_jobs_backtesting. New in version 0.9.0

`'auto'`
verbose bool

Print number of folds used for cv or backtesting.

`True`
show_progress bool

Whether to show a progress bar.

`True`
suppress_warnings bool

If True, skforecast warnings will be suppressed during the hyperparameter search. See skforecast.exceptions.warn_skforecast_categories for more information.

False
output_file str

Specifies the filename or full path where the results should be saved. The results will be saved in a tab-separated values (TSV) format. If None, the results will not be saved to a file. New in version 0.12.0

`None`

Returns:

Name Type Description
results pandas DataFrame

Results for each combination of parameters.

  • column levels: levels configuration for each iteration.
  • column lags: lags configuration for each iteration.
  • column lags_label: descriptive label or alias for the lags.
  • column params: parameters configuration for each iteration.
  • column metric: metric value estimated for each iteration. The resulting metric will be the average of the optimization of all levels.
  • additional n columns with param = value.
Source code in skforecast\model_selection_multiseries\model_selection_multiseries.py
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
def random_search_forecaster_multivariate(
    forecaster: object,
    series: Union[pd.DataFrame, dict],
    param_distributions: dict,
    steps: int,
    metric: Union[str, Callable, list],
    initial_train_size: int,
    fixed_train_size: bool=True,
    gap: int=0,
    allow_incomplete_fold: bool=True,
    levels: Optional[Union[str, list]]=None,
    exog: Optional[Union[pd.Series, pd.DataFrame, dict]]=None,
    lags_grid: Optional[Union[list, dict]]=None,
    refit: Union[bool, int]=False,
    n_iter: int=10,
    random_state: int=123,
    return_best: bool=True,
    n_jobs: Union[int, str]='auto',
    verbose: bool=True,
    show_progress: bool=True,
    suppress_warnings: bool=False,
    output_file: Optional[str]=None
) -> pd.DataFrame:
    """
    This function is an alias of random_search_forecaster_multiseries.

    Random search over specified parameter values or distributions for a Forecaster 
    object. Validation is done using multi-series backtesting.

    Parameters
    ----------
    forecaster : ForecasterAutoregMultiSeries, ForecasterAutoregMultiSeriesCustom, ForecasterAutoregMultiVariate
        Forecaster model.
    series : pandas DataFrame, dict
        Training time series.
    param_distributions : dict
        Dictionary with parameters names (`str`) as keys and distributions or 
        lists of parameters to try.
    steps : int
        Number of steps to predict.
    metric : str, Callable, list
        Metric used to quantify the goodness of fit of the model.

        - If `string`: {'mean_squared_error', 'mean_absolute_error',
        'mean_absolute_percentage_error', 'mean_squared_log_error'}
        - If `Callable`: Function with arguments y_true, y_pred that returns 
        a float.
        - If `list`: List containing multiple strings and/or Callables.
    initial_train_size : int 
        Number of samples in the initial train split.
    fixed_train_size : bool, default `True`
        If True, train size doesn't increase but moves by `steps` in each iteration.
    gap : int, default `0`
        Number of samples to be excluded after the end of each training set and 
        before the test set.
    allow_incomplete_fold : bool, default `True`
        Last fold is allowed to have a smaller number of samples than the 
        `test_size`. If `False`, the last fold is excluded.
    levels : str, list, default `None`
        level (`str`) or levels (`list`) at which the forecaster is optimized. 
        If `None`, all levels are taken into account. The resulting metric will be
        the average of the optimization of all levels.
    exog : pandas Series, pandas DataFrame, dict, default `None`
        Exogenous variables.
    lags_grid : list, dict, default `None`
        Lists of lags to try, containing int, lists, numpy ndarray, or range 
        objects. If `dict`, the keys are used as labels in the `results` 
        DataFrame, and the values are used as the lists of lags to try. Ignored 
        if the forecaster is an instance of `ForecasterAutoregCustom` or 
        `ForecasterAutoregMultiSeriesCustom`.
    refit : bool, int, default `False`
        Whether to re-fit the forecaster in each iteration. If `refit` is an 
        integer, the Forecaster will be trained every that number of iterations.
    n_iter : int, default `10`
        Number of parameter settings that are sampled per lags configuration. 
        n_iter trades off runtime vs quality of the solution.
    random_state : int, default `123`
        Sets a seed to the random sampling for reproducible output.
    return_best : bool, default `True`
        Refit the `forecaster` using the best found parameters on the whole data.
    n_jobs : int, 'auto', default `'auto'`
        The number of jobs to run in parallel. If `-1`, then the number of jobs is 
        set to the number of cores. If 'auto', `n_jobs` is set using the function
        skforecast.utils.select_n_jobs_backtesting.
        **New in version 0.9.0**
    verbose : bool, default `True`
        Print number of folds used for cv or backtesting.
    show_progress : bool, default `True`
        Whether to show a progress bar.
    suppress_warnings: bool, default `False`
        If `True`, skforecast warnings will be suppressed during the hyperparameter 
        search. See skforecast.exceptions.warn_skforecast_categories for more
        information.
    output_file : str, default `None`
        Specifies the filename or full path where the results should be saved. 
        The results will be saved in a tab-separated values (TSV) format. If 
        `None`, the results will not be saved to a file.
        **New in version 0.12.0**

