preprocessing
¶
skforecast.preprocessing.preprocessing.RollingFeatures ¶
RollingFeatures(
stats,
window_sizes,
min_periods=None,
features_names=None,
fillna=None,
)
This class computes rolling features. To avoid data leakage, the last point in the window is excluded from calculations, ('closed': 'left' and 'center': False).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
stats |
(str, list)
|
Statistics to compute over the rolling window. Can be a |
required |
window_sizes |
(int, list)
|
Size of the rolling window for each statistic. If an |
required |
min_periods |
(int, list)
|
Minimum number of observations in window required to have a value.
Same as the |
`None`
|
features_names |
list
|
Names of the output features. If |
`None`
|
fillna |
(str, float)
|
Fill missing values in |
`None`
|
Attributes:
Name | Type | Description |
---|---|---|
stats |
list
|
Statistics to compute over the rolling window. |
n_stats |
int
|
Number of statistics to compute. |
window_sizes |
list
|
Size of the rolling window for each statistic. |
max_window_size |
int
|
Maximum window size. |
min_periods |
list
|
Minimum number of observations in window required to have a value. |
features_names |
list
|
Names of the output features. |
fillna |
(str, float)
|
Method to fill missing values in |
unique_rolling_windows |
dict
|
Dictionary containing unique rolling window parameters and the corresponding statistics. |
Source code in skforecast/preprocessing/preprocessing.py
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 |
|
_validate_params ¶
_validate_params(
stats,
window_sizes,
min_periods=None,
features_names=None,
fillna=None,
)
Validate the parameters of the RollingFeatures class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
stats |
(str, list)
|
Statistics to compute over the rolling window. Can be a |
required |
window_sizes |
(int, list)
|
Size of the rolling window for each statistic. If an |
required |
min_periods |
(int, list)
|
Minimum number of observations in window required to have a value.
Same as the |
`None`
|
features_names |
list
|
Names of the output features. If |
`None`
|
fillna |
(str, float)
|
Fill missing values in |
`None`
|
Returns:
Type | Description |
---|---|
None
|
|
Source code in skforecast/preprocessing/preprocessing.py
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 |
|
_apply_stat_pandas ¶
_apply_stat_pandas(rolling_obj, stat)
Apply the specified statistic to a pandas rolling object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
rolling_obj |
pandas Rolling
|
Rolling object to apply the statistic. |
required |
stat |
str
|
Statistic to compute. |
required |
Returns:
Name | Type | Description |
---|---|---|
stat_series |
pandas Series
|
Series with the computed statistic. |
Source code in skforecast/preprocessing/preprocessing.py
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 |
|
transform_batch ¶
transform_batch(X)
Transform an entire pandas Series using rolling windows and compute the specified statistics.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
pandas Series
|
The input data series to transform. |
required |
Returns:
Name | Type | Description |
---|---|---|
rolling_features |
pandas DataFrame
|
A DataFrame containing the rolling features. |
Source code in skforecast/preprocessing/preprocessing.py
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 |
|
_apply_stat_numpy_jit ¶
_apply_stat_numpy_jit(X_window, stat)
Apply the specified statistic to a numpy array using Numba JIT.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X_window |
numpy array
|
Array with the rolling window. |
required |
stat |
str
|
Statistic to compute. |
required |
Returns:
Name | Type | Description |
---|---|---|
stat_value |
float
|
Value of the computed statistic. |
Source code in skforecast/preprocessing/preprocessing.py
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 |
|
transform ¶
transform(X)
Transform a numpy array using rolling windows and compute the specified statistics. The returned array will have the shape (X.shape[1] if exists, n_stats). For example, if X is a flat array, the output will have shape (n_stats,). If X is a 2D array, the output will have shape (X.shape[1], n_stats).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
numpy ndarray
|
The input data array to transform. |
required |
Returns:
Name | Type | Description |
---|---|---|
rolling_features |
numpy ndarray
|
An array containing the computed statistics. |
Source code in skforecast/preprocessing/preprocessing.py
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 |
|
skforecast.preprocessing.preprocessing.series_long_to_dict ¶
series_long_to_dict(
data,
series_id,
index,
values,
freq,
suppress_warnings=False,
)
Convert long format series to dictionary of pandas Series with frequency. Input data must be a pandas DataFrame with columns for the series identifier, time index, and values. The function will group the data by the series identifier and convert the time index to a datetime index with the given frequency.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