    Returns
    -------
    results : pandas DataFrame
        Results for each combination of parameters.

        - column levels: levels configuration for each iteration.
        - column lags: lags configuration for each iteration.
        - column lags_label: descriptive label or alias for the lags.
        - column params: parameters configuration for each iteration.
        - column metric: metric value estimated for each iteration. The resulting 
        metric will be the average of the optimization of all levels.
        - additional n columns with param = value.

    """

    results = random_search_forecaster_multiseries(
        forecaster            = forecaster,
        series                = series,
        param_distributions   = param_distributions,
        steps                 = steps,
        metric                = metric,
        initial_train_size    = initial_train_size,
        fixed_train_size      = fixed_train_size,
        gap                   = gap,
        allow_incomplete_fold = allow_incomplete_fold,
        levels                = levels,
        exog                  = exog,
        lags_grid             = lags_grid,
        refit                 = refit,
        n_iter                = n_iter,
        random_state          = random_state,
        return_best           = return_best,
        n_jobs                = n_jobs,
        verbose               = verbose,
        show_progress         = show_progress,
        suppress_warnings     = suppress_warnings,
        output_file           = output_file
    ) 

    return results

bayesian_search_forecaster_multivariate(forecaster, series, search_space, steps, metric, initial_train_size, fixed_train_size=True, gap=0, allow_incomplete_fold=True, levels=None, exog=None, lags_grid='deprecated', refit=False, n_trials=10, random_state=123, return_best=True, n_jobs='auto', verbose=True, show_progress=True, suppress_warnings=False, output_file=None, engine='optuna', kwargs_create_study={}, kwargs_study_optimize={})

This function is an alias of bayesian_search_forecaster_multiseries.

Bayesian optimization for a Forecaster object using multi-series backtesting and optuna library. New in version 0.12.0

Parameters:

Name Type Description Default
forecaster (ForecasterAutoregMultiSeries, ForecasterAutoregMultiSeriesCustom, ForecasterAutoregMultiVariate)

Forecaster model.

required
series pandas DataFrame, dict

Training time series.

required
search_space Callable

Function with argument trial which returns a dictionary with parameters names (str) as keys and Trial object from optuna (trial.suggest_float, trial.suggest_int, trial.suggest_categorical) as values.

required
steps int

Number of steps to predict.

required
metric (str, Callable, list)

Metric used to quantify the goodness of fit of the model.

  • If string: {'mean_squared_error', 'mean_absolute_error', 'mean_absolute_percentage_error', 'mean_squared_log_error'}
  • If Callable: Function with arguments y_true, y_pred that returns a float.
  • If list: List containing multiple strings and/or Callables.
required
initial_train_size int

Number of samples in the initial train split.

required
fixed_train_size bool

If True, train size doesn't increase but moves by steps in each iteration.

`True`
gap int

Number of samples to be excluded after the end of each training set and before the test set.

`0`
allow_incomplete_fold bool

Last fold is allowed to have a smaller number of samples than the test_size. If False, the last fold is excluded.

`True`
levels (str, list)

level (str) or levels (list) at which the forecaster is optimized. If None, all levels are taken into account. The resulting metric will be the average of the optimization of all levels.

`None`
exog pandas Series, pandas DataFrame, dict

Exogenous variables.

`None`
lags_grid deprecated

Deprecated since version 0.12.0 and will be removed in 0.13.0. Use search_space to define the candidate values for the lags. This allows the lags to be optimized along with the other hyperparameters of the regressor in the bayesian search.

'deprecated'
refit (bool, int)

Whether to re-fit the forecaster in each iteration. If refit is an integer, the Forecaster will be trained every that number of iterations.

`False`
n_trials int

Number of parameter settings that are sampled in each lag configuration.

`10`
random_state int

Sets a seed to the sampling for reproducible output.

`123`
return_best bool

Refit the forecaster using the best found parameters on the whole data.

`True`
n_jobs (int, auto)

The number of jobs to run in parallel. If -1, then the number of jobs is set to the number of cores. If 'auto', n_jobs is set using the function skforecast.utils.select_n_jobs_backtesting. New in version 0.9.0

`'auto'`
verbose bool

Print number of folds used for cv or backtesting.

`True`
show_progress bool

Whether to show a progress bar.

`True`
suppress_warnings bool

If True, skforecast warnings will be suppressed during the hyperparameter search. See skforecast.exceptions.warn_skforecast_categories for more information.

False
output_file str

Specifies the filename or full path where the results should be saved. The results will be saved in a tab-separated values (TSV) format. If None, the results will not be saved to a file. New in version 0.12.0

`None`
engine str

Bayesian optimization runs through the optuna library.

`'optuna'`
kwargs_create_study dict

Keyword arguments (key, value mappings) to pass to optuna.create_study(). If default, the direction is set to 'minimize' and a TPESampler(seed=123) sampler is used during optimization.

`{}`
kwargs_study_optimize dict

Other keyword arguments (key, value mappings) to pass to study.optimize().

`{}`

Returns:

Name Type Description
results pandas DataFrame

Results for each combination of parameters.

  • column levels: levels configuration for each iteration.
  • column lags: lags configuration for each iteration.
  • column params: parameters configuration for each iteration.
  • column metric: metric value estimated for each iteration. The resulting metric will be the average of the optimization of all levels.
  • additional n columns with param = value.
best_trial optuna object

The best optimization result returned as a FrozenTrial optuna object.

Source code in skforecast\model_selection_multiseries\model_selection_multiseries.py
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
def bayesian_search_forecaster_multivariate(
    forecaster: object,
    series: Union[pd.DataFrame, dict],
    search_space: Callable,
    steps: int,
    metric: Union[str, Callable, list],
    initial_train_size: int,
    fixed_train_size: bool=True,
    gap: int=0,
    allow_incomplete_fold: bool=True,
    levels: Optional[Union[str, list]]=None,
    exog: Optional[Union[pd.Series, pd.DataFrame, dict]]=None,
    lags_grid: Any='deprecated',
    refit: Union[bool, int]=False,
    n_trials: int=10,
    random_state: int=123,
    return_best: bool=True,
    n_jobs: Union[int, str]='auto',
    verbose: bool=True,
    show_progress: bool=True,
    suppress_warnings: bool=False,
    output_file: Optional[str]=None,
    engine: str='optuna',
    kwargs_create_study: dict={},
    kwargs_study_optimize: dict={}
) -> Tuple[pd.DataFrame, object]:
    """
    This function is an alias of bayesian_search_forecaster_multiseries.

    Bayesian optimization for a Forecaster object using multi-series backtesting 
    and optuna library.
    **New in version 0.12.0**

    Parameters
    ----------
    forecaster : ForecasterAutoregMultiSeries, ForecasterAutoregMultiSeriesCustom, ForecasterAutoregMultiVariate
        Forecaster model.
    series : pandas DataFrame, dict
        Training time series.
    search_space : Callable
        Function with argument `trial` which returns a dictionary with parameters names 
        (`str`) as keys and Trial object from optuna (trial.suggest_float, 
        trial.suggest_int, trial.suggest_categorical) as values.
    steps : int
        Number of steps to predict.
    metric : str, Callable, list
        Metric used to quantify the goodness of fit of the model.