DataFrame
|
Long format series. |
required |
series_id |
str
|
Column name with the series identifier. |
required |
index |
str
|
Column name with the time index. |
required |
values |
str
|
Column name with the values. |
required |
freq |
str
|
Frequency of the series. |
required |
suppress_warnings |
bool
|
If True, suppress warnings when a series is incomplete after setting the frequency. |
False
|
Returns:
Name | Type | Description |
---|---|---|
series_dict |
dict
|
Dictionary with the series. |
Source code in skforecast/preprocessing/preprocessing.py
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
|
skforecast.preprocessing.preprocessing.exog_long_to_dict ¶
exog_long_to_dict(
data,
series_id,
index,
freq,
dropna=False,
suppress_warnings=False,
)
Convert long format exogenous variables to dictionary. Input data must be a pandas DataFrame with columns for the series identifier, time index, and exogenous variables. The function will group the data by the series identifier and convert the time index to a datetime index with the given frequency.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
DataFrame
|
Long format exogenous variables. |
required |
series_id |
str
|
Column name with the series identifier. |
required |
index |
str
|
Column name with the time index. |
required |
freq |
str
|
Frequency of the series. |
required |
dropna |
bool
|
If True, drop columns with all values as NaN. This is useful when there are series without some exogenous variables. |
False
|
suppress_warnings |
bool
|
If True, suppress warnings when exog is incomplete after setting the frequency. |
False
|
Returns:
Name | Type | Description |
---|---|---|
exog_dict |
dict
|
Dictionary with the exogenous variables. |
Source code in skforecast/preprocessing/preprocessing.py
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 |
|
skforecast.preprocessing.preprocessing.TimeSeriesDifferentiator ¶
TimeSeriesDifferentiator(order=1, window_size=None)
Bases: BaseEstimator
, TransformerMixin
Transforms a time series into a differentiated time series of a specified order and provides functionality to revert the differentiation.
When using a direct
module Forecaster, the model in step 1 must be
used if you want to reverse the differentiation of the training time
series with the inverse_transform_training
method.
Parameters:
Attributes:
Name | Type | Description |
---|---|---|
order |
int
|
The order of differentiation. |
initial_values |
list
|
List with the first value of the time series before each differentiation.
If |
pre_train_values |
list
|
List with the first training value of the time series before each differentiation.
For |
last_values |
list
|
List with the last value of the time series before each differentiation,
used to revert differentiation on subsequent data windows. If |
Source code in skforecast/preprocessing/preprocessing.py
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
|
fit ¶
fit(X, y=None)
Fits the transformer. Stores the values needed to revert the differentiation of different window of the time series, original time series, training time series, and a time series that follows immediately after the series used to fit the transformer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
numpy ndarray
|
Time series to be differentiated. |
required |
y |
Ignored
|
Not used, present here for API consistency by convention. |
None
|
Returns:
Name | Type | Description |
---|---|---|
self |
TimeSeriesDifferentiator
|
|
Source code in skforecast/preprocessing/preprocessing.py
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
|
transform ¶
transform(X, y=None)
Transforms a time series into a differentiated time series of order n.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
numpy ndarray
|
Time series to be differentiated. |
required |
y |
Ignored
|
Not used, present here for API consistency by convention. |
None
|
Returns:
Name | Type | Description |
---|---|---|
X_diff |
numpy ndarray
|
Differentiated time series. The length of the array is the same as
the original time series but the first n |
Source code in skforecast/preprocessing/preprocessing.py
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
|
inverse_transform ¶
inverse_transform(X, y=None)
Reverts the differentiation. To do so, the input array is assumed to be the same time series used to fit the transformer but differentiated.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
numpy ndarray
|
Differentiated time series. |
required |
y |
Ignored
|
Not used, present here for API consistency by convention. |
None
|
Returns:
Name | Type | Description |
---|---|---|
X_diff |
numpy ndarray
|
Reverted differentiated time series. |
Source code in skforecast/preprocessing/preprocessing.py
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
|
inverse_transform_training ¶
inverse_transform_training(X, y=None)
Reverts the differentiation. To do so, the input array is assumed to be the differentiated training time series generated with the original time series used to fit the transformer.
When using a direct
module Forecaster, the model in step 1 must be
used if you want to reverse the differentiation of the training time
series with the inverse_transform_training
method.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
numpy ndarray
|
Differentiated time series. |
required |
y |
Ignored
|
Not used, present here for API consistency by convention. |
None
|
Returns:
Name | Type | Description |
---|---|---|
X_diff |
numpy ndarray
|
Reverted differentiated time series. |
Source code in skforecast/preprocessing/preprocessing.py
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
|
inverse_transform_next_window ¶
inverse_transform_next_window(X, y=None)
Reverts the differentiation. The input array X
is assumed to be a
differentiated time series of order n that starts right after the
the time series used to fit the transformer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
numpy ndarray
|
Differentiated time series. It is assumed o start right after the time series used to fit the transformer. |
required |
y |
Ignored
|
Not used, present here for API consistency by convention. |
None
|
Returns:
Name | Type | Description |
---|---|---|
X_undiff |
numpy ndarray
|
Reverted differentiated time series. |
Source code in skforecast/preprocessing/preprocessing.py
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
|
set_params ¶
set_params(**params)
Set the parameters of the TimeSeriesDifferentiator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
params |
dict
|
A dictionary of the parameters to set. |
{}
|
Returns:
Type | Description |
---|---|
None
|
|
Source code in skforecast/preprocessing/preprocessing.py
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
|
skforecast.preprocessing.preprocessing.QuantileBinner ¶
QuantileBinner(
n_bins,
method="linear",
subsample=200000,
dtype=np.float64,
random_state=789654,
)
QuantileBinner class to bin data into quantile-based bins using numpy.percentile
.
This class is similar to KBinsDiscretizer
but faster for binning data into
quantile-based bins. Bin intervals are defined following the convention:
bins[i-1] <= x < bins[i]. See more information in numpy.percentile
and
numpy.digitize
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n_bins |
int
|
The number of quantile-based bins to create. |
required |
method |
str
|
The method used to compute the quantiles. This parameter is passed to
|
'linear'
|
subsample |
int
|
The number of samples to use for computing quantiles. If the dataset
has more samples than |
200000
|
random_state |
int
|
The random seed to use for generating a random subset of the data. |
789654
|
dtype |
data type
|
The data type to use for the bin indices. Default is |
numpy.float64
|
Attributes:
Name | Type | Description |
---|---|---|
n_bins |
int
|
The number of quantile-based bins to create. |
method |
str, default='linear'
|
The method used to compute the quantiles. This parameter is passed to
|
subsample |
int, default=200000
|
The number of samples to use for computing quantiles. If the dataset
has more samples than |
random_state |
int, default=789654
|
The random seed to use for generating a random subset of the data. |
dtype |
data type, default=numpy.float64
|
The data type to use for the bin indices. Default is |
n_bins_ |
int
|
The number of bins learned during fitting. |
bin_edges_ |
numpy ndarray
|
The edges of the bins learned during fitting. |
Source code in skforecast/preprocessing/preprocessing.py
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 |
|
_validate_params ¶
_validate_params(
n_bins, method, subsample, dtype, random_state
)
Validate the parameters passed to the class initializer.
Source code in skforecast/preprocessing/preprocessing.py
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 |
|
fit ¶
fit(X)
Learn the bin edges based on quantiles from the training data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
numpy ndarray
|
The training data used to compute the quantiles. |
required |
Returns:
Type | Description |
---|---|
None
|
|
Source code in skforecast/preprocessing/preprocessing.py
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 |
|
transform ¶
transform(X)
Assign new data to the learned bins.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
numpy ndarray
|
The data to assign to the bins. |
required |
Returns:
Name | Type | Description |
---|---|---|
bin_indices |
numpy ndarray
|
The indices of the bins each value belongs to. Values less than the smallest bin edge are assigned to the first bin, and values greater than the largest bin edge are assigned to the last bin. |
Source code in skforecast/preprocessing/preprocessing.py
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 |
|
fit_transform ¶
fit_transform(X)
Fit the model to the data and return the bin indices for the same data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
ndarray
|
The data to fit and transform. |
required |
Returns:
Name | Type | Description |
---|---|---|
bin_indices |
ndarray
|
The indices of the bins each value belongs to. Values less than the smallest bin edge are assigned to the first bin, and values greater than the largest bin edge are assigned to the last bin. |
Source code in skforecast/preprocessing/preprocessing.py
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 |
|
get_params ¶
get_params()
Get the parameters of the quantile binner.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
self |
|
required |
Returns:
Name | Type | Description |
---|---|---|
params |
dict
|
A dictionary of the parameters of the quantile binner. |
Source code in skforecast/preprocessing/preprocessing.py
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 |
|
set_params ¶
set_params(**params)
Set the parameters of the QuantileBinner.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
params |
dict
|
A dictionary of the parameters to set. |
{}
|
Returns:
Type | Description |
---|---|
None
|
|
Source code in skforecast/preprocessing/preprocessing.py
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 |
|