        - If `string`: {'mean_squared_error', 'mean_absolute_error',
        'mean_absolute_percentage_error', 'mean_squared_log_error'}
        - If `Callable`: Function with arguments y_true, y_pred that returns 
        a float.
        - If `list`: List containing multiple strings and/or Callables.
    initial_train_size : int 
        Number of samples in the initial train split.
    fixed_train_size : bool, default `True`
        If True, train size doesn't increase but moves by `steps` in each iteration.
    gap : int, default `0`
        Number of samples to be excluded after the end of each training set and 
        before the test set.
    allow_incomplete_fold : bool, default `True`
        Last fold is allowed to have a smaller number of samples than the 
        `test_size`. If `False`, the last fold is excluded.
    levels : str, list, default `None`
        level (`str`) or levels (`list`) at which the forecaster is optimized. 
        If `None`, all levels are taken into account. The resulting metric will be
        the average of the optimization of all levels.
    exog : pandas Series, pandas DataFrame, dict, default `None`
        Exogenous variables.
    lags_grid : deprecated
        **Deprecated since version 0.12.0 and will be removed in 0.13.0.** Use
        `search_space` to define the candidate values for the lags. This allows 
        the lags to be optimized along with the other hyperparameters of the 
        regressor in the bayesian search.
    refit : bool, int, default `False`
        Whether to re-fit the forecaster in each iteration. If `refit` is an 
        integer, the Forecaster will be trained every that number of iterations.
    n_trials : int, default `10`
        Number of parameter settings that are sampled in each lag configuration.
    random_state : int, default `123`
        Sets a seed to the sampling for reproducible output.
    return_best : bool, default `True`
        Refit the `forecaster` using the best found parameters on the whole data.
    n_jobs : int, 'auto', default `'auto'`
        The number of jobs to run in parallel. If `-1`, then the number of jobs is 
        set to the number of cores. If 'auto', `n_jobs` is set using the function
        skforecast.utils.select_n_jobs_backtesting.
        **New in version 0.9.0**
    verbose : bool, default `True`
        Print number of folds used for cv or backtesting.
    show_progress : bool, default `True`
        Whether to show a progress bar.
    suppress_warnings: bool, default `False`
        If `True`, skforecast warnings will be suppressed during the hyperparameter
        search. See skforecast.exceptions.warn_skforecast_categories for more
        information.
    output_file : str, default `None`
        Specifies the filename or full path where the results should be saved. 
        The results will be saved in a tab-separated values (TSV) format. If 
        `None`, the results will not be saved to a file.
        **New in version 0.12.0**
    engine : str, default `'optuna'`
        Bayesian optimization runs through the optuna library.
    kwargs_create_study : dict, default `{}`
        Keyword arguments (key, value mappings) to pass to optuna.create_study().
        If default, the direction is set to 'minimize' and a TPESampler(seed=123) 
        sampler is used during optimization.
    kwargs_study_optimize : dict, default `{}`
        Other keyword arguments (key, value mappings) to pass to study.optimize().

    Returns
    -------
    results : pandas DataFrame
        Results for each combination of parameters.

        - column levels: levels configuration for each iteration.
        - column lags: lags configuration for each iteration.
        - column params: parameters configuration for each iteration.
        - column metric: metric value estimated for each iteration. The resulting 
        metric will be the average of the optimization of all levels.
        - additional n columns with param = value.
    best_trial : optuna object
        The best optimization result returned as a FrozenTrial optuna object.

    """

    results, best_trial = bayesian_search_forecaster_multiseries(
                              forecaster            = forecaster,
                              series                = series,
                              exog                  = exog,
                              levels                = levels, 
                              lags_grid             = lags_grid,
                              search_space          = search_space,
                              steps                 = steps,
                              metric                = metric,
                              refit                 = refit,
                              initial_train_size    = initial_train_size,
                              fixed_train_size      = fixed_train_size,
                              gap                   = gap,
                              allow_incomplete_fold = allow_incomplete_fold,
                              n_trials              = n_trials,
                              random_state          = random_state,
                              return_best           = return_best,
                              n_jobs                = n_jobs,
                              verbose               = verbose,
                              show_progress         = show_progress,
                              suppress_warnings     = suppress_warnings,
                              output_file           = output_file,
                              engine                = engine,
                              kwargs_create_study   = kwargs_create_study,
                              kwargs_study_optimize = kwargs_study_optimize
                          )

    return results, best_trial